
CS 352
Routing Algorithms: Intro

CS 352, Lecture 18.1
http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-S19

Network
Application

Transport

Network

Host-to-Net …

FTP HTTP SMTP DNS

TCP UDP

IP

802.11 X.25 ATM

HTTPS

The main function of the network layer is to
move packets from one endpoint to another.

How would one design a “Google Maps”
for the Internet?

Review: Network layer functions
• Forwarding: move packets
from routerʼs input to
appropriate router output

• Routing: determine route
taken by packets from source
to destination
• routing algorithms

• The network layer solves the
routing problem.

• Data Plane

• Control Plane

• Two kinds of control planes:
• Distributed per-router control
• Logically centralized

The next 2
lectures

Routing
Algorithm

data
plane

control
plane

4.1 • OVERVIEW OF NETWORK LAYER 309

tables. In this example, a routing algorithm runs in each and every router and both
forwarding and routing functions are contained within a router. As we’ll see in Sec-
tions 5.3 and 5.4, the routing algorithm function in one router communicates with
the routing algorithm function in other routers to compute the values for its forward-
ing table. How is this communication performed? By exchanging routing messages
containing routing information according to a routing protocol! We’ll cover routing
algorithms and protocols in Sections 5.2 through 5.4.

The distinct and different purposes of the forwarding and routing functions can
be further illustrated by considering the hypothetical (and unrealistic, but technically
feasible) case of a network in which all forwarding tables are configured directly by
human network operators physically present at the routers. In this case, no routing
protocols would be required! Of course, the human operators would need to interact
with each other to ensure that the forwarding tables were configured in such a way
that packets reached their intended destinations. It’s also likely that human configu-
ration would be more error-prone and much slower to respond to changes in the net-
work topology than a routing protocol. We’re thus fortunate that all networks have
both a forwarding and a routing function!

Values in arriving
packet’s header

1

2
3

Local forwarding
table

header

0100
0110
0111
1001

1101

3
2
2
1

output

Control plane

Data plane

Routing algorithm

Figure 4.2 ♦ Routing algorithms determine values in forward tables

M04_KURO4140_07_SE_C04.indd 309 11/02/16 3:14 PM

1

2

0111

values in arriving
packet header,
i.e, destination IP address

3

Data plane
per-packet
processing, moving
packet from input port
to output port

Distributed
control plane:
Components in every
router interact with
other components to
produce a routing
outcome.

Review: Per-router control plane

Goal of Routing Algorithms
• Determine good paths from source to destination

• “Good” = least cost
• Least propagation delay
• Least cost per unit bandwidth (e.g., $ per Gbit/s)
• Least congested (workload-driven)

• “Path” = a sequence of router ports (links)

• Routing is a fundamental problem in networking.

The graph abstraction
• Routing algorithms work over an abstract representation of a

network: the graph abstraction

• Each router is a node in a graph
• Each link is an edge in the graph
• Edges have weights (also called link metrics). Set by admin

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5Ex: Rutgers campus

u: Computer Science
v: School of Engineering

…

The graph abstraction
• Routing algorithms work over an abstract representation of a

network: the graph abstraction

• G = (N, E)
• N = {u, v, w, x, y, z}
• E = { (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5Ex: Rutgers campus

u: Computer Science
v: School of Engineering

…

The graph abstraction
• Cost of an edge: c(x, y)
• Examples: c(u, v) = 2, c(u, w) = 5

• Cost of a path = summation of edge costs
• c(path x à w à y à z) = 3 + 1 + 2 = 6

• Outcome of routing: each node should determine the least cost
path to every other node
• Q1: What algorithm should each node run to compute the least

cost path to every node?
• Q2: What information should nodes exchange with each other to

enable this computation?

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

The rest of this lecture
Routing

protocols

Link state
protocols

Distance vector
protocols

Each router has complete
information of the graph

Information shared by flooding
over the network

Message exchanges expensive

Each router only maintains
distances to other routers

Messages are exchanged over
each link and stay within the link

Message exchanges cheap

CS 352
Link State Protocols

CS 352, Lecture 18.2
http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

12

http://www.cs.rutgers.edu/~sn624/352-S19

Review: Routing & Link State Algorithms
• Distributed routing protocols

• Goal of routing algorithms: find least cost path
in a graph abstraction of the network

• Link state algorithm: Each router has full
visibility of the graph, i.e., the “states” of all
links

• Q1: what algorithm runs at each node?
• Q2: what information is exchanged?

