
Transport: Demultiplexing
Lecture 11

http://www.cs.rutgers.edu/~sn624/352-F24

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-F24

Transport

Application

Transport

Network

Host-to-Net
…

FTP HTTP SMTP DNS

TCP UDP

IP

802.11 X.25 ATM

HTTPS

• Provide a communication
abstraction between application
processes

• Transport protocols run @
endpoints
• send side: transport breaks app messages

into segments, passes to network layer

• recv side: reassembles segments into
messages, passes to app layer

• Multiple transport protocols
available to apps
• Very popular in the Internet: TCP and UDP

application

transport

network

data link

physical

application

transport

network

data link

physical

Transport services and protocols

• Transport layer:
communication abstraction
between processes.
Delivers packets to the
process.

• Network layer: abstraction
to communicate between
endpoints. Network layer
provides best effort packet
delivery to a remote
endpoint.

Household analogy:

3 kids sending letters to 3
kids

• endpoints = houses

• processes = kids

• app messages = letters in
envelopes

• transport protocol = Alice
and Bob who de/mux to
in-house siblings

• network-layer protocol =
postal service

Transport vs. network layer

Alice

Bob

Identifying a single conversation

• Application connections are
identified by 4-tuple:

• Source IP address

• Source port

• Destination IP address

• Destination port

• In this analogy,

• Source address: the address of
the first house

• Source port: name of a kid in the
first house

• Destination address: the address
of the second house

• Destination port: name of a kid in
the second houseDemultiplexing

(Not always 4-tuple)

Two popular transports

Transmission Control
Protocol (TCP)

• Connection-based: the
application remembers the
other process talking to it.

• Suitable for longer-term,
contextual data transfers, like
HTTP, e-mail, etc.

• Guarantees: reliability,
ordering, congestion control

User Datagram Protocol
(UDP)

• Connectionless: app doesn’t
remember the last process or
source that talked to it.

• Suitable for single req/resp
flows, like DNS.

• Guarantees: basic error
detection

Demultiplexing Packets

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1

Port 2

…

…

…

…

…

Port 65535

socket() Ports

Denotes an

attachment point

with the network.

Link layer

Network

Transport

Applications

Each IP address

comes with a full

copy of its own

ports.

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1

Port 2

…

…

…

…

…

Port 65535

socket() Ports

Network

Transport

Denotes an

attachment point

with the network.

Each IP address

comes with a full

copy of its own

ports.

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1

Port 2

…

…

…

…

…

Port 65535

socket() Ports

Src IP, Dst IP,

Tp Protocol

Src port, Dst port

Denotes an

attachment point

with the network.

Each IP address

comes with a full

copy of its own

ports.

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1

Port 2

…

…

…

…

…

Port 65535

socket() Ports

Src IP, Dst IP,

Tp Protocol

Src port, Dst port

Connection lookup: The

operating system does

a lookup using these

data to determine the

right socket and app.

Denotes an

attachment point

with the network.

Each IP address

comes with a full

copy of its own

ports.

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1

Port 2

…

…

…

…

…

Port 65535

socket() Ports

Connection lookup: The

operating system does

a lookup using these

data to determine the

right socket and app.

TCP sockets:

(src IP, dst IP, src port, dst

port)

➔

Socket ID

Denotes an

attachment point

with the network.

Each IP address

comes with a full

copy of its own

ports.

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1

Port 2

…

…

…

Port 44262

…

Port 65535

socket() Ports

Connection lookup: The

operating system does

a lookup using these

data to determine the

right socket and app.

TCP sockets:

(src IP, dst IP, src port, dst

port)

➔

Socket ID

Denotes an

attachment point

with the network.

Each IP address

comes with a full

copy of its own

ports.

(Our familiar

4-tuple)

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1

Port 2

…

…

…

…

…

Port 65535

socket() Ports

Connection lookup: The

operating system does

a lookup using these

data to determine the

right socket and app.

TCP sockets:

(src IP, dst IP, src port, dst

port)

➔

Socket ID

UDP sockets:

(dst IP, dst port)

➔

Socket ID

Denotes an

attachment point

with the network.

Each IP address

comes with a full

copy of its own

ports.

Connectionless:

the socket is

shared across

all sources!

(Our familiar

4-tuple)

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1

Port 2

…

…

…

…

…

Port 65535

socket() Ports

Connection lookup: The

operating system does

a lookup using these

data to determine the

right socket and app.

TCP sockets** More cases!

(src IP, dst IP, src port, dst

port)

➔

Socket ID

UDP sockets:

(dst IP, dst port)

➔

Socket ID

Denotes an

attachment point

with the network.

Each IP address

comes with a full

copy of its own

ports.

Connectionless:

the socket is

shared across

all sources!

(Our familiar

4-tuple)

TCP sockets of different types

Listening (bound but
unconnected)

On server side

ss = socket(AF_INET, SOCK_STREAM)

ss.bind(serv_ip, serv_port)

ss.listen() # no accept() yet

Connected (Established)

On server side

csockid, addr = ss.accept()

On client side

cs.connect(serv_ip, serv_port)

(src IP, dst IP, src port, dst port)

➔

Socket (csockid NOT ss)

TCP sockets of different types

Listening (bound but
unconnected)

On server side

ss = socket(AF_INET, SOCK_STREAM)

ss.bind(serv_ip, serv_port)

ss.listen() # no accept() yet

Connected (Established)

On server side

csockid, addr = ss.accept()

On client side

cs.connect(serv_ip, serv_port)

(src IP, dst IP, src port, dst port)

➔

Socket (csockid NOT ss)

(dst IP, dst port)

➔

Socket (ss)

accept()

creates a new

socket with the

4-tuple

(established)
mapping

Enables new connections to be

demultiplexed correctly Enables existing connections to be demultiplexed correctly

TCP demultiplexing

• When a TCP packet comes in, the operating system:

• Looks up table of established connections using 4-tuple
• If success, send to corresponding (established) socket

• If fail (no table entry), look up table of listening connections using just
(dst IP, dst port)
• If success, send to corresponding (listening) socket
• Add an entry for established connection in the established table (next packet from

the established connection will demultiplex correctly)

• If lookup failed in the listening table (no table entry), send error to client
• Connection refused

UDP demultiplexing

• When a UDP packet comes in, the operating system:

• Looks up table of listening UDP sockets using (dst IP, dst port)
• If success, send packet to corresponding socket

• There are no established UDP sockets; they’re all “unconnected”

• If fail (no table entry), send error to client
• Port unreachable

	Slide 1: Transport: Demultiplexing
	Slide 2: Transport
	Slide 3: Transport services and protocols
	Slide 4: Transport vs. network layer
	Slide 5: Identifying a single conversation
	Slide 6: Two popular transports
	Slide 7: Demultiplexing Packets
	Slide 8: Demultiplexing
	Slide 9: Demultiplexing
	Slide 10: Demultiplexing
	Slide 11: Demultiplexing
	Slide 12: Demultiplexing
	Slide 13: Demultiplexing
	Slide 14: Demultiplexing
	Slide 15: Demultiplexing
	Slide 16: TCP sockets of different types
	Slide 17: TCP sockets of different types
	Slide 18: TCP demultiplexing
	Slide 19: UDP demultiplexing

