
Congestion Control III
Lecture 19

http://www.cs.rutgers.edu/~sn624/352-F24

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-F24


Congestion Control

TCP New Reno

= slow start

  + congestion avoidance (AI)

  + fast retransmit & recovery (MD)

Bandwidth-Delay Product

cwnd < BDP: sender under-uses the link

BDP = cwnd: 100% link use, zero queues (ideal)
BDP < cwnd < BDP + B: persistent queue @ router

BDP + B < cwnd: packet drops

TCP BBR: Gain cycling

Sense and React

H C

Signals Knobs



The Bandwidth-Delay Product

• C * T = bandwidth-delay product: 
• The amount of data in flight for a sender transmitting at the ideal rate during 

the ideal round-trip delay of a packet. (Assumed sole user of the link)

• Note: this is just the amount of data “on the pipes”

Data

C * T 



The Bandwidth-Delay Product

• Q: What happens if cwnd < C * T?

• A: Not sending back to back packets, link underused

Data



The Bandwidth-Delay Product

• Q: What happens if cwnd > C * T?
•  i.e., where are the rest of the in-flight packets?

• A: Waiting at the bottleneck router queues

Data

C * T 



Router buffers and the max cwnd

• Router buffer memory is finite: queues can only be so long
• If the router buffer size is B, there is at most B data waiting in the queue

• If cwnd increases beyond C * T + B, data is dropped!

Data

C * T 

B



Summary

• Bandwidth-Delay Product (BDP) governs the window 
size of a single connection at steady state

• The bottleneck router buffer size governs how much the 
cwnd can exceed the BDP before packet drops occur

• BDP is the ideal desired window size to use the full 
bottleneck link, without any queueing. 

• Accommodating flow control, BDP is also the min 
socket buffer size to use the bottleneck link fully: 
• Important to set socket buffer sizes appropriately for high 

BDP paths



Detecting and Reacting to 
Packet Loss



Detecting packet loss

• So far, all the algorithms we’ve studied have a coarse loss 
detection mechanism: RTO timer expiration
• Let the RTO expire, drop cwnd all the way to 1 MSS

• Analogy: you’re driving a car
• You accelerate until the next car in front is super close to you (RTO) and 

then hit the brakes hard (cwnd := 1)

• Q: Can you see obstacles from afar and slow down proportionately?

• That is, can the sender see packet loss coming in advance?
• And reduce cwnd more gently?

1 MSS

Congestion 

Window

Time

Grow too 

fast

Drop too 

fast



Can we detect loss earlier than RTO?

• Key idea: use the information in the ACKs. How?

• Suppose successive (cumulative) ACKs contain the same ACK#
• Also called duplicate ACKs

• Occur when network is reordering packets, or one (but not most) packets 
in the window were lost

• Reduce cwnd when you see many duplicate ACKs

• Consider many dup ACKs a strong indication that packet was lost

• Default threshold: 3 dup ACKs, i.e., triple duplicate ACK

• Make cwnd reduction gentler than setting cwnd = 1; recover faster



Fast Retransmit & Fast 
Recovery



Distinction: In-flight versus window

• So far, window and in-flight referred to the same data  

• Fast retransmit/recovery differentiate the two notions

0 1 2 3 4 5 6 7 10

Last cumulative 

ACK’ed seq #
Last transmitted 

seq #

cwnd = 6

0 1 2 3 4 5 6 7 10

inflight = 3

Triple duplicate ACKs

 (assume subsequent 3 pieces of data 

were successfully received)

Sender’s 

view:

cwnd is the interval between the last cumulatively 

ACK’ed seq# and the last transmitted seq#
inflight is the data currently 

believed to be in flight.



TCP fast retransmit (RFC 2581)

• The fact that ACKs are coming means that data is getting delivered 
to the receiver, although with some loss.

• Before the dup ACKs arrive, we assume inflight = cwnd

• TCP sender performs two actions with fast retransmit



TCP fast retransmit (RFC 2581)

• (1) Reduce the cwnd and in-flight gently
• Don’t drop cwnd all the way down to 1 MSS

• Reduce the amount of in-flight data multiplicatively
• Set inflight → inflight / 2

• That is, set cwnd = (inflight / 2) + 3MSS

• This step is called multiplicative decrease

• Algorithm also sets ssthresh to inflight / 2



TCP fast retransmit (RFC 2581)

• Example: Suppose cwnd and inflight (before triple dup 
ACK) were both 8 MSS. 

• After triple dup ACK, reduce inflight to 4 MSS

• Assume 3 of those 8 MSS no longer in flight; set cwnd = 7 MSS

Last cumulative 

ACK’ed seq #

cwnd = inflight = 8

5

0 1 2 3 4 5 6 7 10 52 3 4 6 7 10

Assumed not in 

flight (dup ACK)

Updated to
inflight = 4

cwnd = 7



TCP fast retransmit (RFC 2581)

• (2) The seq# from dup ACKs is immediately retransmitted

• That is, don’t wait for an RTO if there is sufficiently strong evidence 
that a packet was lost



TCP fast recovery (RFC 2581)

• Sender keeps the reduced inflight until a new ACK arrives

• New ACK: an ACK for the seq# that was just retransmitted

• Cumulative ACK may also indicate the (three or more) pieces of data that 
were previously delivered to generate the duplicate ACKs

• Conserve packets in flight: transmit some data over lossy periods 
(rather than almost no data, if cwnd := 1)



TCP fast recovery (RFC 2581)

