
Video
Lecture 10

http://www.cs.rutgers.edu/~sn624/352-F24

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-F24


Quick recap of concepts
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Client-side buffering, playout
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Most video is broken up in time into multiple segments

Client downloads video segment by segment

For example: a segment might be 4 seconds worth of video.



variable fill 
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1. Initial fill of buffer until playout begins at tp

2. playout begins at tp
3. buffer fill level varies over time as fill rate x(t) 

varies (assume playout rate r is constant)
4

Client-side buffering, playout
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Client-side buffering, playout

playout buffering: average fill rate (x), playout rate (r):

• x < r: buffer eventually empties for a sufficiently long video. 
• Stall and rebuffering 

• x > r: buffer will not empty, provided the initial playout delay is large 
enough to absorb variability in x(t)

• initial playout delay tradeoff: buffer starvation less likely with larger 
delay, but also incur a larger delay for the user to begin watching
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Client-side buffering, playout

playout buffering: average fill rate (x), playout rate (r):

• is x < r or x > r for a given network connection?

• It can be hard to control x or even predict it in general
• Best-effort network inflicts long queues, low bandwidth, loss, etc.

• How to set the playout rate r?
• Too low a bit-rate r: video has poorer quality than needed
• Too high a bit-rate r: buffer might empty out. Stall/rebuffering

Client’s

buffer, size Bmax 



Adaptive bit–rate video

• Motivation: Want to provide high quality video experience, without 
stalls

• Observations:
• Videos come in different qualities (average bit rates)

• Versions of the video for different quality levels readily available

• Different segments of video can be downloaded separately

• Adapt bit rate per segment through collaboration between the 
video client (e.g., your browser) and the server (e.g., @ Netflix)

• Adaptive bit-rate (ABR) video: change the bit-rate (quality) of next 
video segment based on network and client conditions

• A typical strategy:  Buffer-based rate adaptation



Buffer-based bit-rate adaptation

• Key idea: If there is a large stored buffer of video at the client, 
optimize for video quality, i.e., high bit rates

• Else (i.e., client video buffer has low occupancy), avoid stalls by 
being conservative and asking for a lower quality (bit-rate)
• The hope: the lower bandwidth requirement of a lower-quality stream is 

more easily met; stalls averted

• Buffer is measured in seconds of playout left before stalling



Buffer-based bit-rate adaptation

http://yuba.stanford.edu/~nickm/papers/sigcomm2014-video.pdf

A Buffer-Based Approach to Rate Adaptation

(used by Netflix)

Provide high video quality 

overall despite variable 

and intermittently poor 

network conditions.



Dynamic Adaptive Streaming 
over HTTP (DASH)



Streaming multimedia with HTTP

• Early video: basic UDP
• Problems: reliability, blocking

• Today: repurpose web infrastructure and protocols for video

• DASH: Dynamic Adaptive Streaming over HTTP
• Used by Netflix, YouTube, and other video streaming services



DASH: Key ideas

• Content (video, audio, 
transcript, etc.) divided 
into segments (time)

• Algorithms to determine 
and request varying 
attributes (e.g., bitrate, 
language) for each 
segment

• Goal: ensure good 
quality of service, match 
user prefs, etc.
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Streaming multimedia with HTTP

• Dividing up a video into multiple segments enables a few things

• Possible to decide the quality per segment
• Enables bit rate adaptation

• Typically done on the client, but possible on the server (with feedback)

• Change language, receive sub-titles, etc. mid-stream

• Retrieve segments of a single video from multiple sources

• DASH video server is just a standard HTTP server
• Client issue HTTP GET requests (typically with the Range request 

header)

• Leverage existing web infrastructure (CDN, DNS)

• Send different clients to different video sources (CDN)



What does the manifest contain?

Source: Stockhammer, MMSys.

https://www.w3.org/2010/11/web-and-tv/papers/webtv2_submission_64.pdf
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Adaptive changes in quality



Dynamic server selection based on client

• Just an HTTP request for an HTTP object
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DASH reference player

• https://reference.dashif.org/dash.js/latest/samples/dash-if-
reference-player/index.html

https://reference.dashif.org/dash.js/latest/samples/dash-if-reference-player/index.html
https://reference.dashif.org/dash.js/latest/samples/dash-if-reference-player/index.html


DASH Summary

• Piggyback video on HTTP: widely used

• Enables independent HTTP requests per segment
• Works well with CDNs

• Adapt quality with time, location per client, possibly location over time

• May use HTTP range requests to ask byte ranges in a segment URL

• Fetch segments from locations other than the origin server

• More resources on DASH
• https://www.w3.org/2010/11/web-and-

tv/papers/webtv2_submission_64.pdf

• https://www.youtube.com/watch?v=xgowGnH5kUE

https://www.w3.org/2010/11/web-and-tv/papers/webtv2_submission_64.pdf
https://www.w3.org/2010/11/web-and-tv/papers/webtv2_submission_64.pdf
https://www.youtube.com/watch?v=xgowGnH5kUE


Application Layer: Wrap-up

• Name resolution, the web, video

• Protocols built over the socket() abstraction

• Simple designs go a long way
• Plain text protocols, header-based evolution

• Infrastructure for functionality & performance
• CDNs, web proxies

• Fit your apps to run on browsers: run almost anywhere (e.g. video)

• Apps are ultimately what users and most engineers care about

• But, if you don’t understand what’s under the hood, you risk bad 
design and poor performance in Internet applications
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