
Congestion Control II
Lecture 18

http://www.cs.rutgers.edu/~sn624/352-F24

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-F24

application

process

TCP socket

receiver buffers

TCP

code

receiver

from sender

recv()

sender Multiple locations

for bottlenecks

What’s the

bottleneck? How

to adapt how

much data to

keep in flight?

F
lo

w
 C

o
n
tr

o
l

Congestion Control

Distributed algorithm converging

to an efficient and fair outcome

Sense and React
TCP congestion control algorithm

H C

Signals Knobs
Bottleneck link

Loss,

ACKs, etc.
Congestion window,

sending rate

Steady state?

How to get to

steady state?

Congestion window

• The sender maintains an estimate of the amount of in-flight data
needed to keep the link fully busy without congesting it

• This estimate is called the congestion window (cwnd)

• Recall: There is a relationship between the sending rate
(throughput) and the sender’s window: sender transmits a
window’s worth of data over an RTT duration
• Rate = window / RTT

Interaction b/w flow & congestion control

• Use window = min(congestion window, receiver advertised
window)

• Overwhelm neither the receiver nor network links & routers

0 1 2 3 4 5 6 7 10

Last cumulative

ACK’ed seq #
Last transmitted

seq #

Sender’s

view:

Window <= Congestion window (congestion control)

Window <= Advertised window (flow control)

Review: Steady state operation

Sender Receiver

Send packet

burst (as allowed

by window)
Receive data

packet

Send ACKReceive ACK

Data

ACKs

(1) Keep transmissions

ACK-clocked: Send new

data on ACK

(2) Keep transmissions over the

bottleneck link back to back

Review: Slow start

1 MSS

Congestion

Window

Time

Packet drops/

RTO

Problems:

• Congestion window grows too fast!

• Congestion window drops too fast!

Need gentler adaptation of cwnd closer to steady stateQ: How to get to steady state?

TCP Congestion Avoidance

Two congestion control algorithms

TCP New Reno

• The most studied, classic
“textbook” TCP algorithm

• The primary knob is congestion
window

• The primary signal is packet
loss (RTO)

• Adjustment using additive
increase

TCP BBR

• Recent algorithm developed &
deployed by Google

• The primary knob is sending rate

• The primary signal is rate of
incoming ACKs

• Adjustment using gain cycling
and filters

TCP New Reno: Additive Increase

• Remember the recent past to find a
good estimate of link rate

• The last good cwnd without packet
drop is a good indicator
• TCP New Reno calls this the slow start

threshold (ssthresh)

• Increase cwnd by 1 MSS every RTT
after cwnd hits ssthresh

• Effect: increase window additively per
RTT

Host A

R
T

T

Host B

time

R
T

T

say ssthresh=4

…

R
T

T

TCP New Reno: Additive increase

• Start with ssthresh = 64K bytes (TCP default)

• Do slow start until ssthresh

• Once the threshold is passed, do additive increase
• Add one MSS to cwnd for each cwnd worth data ACK’ed

• For each MSS ACK’ed, cwnd = cwnd + (MSS/cwnd) * MSS

• Upon a TCP timeout (RTO),
• Set cwnd = 1 MSS

• Set ssthresh = max(2 * MSS, 0.5 * cwnd)

• i.e., the next linear increase will start at half the current cwnd

Behavior of Additive Increase

1K

Time

Packet drops/

RTO

Congestion

Window

Say MSS = 1 KByte

Default ssthresh = 64KB = 64 MSS

54 MSS

Set ssthresh to

27 MSS

Loss occurs at
cwnd = 40K

Loss occurs at
cwnd = 54K

Set ssthresh to

20 MSS

TCP BBR: finding the bottleneck link rate

Sender Receiver

1. Send data at a

specific rate Data gets across the bottleneck

at the bottleneck link rate.
2. Receive data

packet

3. Send ACK4. Measure rate

of incoming

ACKs

Data

ACKs

Use ACK receive

rate to determine

sending rate

TCP BBR: finding the bottleneck link rate

• Assuming that the link rate of the bottleneck
• == the rate of data getting across the bottleneck link

• == the rate of data getting to the receiver

• == the rate at which ACKs are generated by the receiver

• == the rate at which ACKs reach the sender

• Measuring ACK rate provides an estimate of bottleneck link rate

• BBR: Send at the maximum ACK rate measured in the recent past
• Update max with new bottleneck rate estimates, i.e., larger ACK rate

• Forget estimates last measured a long time ago

• Incorporated into a rate filter

TCP BBR: Adjustments by gain cycling

• BBR periodically increases its sending rate by a gain factor to
see if the link rate has increased (e.g., due to a path change)

…

Time

S
e

n
d

in
g

 r
a

te

Steady state operation:

constant sending rate

Gain cycle

Detect higher ACK rate:

Update sending rate

Last max ACK rate was

measured a while ago.

Forget it & use a more

recent max ACK rate

…
No change

 in ACK rate

Bottleneck link

rate increase
Bottleneck link

rate decrease

Filter

Bandwidth-Delay Product

Steady state cwnd for a single flow
• Suppose the bottleneck link has rate C

• Suppose the propagation round-trip delay (propRTT) between
sender and receiver is T

• Ignore transmission delays for this example;

• Assume steady state: highest sending rate with no bottleneck
congestion; back-to-back packets over bottleneck link

• Q: how much data is in flight over a single RTT?

• C * T data i.e., amount of data unACKed at any point in time

• ACKs take time T to arrive (without any queueing). In the
meantime, sender is transmitting at rate C

The Bandwidth-Delay Product

• C * T = bandwidth-delay product:
• The amount of data in flight for a sender transmitting at the ideal rate during

the ideal round-trip delay of a packet

• Note: this is just the amount of data “on the pipes”

Data

C * T

	Slide 1: Congestion Control II
	Slide 2
	Slide 3: Congestion window
	Slide 4: Interaction b/w flow & congestion control
	Slide 5: Review: Steady state operation
	Slide 6: Review: Slow start
	Slide 7: TCP Congestion Avoidance
	Slide 8: Two congestion control algorithms
	Slide 9: TCP New Reno: Additive Increase
	Slide 10: TCP New Reno: Additive increase
	Slide 11: Behavior of Additive Increase
	Slide 12: TCP BBR: finding the bottleneck link rate
	Slide 13: TCP BBR: finding the bottleneck link rate
	Slide 14: TCP BBR: Adjustments by gain cycling
	Slide 15: Bandwidth-Delay Product
	Slide 16: Steady state cwnd for a single flow
	Slide 17: The Bandwidth-Delay Product

