
Error Detection
Lecture 12

http://www.cs.rutgers.edu/~sn624/352-F24

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-F24

Review: Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1

Port 2

…

…

…

…

…

Port 65535

socket() Ports

Src IP, Dst IP,

Tp Protocol

Src port, Dst port

Denotes an

attachment point

with the network.

Each IP address

comes with a full

copy of its own

ports.

Connection lookup: The operating

system does a lookup using these

data to determine the right socket

and app.

Listing sockets and connections

• ss

• iperf –s and iperf –s -u

User Datagram Protocol

• Best effort service
• UDP segments may be lost,

corrupted, reordered

• UDP is connectionless
• Each UDP segment handled

independently of others (i.e. no
“memory” across packets)

• Suitable for one-off req/resp
• E.g., DNS uses UDP

• Early multimedia apps used UDP
• Delay-sensitive but loss tolerant

Why are UDP’s guarantees even okay?

Simple & low overhead compared to
TCP:

• No delays due to “connection
establishment” (which TCP does)
• UDP can send a packet immediately

• Small segment header (TCP’s is
larger)

• UDP can blast data without control
• TCP is more balanced and measured

• Less memory for connection “state”
at sender & receiver relative to TCP

UDP: User Datagram Protocol [RFC 768]

UDP segment structure
Length of

segment

(UDP header + data)

application

data

(message)

source port # dest port #

length checksum

16 bits 16 bits

Link layer

Network

Transport

Applications Error

detection

info

(more to

come)

UDP segment structure

application

data

(message)

source port # dest port #

length checksum

Link layer

Network

Transport

Applications

…

Source IP address

Destination IP address

…

Review: UDP demultiplexing

application

data

(message)

source port # dest port #

length checksum

…

Source IP address

Destination IP address

…

Machine 1

Machine 1

Machine 1

IP 1

IP 2

Port 1

Port 2

…

…

…

Port 44262

…

Port 65535

socket() Ports

Seeing UDP packets in action

• How to craft and send (UDP) packets?
• It’s simpler than you think!

• sudo tcpdump -i lo -XAvvv udp # observe packets

• sudo scapy # tool used to send crafted packets

• Example:
• send(IP(dst="127.0.0.1")/UDP(sport=1024, dport=2048)/"hello

world”, iface="lo")

• See other fields of UDP using UDP().fields_desc

• Scapy can send and receive crafted packets!
• However, it requires sudo (superuser privileges)

Error Detection in the
Transport Layer

Why error detection?

• Network provides best effort service

• UDP is a simple and low overhead transport
• Data may be corrupted along the way (e.g., 1 -> 0)

• However, simple error detection is possible!
• Was the data I received the same data the remote machine sent?

• Error detection is a useful feature for all transport protocols
including TCP

• Q: Suppose you’re sending a package to a friend. How would
you detect tampering with that package?

Error Detection in UDP and TCP

• Key idea: have sender compute a function over the data
• Store the result in the packet

• Receiver can check the function’s value in received packet

• An analogy: you’re sending a package of goodies and want
your recipient to know if goodies were leaked along the way

• Your idea: weigh the package; stamp the weight on the package
• Have the recipient weigh the package and cross-check the weight with

the stamped value

Requirements on error detection function

• Function must be easy to compute

• Function value must change if the packet changes
• If the packet was modified through “likely” changes, the function value

must change

• Function must be easy to verify

• UDP and TCP use a class of function called a checksum
• Very common idea: used in multiple parts of networks and computer

systems

Sender:

• treat segment contents as
sequence of 16-bit integers

• checksum: addition (1’s
complement sum) of segment
contents

• sender puts checksum value
into UDP/TCP checksum field

Receiver:

• compute a checksum of the
received segment, including
the checksum in packet itself

• check if the resulting
(computed) checksum is 0

• NO – an error is detected

• YES – assume no error

UDP & TCP’s Checksum function

• Very similar to regular (unsigned) binary addition.

• However, when adding numbers, a carryout from the most
significant bit needs to be added to the result

• Example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0

1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum

checksum

15

Computing 1’s complement sum

From the UDP specification (RFC 768)

• Checksum is the 16-bit one's complement of the one's
complement sum of a pseudo header of information from the IP
header, the UDP header, and the data, padded with zero octets
at the end (if necessary) to make a multiple of two octets.

• The pseudo header conceptually prefixed to the UDP header
contains the source address, the destination address, the
protocol, and the UDP length.

Warning: Technical

language ahead

	Slide 1: Error Detection
	Slide 2: Review: Demultiplexing
	Slide 3: Listing sockets and connections
	Slide 4: User Datagram Protocol
	Slide 5: UDP: User Datagram Protocol [RFC 768]
	Slide 6: UDP segment structure
	Slide 7: UDP segment structure
	Slide 8: Review: UDP demultiplexing
	Slide 9: Seeing UDP packets in action
	Slide 10: Error Detection in the Transport Layer
	Slide 11: Why error detection?
	Slide 12: Error Detection in UDP and TCP
	Slide 13: Requirements on error detection function
	Slide 14: UDP & TCP’s Checksum function
	Slide 15: Computing 1’s complement sum
	Slide 16: From the UDP specification (RFC 768)

