
Ordering & Flow Control
Lecture 15

http://www.cs.rutgers.edu/~sn624/352-F24

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-F24

Review: Reliability

Selective ACK

ACK pkts after a drop?

Go-back-N

No

Selective repeat

Yes

Cumulative ACKStop and Wait

R
T

T

RTO

SEQ 0

SEQ 1

ACK R
T

T

Pipelined Reliability

th
ro

u
g
h
p

u
t

TCP reliability metadata
Where are reliability metadata (seq and ack numbers) stored?

TCP header structure

Source port, destination
port (connection
demultiplexing)

Size of the TCP header
(in 32-bit words)

Basic error detection
through checksums

(similar to UDP)

TCP header structure

Identifies data in the packet
from the application stream

TCP uses byte seq #s

TCP acks the next seq #
that the receiver expects.

(cumulative ACK)

Selective ACKs are written
into the options field

Observing a TCP exchange

• sudo tcpdump -i eno1 tcp portrange 56000-56010

• curl --local-port 56000-56010
https://www.google.com > output.html

• Bonus: Try crafting TCP packets with scapy!

TCP Stream-Oriented Data
Transfer

Sequence numbers in the app’s stream

TCP uses byte sequence numbers

Increasing sequence #s

… …packet packet packet packet packet

Data written by application over time

e.g., send() call

100 150 180 240 273 310

Sequence numbers in the app’s stream

Packet boundaries aren’t important for TCP software

TCP is a stream-oriented protocol
(We use SOCK_STREAM when creating sockets)

Increasing sequence #s

… …packet packet packet packet packet

Data written by application over time

e.g., send() call

100 150 180 240 273 310

Sequence numbers in the app’s stream

… …

Data written by application over time

e.g., send() call

App does a recv()

1st
recv()

2nd
recv()

3rd
recv()

4th
recv() A recv() call may

return a part of a

packet, a full packet,

or parts of multiple

packets (in order).

Buffering and
Ordering in TCP

11

Memory Buffers at the
Transport Layer

Sockets need receive-side memory buffers

• Since TCP uses selective repeat, the receiver must buffer data that
is received after loss:
• e.g., hold packets so that only the “holes” (due to loss) need to be filled in

later, without having to retransmit packets that were received successfully

• Apps read from the receive-side socket buffer when you do a
recv() call.

• Even if data is always reliably received, applications may not always
read the data immediately
• What if you invoked recv() in your program infrequently (or never)?

• For the same reason, UDP sockets also have receive-side buffers

Receiver app’s interaction with TCP

• Upon reception of data, the receiver’s
TCP stack deposits the data in the
receive-side socket buffer

• An app with a TCP socket reads from
the TCP receive socket buffer
• e.g., when you do data = sock.recv()

application

process

TCP socket

receiver buffers

TCP

code

receiver TCP interaction

from sender

recv()

Sockets need send-side memory buffers

• The possibility of packet retransmission in
the future means that data can’t be
immediately discarded from the sender once
transmitted.

• App has issued send() and moved on;
TCP stack must buffer this data

• Transport layer must wait for ACK of a piece
of data before reclaiming (freeing) the
memory for that data.

application

process

TCP socket

sender buffers

TCP

code

sender TCP interaction

to receiver

send()

Ordered Delivery

Reordering packets at the receiver side

• Let’s suppose receiver gets packets 1, 2, and
4, but not 3 (dropped)

• Suppose you’re trying to download a
document containing a report

• What would happen if transport at the
receiver directly presents packets 1, 2, and 4
to the application (i.e., receiving 1,2,4
through the recv() call)?

Sender Receiver

1
2

3
4

1
2

4
5

Reordering packets at the receiver side

• Reordering can happen for a few reasons:
• Drops

• Packets taking different paths through a network

• Receiver needs a general strategy to ensure
that data is presented to the application in the
same order that the sender pushed it. Ideas?

• To implement ordered delivery, the receiver uses
• Sequence numbers

• Receiver socket buffer

• We’ve already seen the use of these for
reliability; but they can be used to order too!

