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• Provide a communication 
abstraction between application 
processes

• Transport protocols run @ 
endpoints
• send side: transport breaks app messages 

into segments, passes to network layer

• recv side: reassembles segments into 
messages, passes to app layer

• Multiple transport protocols 
available to apps
• Very popular in the Internet: TCP and UDP
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• Transport layer: 
communication abstraction 
between processes. 
Delivers packets to the 
process.

• Network layer: abstraction 
to communicate between 
endpoints. Network layer 
provides best effort packet 
delivery to a remote 
endpoint.

Household analogy:

3 kids sending letters to 3 
kids

• endpoints = houses

• processes = kids

• app messages = letters in 
envelopes

• transport protocol = Alice 
and Bob who de/mux to 
in-house siblings

• network-layer protocol = 
postal service

Transport vs. network layer

Alice

Bob



Identifying a single conversation

• Application connections are 
identified by 4-tuple:

• Source IP address

• Source port

• Destination IP address

• Destination port

• In this analogy,

• Source address: the address of 
the first house

• Source port: name of a kid in the 
first house

• Destination address: the address 
of the second house

• Destination port: name of a kid in 
the second houseDemultiplexing

(Not always 4-tuple)



Two popular transports

Transmission Control 
Protocol (TCP)

• Connection-based: the 
application remembers the 
other process talking to it.

• Suitable for longer-term, 
contextual data transfers, like 
HTTP, e-mail, etc.

• Guarantees: reliability, 
ordering, congestion control

User Datagram Protocol 
(UDP)

• Connectionless: app doesn’t 
remember the last process or 
source that talked to it.

• Suitable for single req/resp 
flows, like DNS.

• Guarantees: basic error 
detection



Demultiplexing Packets
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TCP sockets** More cases!
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TCP sockets of different types

Listening (bound but  
unconnected)

# On server side

ss = socket(AF_INET, SOCK_STREAM)

ss.bind(serv_ip, serv_port)

ss.listen() # no accept() yet

Connected (Established)
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csockid, addr = ss.accept()

# On client side

cs.connect(serv_ip, serv_port)
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➔

Socket (csockid NOT ss)



TCP sockets of different types

Listening (bound but  
unconnected)

# On server side

ss = socket(AF_INET, SOCK_STREAM)

ss.bind(serv_ip, serv_port)

ss.listen() # no accept() yet

Connected (Established)
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csockid, addr = ss.accept()
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cs.connect(serv_ip, serv_port)

(src IP,  dst IP, src port, dst port)
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Socket (ss)

accept() 

creates a new 

socket with the

4-tuple 

(established) 
mapping

Enables new connections to be 

demultiplexed correctly Enables existing connections to be demultiplexed correctly



TCP demultiplexing

• When a TCP packet comes in, the operating system:

• Looks up table of established connections using 4-tuple
• If success, send to corresponding (established) socket

• If fail (no table entry), look up table of listening connections using just 
(dst IP, dst port)
• If success, send to corresponding (listening) socket
• Add an entry for established connection in the established table (next packet from 

the established connection will demultiplex correctly)

• If lookup failed in the listening table (no table entry), send error to client
• Connection refused



UDP demultiplexing

• When a UDP packet comes in, the operating system:

• Looks up table of listening UDP sockets using (dst IP, dst port)
• If success, send packet to corresponding socket

• There are no established UDP sockets; they’re all “unconnected”

• If fail (no table entry), send error to client
• Port unreachable
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