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Review: Reliability
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TCP reliability metadata
Where are reliability metadata (seq and ack numbers) stored?



TCP header structure

Source port, destination 
port (connection 
demultiplexing)

Size of the TCP header 
(in 32-bit words)

Basic error detection 
through checksums 

(similar to UDP)



TCP header structure

Identifies data in the packet 
from the application stream

TCP uses byte seq #s

TCP acks the next seq # 
that the receiver expects. 

(cumulative ACK)

Selective ACKs are written 
into the options field



Observing a TCP exchange

• sudo tcpdump -i eno1 tcp portrange 56000-56010

• curl --local-port 56000-56010 
https://www.google.com > output.html

• Bonus: Try crafting TCP packets with scapy!



TCP Stream-Oriented Data 
Transfer



Sequence numbers in the app’s stream

TCP uses byte sequence numbers

Increasing sequence #s

… …packet packet packet packet packet

Data written by application over time

e.g., send() call

100 150 180 240 273 310



Sequence numbers in the app’s stream

Packet boundaries aren’t important for TCP software

TCP is a stream-oriented protocol
(We use SOCK_STREAM when creating sockets)

Increasing sequence #s

… …packet packet packet packet packet

Data written by application over time

e.g., send() call

100 150 180 240 273 310



Sequence numbers in the app’s stream

… …

Data written by application over time

e.g., send() call

App does a recv()

1st 
recv()

2nd 
recv()

3rd 
recv()

4th 
recv() A recv() call may 

return a part of a 

packet, a full packet, 

or parts of multiple 

packets (in order).



Buffering and 
Ordering in TCP
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Memory Buffers at the 
Transport Layer



Sockets need receive-side memory buffers

• Since TCP uses selective repeat, the receiver must buffer data that 
is received after loss:
• e.g., hold packets so that only the “holes” (due to loss) need to be filled in 

later, without having to retransmit packets that were received successfully

• Apps read from the receive-side socket buffer when you do a 
recv() call.

• Even if data is always reliably received, applications may not always 
read the data immediately
• What if you invoked recv() in your program infrequently (or never)?

• For the same reason, UDP sockets also have receive-side buffers



Receiver app’s interaction with TCP

• Upon reception of data, the receiver’s 
TCP stack deposits the data in the 
receive-side socket buffer

• An app with a TCP socket reads from 
the TCP receive socket buffer
• e.g., when you do data = sock.recv()
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Sockets need send-side memory buffers

• The possibility of packet retransmission in 
the future means that data can’t be 
immediately discarded from the sender once 
transmitted. 

• App has issued send() and moved on; 
TCP stack must buffer this data

• Transport layer must wait for ACK of a piece 
of data before reclaiming (freeing) the 
memory for that data.
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Ordered Delivery



Reordering packets at the receiver side

• Let’s suppose receiver gets packets 1, 2, and 
4, but not 3 (dropped)

• Suppose you’re trying to download a 
document containing a report

• What would happen if transport at the 
receiver directly presents packets 1, 2, and 4 
to the application (i.e., receiving 1,2,4 
through the recv() call)?
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Reordering packets at the receiver side

• Reordering can happen for a few reasons:
• Drops

• Packets taking different paths through a network

• Receiver needs a general strategy to ensure 
that data is presented to the application in the 
same order that the sender pushed it. Ideas?

• To implement ordered delivery, the receiver uses
• Sequence numbers 

• Receiver socket buffer

• We’ve already seen the use of these for 
reliability; but they can be used to order too!
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Receive-side app and TCP

• TCP receiver software only releases 
the data from the receive-side socket 
buffer to the application if:

• the data is in order relative to all 
other data already read by the 
application

• This process is called TCP reassembly
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TCP Reassembly
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Implications of ordered delivery

• Packets cannot be delivered to the application if there is an in-
order packet missing from the receiver’s buffer
• The receiver can only buffer so much out-of-order data

• Subsequent out-of-order packets dropped 

• It won’t matter that those packets successfully arrive at the receiver 
from the sender over the network

• TCP application-level throughput will suffer if there is too much 
packet reordering in the network
• Data may have reached the receiver, but won’t be delivered to apps 

upon a recv() (...or may not even be buffered!)



How much data to keep in 
flight?
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We want to increase throughput, but …
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Flow Control



Socket buffers can become full

• Applications may read data slower than 
the sender is pushing data in
• Example: what if an app infrequently or 

never calls recv()?

• There may be too much reordering or 
packet loss in the network
• What if the first few bytes of a window are 

lost or delayed?

• Receivers can only buffer so much 
before dropping subsequent data
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Goal: avoid drops due to buffer fill

• Have a TCP sender only send as much 
as the free buffer space available at the 
receiver. 

• Amount of free buffer varies over time!

• TCP implements flow control

• Receiver’s ACK contains the amount of 
data the sender can transmit without 
running out the receiver’s socket buffer

• This number is called the advertised 
window size
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Flow control in TCP headers



TCP flow control

• Receiver advertises to sender (in the ACK) 
how much free buffer is available
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TCP flow control

• Subsequently, the sender’s sliding window 
cannot be larger than this value

• Restriction on new sequence numbers that 
can be transmitted

• == restriction on sending rate
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