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Congestion window

• The sender maintains an estimate of the amount of in-flight data 
needed to keep the link fully busy without congesting it

• This estimate is called the congestion window (cwnd)

• Recall: There is a relationship between the sending rate 
(throughput) and the sender’s window:  sender transmits a 
window’s worth of data over an RTT duration 
• Rate = window / RTT



Interaction b/w flow & congestion control

• Use window = min(congestion window, receiver advertised 
window) 

• Overwhelm neither the receiver nor network links & routers
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Review: Steady state operation
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Review: Slow start
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Problems: 

• Congestion window grows too fast!

• Congestion window drops too fast!

Need gentler adaptation of cwnd closer to steady stateQ: How to get to steady state?



TCP Congestion Avoidance



Two congestion control algorithms

TCP New Reno

• The most studied, classic 
“textbook” TCP algorithm

• The primary knob is congestion 
window

• The primary signal is packet 
loss (RTO)

• Adjustment using additive 
increase

TCP BBR

• Recent algorithm developed & 
deployed by Google

• The primary knob is sending rate

• The primary signal is rate of 
incoming ACKs

• Adjustment using gain cycling 
and filters



TCP New Reno: Additive Increase

• Remember the recent past to find a 
good estimate of link rate

• The last good cwnd without packet 
drop is a good indicator
• TCP New Reno calls this the slow start 

threshold (ssthresh)

• Increase cwnd by 1 MSS every RTT 
after cwnd hits ssthresh

• Effect: increase window additively per 
RTT
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TCP New Reno: Additive increase

• Start with ssthresh = 64K bytes (TCP default)

• Do slow start until ssthresh

• Once the threshold is passed, do additive increase
• Add one MSS to cwnd for each cwnd worth data ACK’ed

• For each MSS ACK’ed, cwnd = cwnd + (MSS/cwnd) * MSS

• Upon a TCP timeout (RTO),
• Set cwnd = 1 MSS

• Set ssthresh = max(2 * MSS, 0.5 * cwnd)

• i.e., the next linear increase will start at half the current cwnd



Behavior of Additive Increase
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TCP BBR: finding the bottleneck link rate
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TCP BBR: finding the bottleneck link rate

• Assuming that the link rate of the bottleneck
• == the rate of data getting across the bottleneck link

• == the rate of data getting to the receiver

• == the rate at which ACKs are generated by the receiver

• == the rate at which ACKs reach the sender

• Measuring ACK rate provides an estimate of bottleneck link rate

• BBR: Send at the maximum ACK rate measured in the recent past
• Update max with new bottleneck rate estimates, i.e., larger ACK rate 

• Forget estimates last measured a long time ago

• Incorporated into a rate filter



TCP BBR: Adjustments by gain cycling

• BBR periodically increases its sending rate by a gain factor to 
see if the link rate has increased (e.g., due to a path change)
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Bandwidth-Delay Product



Steady state cwnd for a single flow
• Suppose the bottleneck link has rate C

• Suppose the propagation round-trip delay (propRTT) between 
sender and receiver is T

• Ignore transmission delays for this example; 

• Assume steady state: highest sending rate with no bottleneck 
congestion; back-to-back packets over bottleneck link

• Q: how much data is in flight over a single RTT?

• C * T data i.e., amount of data unACKed at any point in time

• ACKs take time T to arrive (without any queueing). In the 
meantime, sender is transmitting at rate C



The Bandwidth-Delay Product

• C * T = bandwidth-delay product: 
• The amount of data in flight for a sender transmitting at the ideal rate during 

the ideal round-trip delay of a packet

• Note: this is just the amount of data “on the pipes”

Data

C * T 
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