
Video
Lecture 10

http://www.cs.rutgers.edu/~sn624/352-F24

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-F24

Quick recap of concepts

Video Bitrate Bits played out

per second

(can vary over

video’s lifetime)

time

variable

network

delay

Buffer at the client to hold

frames initially until playout

delay tp

Spatial coding

Temporal coding

Multimedia

Client-side buffering, playout

variable fill

rate, x(t)

Client’s

buffer, size Bmax

playout rate,

e.g., CBR r

buffer fill level,

B(t)

video server

client

3

Most video is broken up in time into multiple segments

Client downloads video segment by segment

For example: a segment might be 4 seconds worth of video.

variable fill

rate, x(t)

playout rate,

e.g., CBR r

buffer fill level,

B(t)

video server

client

1. Initial fill of buffer until playout begins at tp

2. playout begins at tp
3. buffer fill level varies over time as fill rate x(t)

varies (assume playout rate r is constant)
4

Client-side buffering, playout

Client’s

buffer, size Bmax

variable fill

rate, x(t)

playout rate,

e.g., CBR r

buffer fill level,

B(t)

video server

5

Client-side buffering, playout

playout buffering: average fill rate (x), playout rate (r):

• x < r: buffer eventually empties for a sufficiently long video.
• Stall and rebuffering

• x > r: buffer will not empty, provided the initial playout delay is large
enough to absorb variability in x(t)

• initial playout delay tradeoff: buffer starvation less likely with larger
delay, but also incur a larger delay for the user to begin watching

Client’s

buffer, size Bmax

variable fill

rate, x(t)

playout rate,

e.g., CBR r

buffer fill level,

B(t)

video server

6

Client-side buffering, playout

playout buffering: average fill rate (x), playout rate (r):

• is x < r or x > r for a given network connection?

• It can be hard to control x or even predict it in general
• Best-effort network inflicts long queues, low bandwidth, loss, etc.

• How to set the playout rate r?
• Too low a bit-rate r: video has poorer quality than needed
• Too high a bit-rate r: buffer might empty out. Stall/rebuffering

Client’s

buffer, size Bmax

Adaptive bit–rate video

• Motivation: Want to provide high quality video experience, without
stalls

• Observations:
• Videos come in different qualities (average bit rates)

• Versions of the video for different quality levels readily available

• Different segments of video can be downloaded separately

• Adapt bit rate per segment through collaboration between the
video client (e.g., your browser) and the server (e.g., @ Netflix)

• Adaptive bit-rate (ABR) video: change the bit-rate (quality) of next
video segment based on network and client conditions

• A typical strategy: Buffer-based rate adaptation

Buffer-based bit-rate adaptation

• Key idea: If there is a large stored buffer of video at the client,
optimize for video quality, i.e., high bit rates

• Else (i.e., client video buffer has low occupancy), avoid stalls by
being conservative and asking for a lower quality (bit-rate)
• The hope: the lower bandwidth requirement of a lower-quality stream is

more easily met; stalls averted

• Buffer is measured in seconds of playout left before stalling

Buffer-based bit-rate adaptation

http://yuba.stanford.edu/~nickm/papers/sigcomm2014-video.pdf

A Buffer-Based Approach to Rate Adaptation

(used by Netflix)

Provide high video quality

overall despite variable

and intermittently poor

network conditions.

Dynamic Adaptive Streaming
over HTTP (DASH)

Streaming multimedia with HTTP

• Early video: basic UDP
• Problems: reliability, blocking

• Today: repurpose web infrastructure and protocols for video

• DASH: Dynamic Adaptive Streaming over HTTP
• Used by Netflix, YouTube, and other video streaming services

DASH: Key ideas

• Content (video, audio,
transcript, etc.) divided
into segments (time)

• Algorithms to determine
and request varying
attributes (e.g., bitrate,
language) for each
segment

• Goal: ensure good
quality of service, match
user prefs, etc.

Web Browser

Or Video Client

Media

player

HTTP

client

Server

Media Presentation

Description (manifest)

Video Audio

Transcripts

Issue requests on time.

