
Congestion Control
Lecture 17

http://www.cs.rutgers.edu/~sn624/352-F24

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-F24

How much data to keep in
flight?
Stop and Wait

R
T

T

RTO

SEQ 0

SEQ 1

ACK

R
T

T

Pipelined Reliability

= window size Proportional to throughput

application

process

TCP socket

receiver buffers

TCP

code

receiver

from sender

recv()

sender Multiple locations

for bottlenecks

What’s the

bottleneck? How

to adapt how

much data to

keep in flight?

F
lo

w
 C

o
n
tr

o
l

Congestion Control

It is difficult to know where the bottleneck link is

It is difficult to know how many other endpoints are using that link

Endpoints may join and leave at any time

Network paths may change over time, leading to different bottleneck

links (with different link rates) over time

Packet loss

Packet delays

How to share a network,

with so many unknowns?

The approach that the Internet takes is to use a

distributed algorithm to converge to an efficient and

fair outcome.

The approach that the Internet takes is to use a

distributed algorithm to converge to an efficient and

fair outcome.

No one can centrally view or control all the endpoints and

bottlenecks in the Internet.

Every endpoint must try to reach a globally good outcome by

itself: i.e., in a distributed fashion.

This also puts a lot of trust in endpoints.

The approach that the Internet takes is to use a

distributed algorithm to converge to an efficient and

fair outcome.

If there is spare capacity in the bottleneck link, the endpoints should use it.

The approach that the Internet takes is to use a

distributed algorithm to converge to an efficient and

fair outcome.

If there are N endpoints sharing a bottleneck link, they should

be able to get equitable shares of the link’s capacity.

For example: 1/N’th of the link capacity.

Flow Control vs. Congestion Control

• Avoid overwhelming the
receiving application

• Sender is managing the
receiver’s socket buffer

• Avoid overwhelming the
bottleneck network link

• Sender is managing the
bottleneck link capacity and
bottleneck router buffers

The approach that the Internet takes is to use a

distributed algorithm to converge to an efficient and

fair outcome.

How to achieve this?

Approach: sense and react

Example: showering: Want “just right” water

Use a feedback loop with signals and knobs

HC

Signals and Knobs in Congestion Control
• Signals

• Packets being ACK’ed

• Packets being dropped (e.g. RTO fires)

• Packets being delayed (RTT)

• Rate of incoming ACKs

• Knobs
• What can you change to “probe” the available bottleneck capacity?

• Window size

• Suppose the receiver socket buffer size is unbounded
• Congestion window: window size used for congestion control

• Increase window/sending rate: e.g., add x or multiply by a factor of x

• Decrease window/sending rate: e.g., subtract x or reduce by a factor of x

Implicit feedback signals

measured directly at sender.

(There are also explicit signals

that the network might provide.)

Sense and react, sure…but how?

• Where do you want to be?
• The steady state

• How do you get there?
• Congestion control algorithms

• Sense accurately & react accordingly

H C

The Steady State
Efficiency for a single TCP connection

What does efficiency look like?

• Suppose we want to achieve an efficient outcome for one TCP
connection by observing network signals from the endpoint

• Q: How should the endpoint behave at steady state?

• Challenge: bottleneck link is remotely located

Steady state: Ideal goal

• High sending rate: Use the full capacity of the bottleneck link

• Low delay: Minimize the overall delay of packets to get to the
receiver
• Overall delay = propagation + queueing + transmission

• Assume propagation and transmission components fixed

• “Low delay” reduces to low queueing delay

• i.e., don’t push so much data into the network that packets have to
wait in queues

• Key question: When to send the next packet?

When to send the next packet?

Sender Receiver

1. Send packet

burst (as allowed

by window)

Fast link Bottleneck link

Inter-packet delay T

T

T

T

T

2. Receive data

packet

3. Send ACK4. Receive ACK

Data

ACKs

5. Send data

packet on ACK

Rationale

• When the sender receives an ACK, that’s a signal that the previous
packet has left the bottleneck link (and the rest of the network)

• Hence, it must be safe to send another packet without congesting the
bottleneck link

• Such transmissions are said to follow packet conservation

• ACK clocking: “Clock” of ACKs governs packet transmissions

ACK clocking: analogy

• How to avoid crowding a grocery
store?

