Transport: Demultiplexing

Lecture 11
http://www.cs.rutgers.edu/~sn624/352-F24
Srinivas Narayana

RUTGERS

NNNNNNNNNNNNNNNNNNNNNN

http://www.cs.rutgers.edu/~sn624/352-F24

Transport

Application HTTPS| | FTP | [HTTP| | swTP /DNS

Transport \TCP/ UDP
Network /|p

Host-to-Net 802.11 X.25 ATM

Transport services and protocols

* Provide a communication
abstraction between application | Hosica §
processes

 Transport protocols run @
endpoints

» send side: transport breaks app messages
Into segments, passes to network layer

* recv side: reassembles segments into
messages, passes to app layer

* Multiple transport protocols
available to apps
* Very popular in the Internet: TCP and UDP

Transport vs. network layer

* Transport layer:

communication abstraction
petween processes.
Delivers packets to the
DrOCESS.

* Network layer: abstraction
to communicate between
endpoints. Network layer
provides best effort packet
delivery to a remote
endpoint.

Household analogy:

3 kids sending letters to 3
Kids

* endpoints = houses

 processes = kids

e app messages = letters in
envelopes

* transport protocol = Alice
and Bob who de/mux to
In-house siblings

* network-layer protocol =
postal service

ldentifying a single conversation

« Application connections are * |n this analogy,
identified by 4-tuple:

e Source address: the address of

e Source IP address the first house

« Source port « Source port: name of a kid in the
« Destination IP address first house

- Destination port * Destination address: the address

of the second house

: : Destination port: name of a kid in
Demultlplexmg the second house

(Not always 4-tuple)

Two popular transports

Transmission Control
Protocol (TCP)

» Connection-based: the
application remembers the
other process talking to It.

 Suitable for longer-term,
contextual data transfers, like
HTTP, e-maill, etc.

« Guarantees: reliability,
ordering, congestion control

User Datagram Protocol
(UDP)

» Connectionless: app doesn’t
remember the last process or
source that talked to it.

 Suitable for single reg/resp
flows, like DNS.

« Guarantees: basic error
detection

Demultiplexing Packets

Demultiplexing

IP addr 1

Denotes an
attachment point
with the network.

socket() Ports Each IP address
comes with a full

: copy of its own
Machine ports.

Applications

Transport

Network

Link layer

Demultiplexing

IP addr 1

Denotes an
attachment point
with the network.

socket() Ports Each IP address
comes with a full
copy of its own

Machine ports.

Transport

Network

Demultiplexing

IP addr 1

Denotes an
attachment point
with the network.

socket() Ports Each IP address
comes with a full
copy of its own

Machine ports.

Src port, Dst port

Src IP, Dst IP,
Tp Protocol

Connection lookup: The

Demu Itl pIeX| ng operating system does

a lookup using these
IP addr 1

data to determine the
right socket and app.

Denotes an

attachment point

with the network. Src port, Dst port

Src IP, Dst IP,
Tp Protocol

socket() Ports Each IP address
comes with a full
copy of its own

Machine ports.

Demultiplexing

Denotes an
attachment point
with the network.

socket() Ports Each IP address
comes with a full
copy of its own

Machine ports.

Connection lookup: The
operating system does
a lookup using these
data to determine the
right socket and app.

TCP sockets:

(src IP, dst IP, src port, dst
port)

>

Socket ID

Demultiplexing

Denotes an
attachment point
with the network.

Port 44262
L

Port 65535

Each IP address
comes with a full
copy of its own

Machine ports.

socket() Ports

Connection lookup: The
operating system does
a lookup using these
data to determine the
right socket and app.

TCP sockets:
(src IP, dst IP, src port, dst

port)
> (Our familiar

Socket D P

Demultiplexing

Denotes an
attachment point
with the network.

socket() Ports Each IP address
comes with a full
copy of its own

Machine ports.

Connection lookup: The
operating system does
a lookup using these
data to determine the
right socket and app.

TCP sockets:
(src IP, dst IP, src port, dst

port)
> (Our familiar

Socket D P

UDP sockets: Connectionless:
(dst IP, dst port)| the socket is

- shared across
Socket ID all sources!

Demultiplexing

Denotes an
attachment point
with the network.

socket() Ports Each IP address
comes with a full
copy of its own

Machine ports.

Connection lookup: The
operating system does
a lookup using these
data to determine the
right socket and app.

TCP sockets* more cases!
(src IP, dst IP, src port, dst

port)

> (Our familiar
tupl

Socket ID -iuple)

UDP sockets: Connectionless:
(dst IP, dst port)| the socket is

- shared across
Socket ID all sources!

TCP sockets of different types

Listening (bound but Connected (Established)
unconnected)

On server side

. csockid, addr = ss.accept()
On server side

ss = socket(AF_INET, SOCK STREAM)
ss.bind(serv_ip, serv_port)

On client side

. cs.connect(serv_ip, serv_port)
ss.listen() # no accept() yet

(src IP, dstIP, src port, dst port)
->

Socket (csockid NOT ss)

TCP sockets of different types

Listening (bound but Connected (Established)
unconnected)
accept()
On server side creates a new
: socket with the
On server side csockid, addr 4-tuple_
ss = socket(AF INET, SOCK STREAM) (established)

On client side mapping

ss.bind(serv_ip, serv_port) .
cs.connect(serv_ip, serv_port)

ss.listen() # no accept() yet

(dst IP, dst port) (src IP, dstIP, src port, dst port)
> >
Socket (ss) Socket (csockid NOT ss)

Enables new connections to be

demultiplexed correctly Enables existing connections to be demultiplexed correctly

TCP demultiplexing

* When a TCP packet comes in, the operating system:

 Looks up table of established connections using 4-tuple
* |f success, send to corresponding (established) socket

* If fall Igno table entry), look up table of listening connections using just
(dst IP, dst port)

* |f success, send to corresponding (listening) socket

« Add an entry for established connection in the established table (next packet from
the established connection will demultiplex correctly)

* If lookup failed in the listening table (no table entry), send error to client
« Connection refused

UDP demultiplexing

« When a UDP packet comes in, the operating system:

* Looks up table of listening UDP sockets using (dst IP, dst port)
* |f success, send packet to corresponding socket
* There are no established UDP sockets; they're all “unconnected”

- If fail (no table entry), send error to client
 Port unreachable

	Slide 1: Transport: Demultiplexing
	Slide 2: Transport
	Slide 3: Transport services and protocols
	Slide 4: Transport vs. network layer
	Slide 5: Identifying a single conversation
	Slide 6: Two popular transports
	Slide 7: Demultiplexing Packets
	Slide 8: Demultiplexing
	Slide 9: Demultiplexing
	Slide 10: Demultiplexing
	Slide 11: Demultiplexing
	Slide 12: Demultiplexing
	Slide 13: Demultiplexing
	Slide 14: Demultiplexing
	Slide 15: Demultiplexing
	Slide 16: TCP sockets of different types
	Slide 17: TCP sockets of different types
	Slide 18: TCP demultiplexing
	Slide 19: UDP demultiplexing