• Keep incrementing cwnd by 1 MSS for each dup ACK

Last cumulative 

ACK’ed seq #

cwnd = 6

inflight = 3

0 1 2 3 4 5 6 7 10 52 3 4

5

6 7 10

Assumed not in 

flight (dup ACK)



TCP fast recovery (RFC 2581)

• Keep incrementing cwnd by 1 MSS for each dup ACK

Last cumulative 

ACK’ed seq #

cwnd = 7

inflight = 3

0 1 2 3 4 5 6 7 10 52 3 4 6 7 10

Assumed not in 

flight (dup ACK)



TCP fast recovery (RFC 2581)

• Keep incrementing cwnd by 1 MSS for each dup ACK

Last cumulative 

ACK’ed seq #

cwnd = 8

inflight = 3

0 1 2 3 4 5 6 7 10 52 3 4 6 7 10

Assumed not in 

flight (dup ACK)



TCP fast recovery (RFC 2581)

• Eventually a new ACK arrives, acknowledging the retransmitted 
data and all data in between

• Deflate cwnd to half of cwnd before fast retransmit.
• cwnd and inflight are aligned and equal once again

• Perform additive increase from this point!

cwnd = 6/2 = 3

inflight = cwnd = 3

0 1 2 3 4 5 6 7 10 52 3 4 6 7 10

New ACK acknowledged this data
Last cumulative 

ACK’ed seq #



Additive Increase/Multiplicative Decrease

1K

Time

Triple duplicate ACK

In-flight data

Say MSS = 1 KByte

Default ssthresh = 64KB = 64 MSS

Switch to additive 
increase at cwnd = 
ssthresh = 64K

Perceived loss occurs at 
cwnd = 80K

(2) Set inflight 

= ssthresh = 40K

Fast retransmit: (1) retransmit dup-ACKed segment

New ACK RTO

RTO: window drops all 

the way to 1 MSS

(2) Multiplicative 

decrease

Fast recovery keeps inflight stable until new ACK



TCP New Reno performs additive increase and 

multiplicative decrease of congestion window.

In short, we often refer to this as AIMD.

Multiplicative decrease is a part of all TCP 

algorithms, including BBR.
[We didn’t cover this, but MD is necessary for fairness across 

TCP flows.]



Summary: TCP loss detection & reaction

Fast Retransmit
• Triple dup ACK: sufficiently 

strong signal that network has 
dropped data, before RTO

• Immediately retransmit data

• Multiplicatively decrease in-
flight data to half of its value

Fast Recovery
• Maintain this reduced amount of 

in-flight data as long as dup 
ACKs arrive
• Data is successfully getting 

delivered

• When new ACK arrives, do 
additive increase from there on

• Don’t wait for an RTO and then set the cwnd to 1 MSS

• Instead, react proportionately by sensing pkt loss in advance



Connection Management
How does a TCP connection start?



Starting a TCP connection

• TCP requires sender/receiver to set up some context
• Sequence numbers, window size, buffers, OS table entries

S
e

n
d

e
r

e
.g

.,
 b

ro
w

s
e
r

R
e

c
e

iv
e

r

e
.g

.,
 w

e
b

 s
e

rv
e

r
Provision enough  

socket buffers.

Entries in operating 

system tables 

(connection 

lookup), choose 

sequence #, etc.

Attack by 

resource 

exhaustion 

at server

(SYN flood)



TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y

ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x) 
indicates server is live;

send ACK for SYNACK;
this segment may contain 

client-to-server data

received ACK(y) 
indicates client is live

SYNSENT

ESTAB

SYN RCVD

Client state

LISTEN

Server state

LISTEN

cs = socket(AF_INET, SOCK_STREAM)

ss = socket(AF_INET,SOCK_STREAM)

ss.bind((‘’,server_port))

ss.listen(1)

csockid, addr = ss.accept()

cs.connect((host,server_port))

Provision resources



Implications of 3-way handshake

• Any application data can only be sent an RTT after

• Fresh connection: at least 2 RTTs to get a response
• Often fruitful to use persistent connections

• “Recent” measures to address the startup delay
• TCP fast open

• QUIC


	Slide 1: Congestion Control III
	Slide 2
	Slide 3: The Bandwidth-Delay Product
	Slide 4: The Bandwidth-Delay Product
	Slide 5: The Bandwidth-Delay Product
	Slide 6: Router buffers and the max cwnd
	Slide 7: Summary
	Slide 8: Detecting and Reacting to Packet Loss
	Slide 9: Detecting packet loss
	Slide 10: Can we detect loss earlier than RTO?
	Slide 11: Fast Retransmit & Fast Recovery
	Slide 12: Distinction: In-flight versus window
	Slide 13: TCP fast retransmit (RFC 2581)
	Slide 14: TCP fast retransmit (RFC 2581)
	Slide 15: TCP fast retransmit (RFC 2581)
	Slide 16: TCP fast retransmit (RFC 2581)
	Slide 17: TCP fast recovery (RFC 2581)
	Slide 18: TCP fast recovery (RFC 2581)
	Slide 19: TCP fast recovery (RFC 2581)
	Slide 20: TCP fast recovery (RFC 2581)
	Slide 21: TCP fast recovery (RFC 2581)
	Slide 22: Additive Increase/Multiplicative Decrease
	Slide 23
	Slide 24: Summary: TCP loss detection & reaction
	Slide 25: Connection Management
	Slide 26: Starting a TCP connection
	Slide 27: TCP 3-way handshake
	Slide 28: Implications of 3-way handshake

