Congestion Control I

Lecture 18
http://www.cs.rutgers.edu/~sn624/352-F24
Srinivas Narayana

RUTGERS

NNNNNNNNNNNNNNNNNNNNNN


http://www.cs.rutgers.edu/~sn624/352-F24

& sender V

What's the
bottleneck? How /
to adapt how \

keep in flight?

Sense and React
X )

Loss,
ACKSs, etc.

Multiple locations
for bottle

\ I

Congestion Control

) 4
—
r\\\ 40 \
et Q

much data to = Distributed algorithm converging
to an efficient and fair outcome

cks

applicationl |
process

receiver buffersf’

TCP socket

from sender L
|
|
|
1

sending rate

Congestion window,

receiver

Steady state?

How to get to
steady state?

Flow Control



Congestion window

* The sender maintains an estimate of the amount of in-flight data
needed to keep the link fully busy without congesting it

* This estimate is called the congestion window (cwnd)

* Recall: There Is a relationship between the sending rate
(throughput) and the sender’s window: sender transmits a
window’s worth of data over an RTT duration

« Rate =window / RTT



Interaction b/w flow & congestion control

« Use window = min(congestion window, receiver advertised
window)

 Overwhelm neither the receiver nor network links & routers

Window <= Congestion window (congestion control)
Window <= Advertised window (flow control)

4—)
U A 0 1 2 3 45 6 7 0 1
View.

Last cumulative Last transmitted
ACK’ed seq # seq #




Review: Steady state operation

(2) Keep transmissions over the

Send packet bottleneck link back to back

burst (as allowed _
by window) Data — Receive data
é packet
(1) Keep transmissions
ACK-clocked: Send new
data on ACK
Sender Receiver
Receive ACK Send ACK
& ACKS




Problems:
« Congestion window grows too fast!

ReVIeW SIOW Start « Congestion window drops too fast!

Q: How to get to steady state? Need gentler adaptation of cwnd closer to steady state

Packet drops/

/ RTO\

Congestion
Window
&
&6@ e\@{& %\‘b{\
&© q,\°\$ G,;\°$
TR VIl P B o B NNNNPPS PRPPFPPPIS



TCP Congestion Avoidance



Two congestion control algorithms

TCP New Reno TCP BBR
* The most studied, classic * Recent algorithm developed &
“textbook” TCP algorithm deployed by Google

* The primary knob is congestion < The primary knob is sending rate
window

* The primary signal is packet

loss (RTO) * The primary signal is rate of

Incoming ACKSs

« Adjustment using additive

erease « Adjustment using gain cycling

and filters



TCP New Reno: Additive Increase

- Remember the recent past to find a Hos A Host B

/™
good estimate of link rate gﬁ say ssthresh=4 E

* The last good cwnd without packet t 2ur segments
drop is a good indicator 'Lf =
: ———
» TCP New Reno calls this the slow start f ———"e segmens
threshold (ssthresh) £ ——
|
* Increase cwnd by 1 MSS every RTT z ——
after cwnd hits ssthresh 1 =

 Effect: increase window additively per -
RTT time




TCP New Reno: Additive increase

e Start with ssthresh = 64K bytes (TCP default)
e Do slow start until ssthresh

* Once the threshold is passed, do additive increase
 Add one MSS to cwnd for each cwnd worth data ACK’ed
 For each MSS ACK’ed, cwnd = cwnd + (MSS/cwnd) * MSS

« Upon a TCP timeout (RTO),
e Set cwnd = 1 MSS
e Set ssthresh = max(2 * MSS, 0.5 * cwnd)
* |.e., the next linear increase will start at half the current cwnd



Behavior of Additive Increase

Say MSS = 1 KByte
Default ssthresh = 64KB = 64 MSS

Packet drops/
Loss occurs at RTO
cwnd = 54K / Loss occurs at
54 MSS fresssssnnnnnnnnnnnnnnnnn cwnd = 40K
‘&\\\G
QO™ e NI
Set ssthresh to P\ 0(666 P‘dd\\\ e
Conagestion L \(\.. \(\C"e'a
g_ Set ssthresh to
Window & R 20 MSS
S o/ aaspssssssssngfanssnnnnnas
\0$ o™
S > N
\O
S A
1K IPoeeecssssasnnnnsnnnnnnsdiTronssnnnsnnnnsnnnusnnnnnnnnnnnnnnnnnnnnsn PX



TCP BBR: finding the bottleneck link rate

1. Send data at
Spefiﬂc ra?ea = Data gets across the bottleneck
at the bottleneck link rate.

—

Use ACK receive
rate to/determine
sending rate

2. Receive data
packet

=

Sender Recelver
4. Measure rate 3. Send ACK
of incoming <+ ACKSs

ACKs



TCP BBR: finding the bottleneck link rate

« Assuming that the link rate of the bottleneck
« == the rate of data getting across the bottleneck link
» == the rate of data getting to the receiver
« == the rate at which ACKs are generated by the receiver
» == the rate at which ACKs reach the sender

« Measuring ACK rate provides an estimate of bottleneck link rate

 BBR: Send at the maximum ACK rate measured in the recent past
« Update max with new bottleneck rate estimates, i.e., larger ACK rate
* Forget estimates last measured a long time ago
* Incorporated into a rate filter



TCP BBR: Adjustments by gain cycling

* BBR periodically increases its sending rate by a gain factor to
see If the link rate has increased (e.g., due to a path change)

Steady state operation:
constant sending rate

Gain cycle

- Last max ACK rate was
- measured a while ago.
- / Forget it & use a more

recent max ACK rate

Sending rate

Filter :

\

Detect higher ACK rate:
Update sending rate

No change
in ACK rate

Bottleneck link Time Bottleneck link
rate increase rate decrease



Bandwidth-Delay Product



Steady state cwnd for a single flow

« Suppose the bottleneck link has rate C

* Suppose the propagation round-trip delay (propRTT) between
sender and receiveris T

* Ignore transmission delays for this example;

« Assume steady state: highest sending rate with no bottleneck
congestion; back-to-back packets over bottleneck link

* Q: how much data is in flight over a single RTT?

 C * T data I.e., amount of data unACKed at any point in time

 ACKs take time T to arrive (without any queueing). In the
meantime, sender Is transmitting at rate C



The Bandwidth-Delay Product

« C* T = bandwidth-delay product:

 The amount of data in flight for a sender transmitting at the ideal rate during
the ideal round-trip delay of a packet

* Note: this is just the amount of data “on the pipes”

Data ————>

C*T



	Slide 1: Congestion Control II
	Slide 2
	Slide 3: Congestion window
	Slide 4: Interaction b/w flow & congestion control
	Slide 5: Review: Steady state operation
	Slide 6: Review: Slow start
	Slide 7: TCP Congestion Avoidance
	Slide 8: Two congestion control algorithms
	Slide 9: TCP New Reno: Additive Increase
	Slide 10: TCP New Reno: Additive increase
	Slide 11: Behavior of Additive Increase
	Slide 12: TCP BBR: finding the bottleneck link rate
	Slide 13: TCP BBR: finding the bottleneck link rate
	Slide 14: TCP BBR: Adjustments by gain cycling
	Slide 15: Bandwidth-Delay Product
	Slide 16: Steady state cwnd for a single flow
	Slide 17: The Bandwidth-Delay Product