Sender Receiver

1
2

3
4

1
2

3
5

5

Receive-side app and TCP

• TCP receiver software only releases
the data from the receive-side socket
buffer to the application if:

• the data is in order relative to all
other data already read by the
application

• This process is called TCP reassembly

application

process

TCP socket

receiver buffers

TCP

code

receiver protocol stack

from sender

recv()

TCP Reassembly

1 2

1 2 4

1 2 43

Application
can recv()

up to here

Sender/Net

writes here

Socket buffer memory on the receiver

Implications of ordered delivery

• Packets cannot be delivered to the application if there is an in-
order packet missing from the receiver’s buffer
• The receiver can only buffer so much out-of-order data

• Subsequent out-of-order packets dropped

• It won’t matter that those packets successfully arrive at the receiver
from the sender over the network

• TCP application-level throughput will suffer if there is too much
packet reordering in the network
• Data may have reached the receiver, but won’t be delivered to apps

upon a recv() (...or may not even be buffered!)

How much data to keep in
flight?
Stop and Wait

R
T

T

RTO

SEQ 0

SEQ 1

ACK

R
T

T

Pipelined Reliability

= window size Proportional to throughput

We want to increase throughput, but …

application

process

TCP socket

receiver buffers

TCP

code

receiver

from sender

recv()

sender

Multiple locations

for bottlenecks

What’s the

bottleneck? How

to adapt how

much data to

keep in flight?

F
lo

w
 C

o
n
tr

o
l

Congestion

Control

Flow Control

Socket buffers can become full

• Applications may read data slower than
the sender is pushing data in
• Example: what if an app infrequently or

never calls recv()?

• There may be too much reordering or
packet loss in the network
• What if the first few bytes of a window are

lost or delayed?

• Receivers can only buffer so much
before dropping subsequent data

application

process

TCP socket

receiver buffers

TCP

code

TCP receiver

from sender

Goal: avoid drops due to buffer fill

• Have a TCP sender only send as much
as the free buffer space available at the
receiver.

• Amount of free buffer varies over time!

• TCP implements flow control

• Receiver’s ACK contains the amount of
data the sender can transmit without
running out the receiver’s socket buffer

• This number is called the advertised
window size

application

process

TCP socket

receiver buffers

TCP

code

receiver protocol stack

from sender

Flow control in TCP headers

TCP flow control

• Receiver advertises to sender (in the ACK)
how much free buffer is available

Sender Receiver

1
2

3
4

1
2

4
5

3

TCP flow control

• Subsequently, the sender’s sliding window
cannot be larger than this value

• Restriction on new sequence numbers that
can be transmitted

• == restriction on sending rate

Sender Receiver

1
2

3
4

1
2

4
5

3

0 1 2 3 4 5 6 7 10

Last cumulative

ACK’ed seq #
Last transmitted

seq #

Window <= Advertised window

Sender’s

view:

	Slide 1: Ordering & Flow Control
	Slide 2: Review: Reliability
	Slide 3: TCP reliability metadata
	Slide 4: TCP header structure
	Slide 5: TCP header structure
	Slide 6: Observing a TCP exchange
	Slide 7: TCP Stream-Oriented Data Transfer
	Slide 8: Sequence numbers in the app’s stream
	Slide 9: Sequence numbers in the app’s stream
	Slide 10: Sequence numbers in the app’s stream
	Slide 11: Buffering and Ordering in TCP
	Slide 12: Memory Buffers at the Transport Layer
	Slide 13: Sockets need receive-side memory buffers
	Slide 14: Receiver app’s interaction with TCP
	Slide 15: Sockets need send-side memory buffers
	Slide 16: Ordered Delivery
	Slide 17: Reordering packets at the receiver side
	Slide 18: Reordering packets at the receiver side
	Slide 19: Receive-side app and TCP
	Slide 20: TCP Reassembly
	Slide 21: Implications of ordered delivery
	Slide 22: How much data to keep in flight?
	Slide 23: We want to increase throughput, but …
	Slide 24: Flow Control
	Slide 25: Socket buffers can become full
	Slide 26: Goal: avoid drops due to buffer fill
	Slide 27: Flow control in TCP headers
	Slide 28: TCP flow control
	Slide 29: TCP flow control