Pick attributes for each

segment of content

Streaming multimedia with HTTP

• Dividing up a video into multiple segments enables a few things

• Possible to decide the quality per segment
• Enables bit rate adaptation

• Typically done on the client, but possible on the server (with feedback)

• Change language, receive sub-titles, etc. mid-stream

• Retrieve segments of a single video from multiple sources

• DASH video server is just a standard HTTP server
• Client issue HTTP GET requests (typically with the Range request

header)

• Leverage existing web infrastructure (CDN, DNS)

• Send different clients to different video sources (CDN)

What does the manifest contain?

Source: Stockhammer, MMSys.

https://www.w3.org/2010/11/web-and-tv/papers/webtv2_submission_64.pdf

Periods:

Durations

of content

Adaptation sets: each AS

includes functionally

different content (e.g.,

video, audio, transcript)

Representation sets

(RS): codecs, bit

rates, resolutions,

etc. Multiple

segments per

representation

URL for each

RS/segment

If URL per RS,

byte ranges

per segment

(HTTP header

for a range

request)

Functionally equivalent: RSes of

given AS

Functionally different: different ASes

Adaptive changes in quality

Dynamic server selection based on client

• Just an HTTP request for an HTTP object

User

YouTube

origin servers

CDN servers

caching the

video

1. HTTP GET

request for video

URL

2. HTTP reply

containing html to

construct the web page,

manifest, with URLs for

video content

3. HTTP GET

request

for URLs

4. HTTP reply

with cached

resources at those

URLs

Internet

CDN DNS

points user

to best CDN

server

DASH reference player

• https://reference.dashif.org/dash.js/latest/samples/dash-if-
reference-player/index.html

https://reference.dashif.org/dash.js/latest/samples/dash-if-reference-player/index.html
https://reference.dashif.org/dash.js/latest/samples/dash-if-reference-player/index.html

DASH Summary

• Piggyback video on HTTP: widely used

• Enables independent HTTP requests per segment
• Works well with CDNs

• Adapt quality with time, location per client, possibly location over time

• May use HTTP range requests to ask byte ranges in a segment URL

• Fetch segments from locations other than the origin server

• More resources on DASH
• https://www.w3.org/2010/11/web-and-

tv/papers/webtv2_submission_64.pdf

• https://www.youtube.com/watch?v=xgowGnH5kUE

https://www.w3.org/2010/11/web-and-tv/papers/webtv2_submission_64.pdf
https://www.w3.org/2010/11/web-and-tv/papers/webtv2_submission_64.pdf
https://www.youtube.com/watch?v=xgowGnH5kUE

Application Layer: Wrap-up

• Name resolution, the web, video

• Protocols built over the socket() abstraction

• Simple designs go a long way
• Plain text protocols, header-based evolution

• Infrastructure for functionality & performance
• CDNs, web proxies

• Fit your apps to run on browsers: run almost anywhere (e.g. video)

• Apps are ultimately what users and most engineers care about

• But, if you don’t understand what’s under the hood, you risk bad
design and poor performance in Internet applications

	Slide 1: Video
	Slide 2: Quick recap of concepts
	Slide 3: Client-side buffering, playout
	Slide 4: Client-side buffering, playout
	Slide 5: Client-side buffering, playout
	Slide 6: Client-side buffering, playout
	Slide 7: Adaptive bit–rate video
	Slide 8: Buffer-based bit-rate adaptation
	Slide 9: Buffer-based bit-rate adaptation
	Slide 10: Dynamic Adaptive Streaming over HTTP (DASH)
	Slide 11: Streaming multimedia with HTTP
	Slide 12: DASH: Key ideas
	Slide 13: Streaming multimedia with HTTP
	Slide 14: What does the manifest contain?
	Slide 15: Adaptive changes in quality
	Slide 16: Dynamic server selection based on client
	Slide 17: DASH reference player
	Slide 18: DASH Summary
	Slide 19: Application Layer: Wrap-up