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

Distance vector
protocols

Routing protocols

Link state
protocols

Q2: Information exchange
• Link state flooding: the process by which

neighborhood information of each network
router is transmitted to all other routers
• Each router sends a link state advertisement

(LSA) to each of its neighbors
• LSA contains the router ID, the IP prefix

owned by the router, the router’s neighbors,
and link cost to those neighbors
• Upon receiving an LSA, a router forwards it to

each of its neighbors: flooding

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

Q2: Information exchange
• Eventually, the entire network receives LSAs

originated by each router

• LSAs occur periodically and whenever the
graph changes
• Example: if a link fails
• Example: if a new link or router is added

• The routing algorithm running at each router
can use the entire network’s graph to
compute least cost paths

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

Q1: The algorithm

Dijkstra’s algorithm
• Given a network graph, the

algorithm computes the least cost
paths from one node (source) to all
other nodes
• This can then be used to compute

the forwarding table at that node
• Iterative algorithm: maintain

estimates of least costs to reach
every other node. After k iterations,
each node definitively knows the
least cost path to k destinations

Notation:
• c(x,y): link cost from node x to y;

= ∞ if not direct neighbors
• D(v): current estimate of cost of

path from source to destination v
• p(v): (predecessor node) the last

node before v on the path from
source to v
• N': set of nodes whose least cost

path is definitively known

17

Dijsktra’s Algorithm
1 Initialization:
2 N' = {u}
3 for all nodes v
4 if v adjacent to u
5 then D(v) = c(u,v)
6 else D(v) = ∞
7
8 Loop
9 find w not in N' such that D(w) is a minimum
10 add w to N'
11 update D(v) for all v adjacent to w and not in N' :
12 D(v) = min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
14 shortest path cost to w plus cost from w to v */
15 until all nodes in N'

Initial estimates of
distances are just the
link costs of neighbors.

Least cost node among
all estimates. This cost
cannot decrease further.

Relaxation

Visualization

v

w

u

N’
nodes whose least

cost paths from u are
definitively known

v’

v’’

N \ N’
Nodes with estimated
least path costs, not
definitively known

min cost in N \ N’

D(w)

c(w, v)

D(v)

W should
move to N’.

Relaxation: for each v
in N \ N’, is the cost of
the path via w smaller
than known least cost
path to v?
If so, update D(v)
Predecessor of v is w.

Cost of path via w: D(w) + c(w,v)
Cost of known best path: D(v)

Dijkstra’s algorithm: example
Step

0
1
2
3
4
5

N'
u

ux
uxy

uxyv
uxyvw

uxyvwz

D(v),p(v)
2,u
2,u
2,u

D(w),p(w)
5,u
4,x
3,y
3,y

D(x),p(x)
1,u

D(y),p(y)
∞

2,x

D(z),p(z)
∞
∞

4,y
4,y
4,y

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

Constructing the forwarding table
• To find the router port to use for a given destination (router), find

the predecessor of the node iteratively until reaching an
immediate neighbor of the source u

• The port connecting u to this neighbor is the output port for this
destination

Constructing the forwarding table
• Suppose we want forwarding entry for z.

D(v),p(v)
2,u

D(w),p(w)
3,y

D(x),p(x)
1,u

D(y),p(y)
2,x

D(z),p(z)
4,y

z: p(z) = y
y: p(y) = x
x: p(x) = u
x is an immediate
neighbor of u

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

z (u,x)
destination linkForwarding

table at u:

Summary of link state protocols
• Each router announces link state to the entire network using

flooding

• Each node independently computes least cost paths to every
other node using the full network graph

• Dijkstra’s algorithm can efficiently compute these best paths
• Easy to populate the forwarding table from predecessor information

computed during the algorithm

CS 352
Distance Vector Protocols

CS 352, Lecture 18.3
http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

24

http://www.cs.rutgers.edu/~sn624/352-S19

Review: Routing & Dist Vector Algorithms
• Distributed routing protocols

• Goal of routing algorithms: find least cost
path in a graph abstraction of the network

• DV proto: Each router maintains a vector of
distances to all other routers; not the graph.

• Q1: what algorithm runs at each node?
• Q2: what information is exchanged?