• Strategy: Send the next waiting
customer exactly when a customer
exits the store

• However, this strategy alone can
lead to inefficient use of resources…

ACK clocking alone can be inefficient

Sender Receiver

Large delay T

T

Data

ACKs

Send data

packet on ACK

T

T

T

Sender pushing

data slowly

ACK clocking alone can be inefficient

Sender Receiver

T

Data

The sending rate should be high enough to “fill up” the link

Analogy: a grocery store with only 1 customer in entire store

If the store isn’t “full”, you’re using store space inefficiently

Large delay T

Send data

packet on ACK

Sender pushing

data slowly

Steady State of Congestion Control

• Send at the highest rate possible (to fully use the link)

• while being ACK-clocked (to avoid congesting the pipe)

• So, how to get to steady state?

Finding the Right Congestion
Window

Let’s play a game

• Suppose I’m thinking of a number (positive integer). You need
to guess the number I have in mind.

• Each time you guess, I will tell you whether your number is
smaller or larger than (or the same as) the one I’m thinking of

• My number can be very large or small

• How would you go about guessing the number?

Finding the right congestion window

• TCP congestion control algorithms solve a similar problem!

• There is an unknown bottleneck link rate that the sender must
match

• If sender sends more than the bottleneck link rate:
• packet loss, delays, etc.

• If sender sends less than the bottleneck link rate:
• all packets get through; successful ACKs

Quickly finding a rate: TCP slow start

• Initially cwnd = 1 MSS
• MSS is “maximum segment size”

• Upon receiving an ACK of each MSS,
increase the cwnd by 1 MSS

• Effectively, double cwnd every RTT

▪ Initial rate is slow but ramps up
exponentially fast

▪ On loss (RTO), restart from cwnd := 1
MSS

Host A

R
T

T

Host B

time

PayloadTNL

MSS

Behavior of slow start

1 MSS

Congestion

Window

Time

Packet drops/

RTO

Assume bottleneck link (rate) can

change any time. Hence, keep

repeating the process from the

start.

Slow start has problems

• Congestion window increases too rapidly
• Example: suppose the “right” window size cwnd is 17

• cwnd would go from 16 to 32 and then dropping down to 1

• Result: massive packet drops

• Congestion window decreases too rapidly
• Suppose the right cwnd is 31, and there is a loss when cwnd is 32

• Slow start will resume all the way back from cwnd 1

• Result: unnecessarily low throughput

• Instead, perform finer adjustments of cwnd based on signals

Use slow start mainly at the beginning

• You might accelerate your car a lot when you start, but you want to
make only small adjustments after.
• Want a smooth ride, not a jerky one

• Slow start is a good algorithm to get close to the bottleneck link rate
when there is little info available about the bottleneck, e.g., the
beginning of a connection

• Once close enough to the bottleneck link rate, use a different set of
strategies to perform smaller adjustments to the congestion window

• Called TCP congestion avoidance

	Slide 1: Congestion Control
	Slide 2: How much data to keep in flight?
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Flow Control vs. Congestion Control
	Slide 10
	Slide 11: Signals and Knobs in Congestion Control
	Slide 12: Sense and react, sure…but how?
	Slide 13: The Steady State
	Slide 14: What does efficiency look like?
	Slide 15: Steady state: Ideal goal
	Slide 16: When to send the next packet?
	Slide 17: Rationale
	Slide 18: ACK clocking: analogy
	Slide 19: ACK clocking alone can be inefficient
	Slide 20: ACK clocking alone can be inefficient
	Slide 21: Steady State of Congestion Control
	Slide 22: Finding the Right Congestion Window
	Slide 23: Let’s play a game
	Slide 24: Finding the right congestion window
	Slide 25: Quickly finding a rate: TCP slow start
	Slide 26: Behavior of slow start
	Slide 27: Slow start has problems
	Slide 28: Use slow start mainly at the beginning