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

Distance vector
protocols

Routing protocols

Link state
protocols

26

Q2: Exchanged info = Distance Vectors

• Nodes exchange distance vectors with their neighbors
• No flooding unlike link state protocols. Message not propagated further

• Dx(y) = estimate of least cost from x to y
• Distance vector: Dx = [Dx(y): y є N]
• Node x knows cost of edge to each neighbor v: c(x,v)
• Node x maintains Dx
• Node x also maintains its neighbors’ distance vectors
• For each neighbor v, x maintains Dv = [Dv(y): y є N]

• Nodes exchange distance vector periodically and whenever the
local distance vector changes (e.g., link failure, cost changes)

Q1: Algorithm
Bellman-Ford algorithm
• Each node initializes its own distance vector (DV) to edge costs
• Each node sends its DVs to its neighbors
• When a node x receives new DV from a neighbor v, it updates

its own DV using the Bellman-Ford equation:
• Given dx(y) := estimated cost of the least-cost path from x to y
• Update dx(y) = minv {c(x,v) + dv(y) }

cost to reach neighbor v directly from x
minimum taken over
all neighbors v of x

cost of path from neighbor v to destination y

Visualization
• Which neighbor v offers

the current best path from
x to y?
• Path through neighbor v

has cost c(x,v) + dv(y)
• Choose min-cost neighbor
• Remember min-cost

neighbor as the one used
to reach node y
• This neighbor determines

the output port for the
packet.

x

v

y

c(x,v)

Neighbor v sends
its distance vector
to x.

dv(y)
v’

v’’

v’’’Use v’’ and link
(x,v’’) to reach y.

Q1: Algorithm
Bellman-Ford algorithm
• By iteratively performing Bellman-Ford iterations, under some

conditions, the estimate dx(y) converges to the true cost of the
least cost path from x to y.

x y z

x
y
z

0 2 7

∞ ∞ ∞
∞ ∞ ∞

fro
m

cost to

fro
m

fro
m

x y z

x
y
z

0 2 3

fro
m

cost to
x y z

x
y
z

0 2 3

fro
m

cost to

x y z

x
y
z

∞ ∞

∞ ∞ ∞

cost to
x y z

x
y
z

0 2 7

fro
m

cost to
x y z

x
y
z

0 2 3

fro
m

cost to

x y z

x
y
z

0 2 3

fro
m

cost to
x y z

x
y
z

0 2 7

fro
m

cost to
x y z

x
y
z

∞ ∞ ∞
7 1 0

cost to

2 0 1

∞ ∞ ∞

2 0 1
7 1 0

2 0 1
7 1 0

2 0 1
3 1 0

2 0 1
3 1 0

2 0 1

3 1 0
2 0 1

3 1 0

time

x z
12

7

y

node x table

node y table

node z table

Dx(y) = min{c(x,y) + Dy(y), c(x,z) + Dz(y)}
= min{2+0 , 7+1} = 2

Dx(z) = min{c(x,y) + Dy(z),
c(x,z) + Dz(z)}

= min{2+1 , 7+0} = 3

∞

Good news with distance vector protocols
• Suppose the link cost reduces or a new better

path becomes available in a network.
• The immediate neighbors of the change detect

the better path immediately
• Since their DV changed, these nodes notify their

neighbors immediately.
• And those neighbors notify still more neighbors
• … until the entire network knows to use the better path

• Good news travels fast through the network
• This is despite messages only being exchanged

among neighbors

x z
14

2

y
1

Bad news with distance vector protocols
• If router goes down, could be a while before network realizes it.

A B C D E

1 2 3 4

3 2 3 4

3 4 3 4

5 4 5 4

5 6 5 6

7 6 7 6

Initially

After 1 exchange

After 2 exchanges

After 3 exchanges

After 4 exchanges

After 5 exchanges etc… to infinity

Count to infinity
problem

Bad news travels slowly
• Reacting appropriately to bad news requires information that

only other routers have.

• B needs to know that C has no other path to A other than via B.

• Poisoned reverse: if X gets its route to Y via Z, then X will
announce dX(Y) = ∞ in its message to Z
• Effect: Z won’t use X to route to Y

• However, this won’t solve the problem in general (think why.)
• Fundamentally, DV protocols must exchange more information

to react robustly to network changes and router errors.

A B C D E

Summary: Comparison of LS and DV

Link State Algorithms
• Nodes have full visibility into

the network’s graph
• Message complexity is high:

each LSA is flooded over the
whole network
• In general, robust to network

changes. Scope of incorrect
info is limited to bad LSAs.

Distance Vector Algorithms
• Only distances and neighbors

are visible
• Message complexity is low: DVs

are exchanged among
neighbors only
• Brittle against bad news and

router bugs: incorrect info can
propagate throughout a network

Deployed routing protocols
• The algorithms we’ve seen are widely deployed in real ISPs
• Link-state protocols
• OSPF (Open Shortest Path First)
• IS-IS: (Intermediate System to Intermediate System)

• Distance-vector protocols
• RIP: Routing Information Protocol
• IGRP: Interior Gateway Routing Protocol

• You’re likely watching this video over a network running one of
these protocols to determine how data should reach your
machine.

