The Web (part 3)

Lecture 8

http://www.cs.rutgers.edu/~sn624/352-F24

Srinivas Narayana

Cookies: Keeping user memory <u>client</u> server entry in backend Cookie http request msg + auth database **Cookie file** is server typically Netflix: 436 creates ID http response + opaque Amazon: 1678 Set-cookie: 1678 1678 for user to client. **Cookie file** http request (no auth) cookie-Netflix: 436 access **cookie: 1678** specific Amazon: 1678 Personalized http access action response one week later: http request (no auth) **Cookie file** cookie**cookie: 1678** Netflix: 436 specific Amazon: 1678 Personalized http action response

How cookies work

Collaboration between client and server to track user state.

Four components:

- 1. cookie header line of HTTP response message
- 2. cookie header line in HTTP request message
- 3. cookie file kept on user endpoint, managed by user's browser
- 4. back-end database maps cookie to user data at Web endpoint

Cookies come with an expiration date (yet another HTTP header)

Cookies have many uses

- The good: Awesome user-facing functionality
 - Shopping carts, auth, ... very challenging or impossible without it
- The bad: Unnecessary recording of your activities on the site
 - First-party cookies: performance statistics, user engagement, ...
- The ugly: Tracking your activities across the Internet
 - Third-party cookies (played by ad and tracking networks) to track your activities across the Internet
 - personally identifiable information (PII)
 - Ad networks target users with ads; may sell this info
 - Scammers can target you too

PSA: Cookies and Privacy

- Disable and delete unnecessary cookies by default
- Suggested privacy-conscious browsers, websites, tools:
- DuckDuckGo (search)
- Brave (browser)
- AdBlock Plus (extension)
- ToR (distract targeting)
- ... assuming it doesn't break the functions of the site

https://gdpr.eu/cookies/

Web Caching

Web caches

Web caches: Machines that remember web responses for a network

Why cache web responses?

- Reduce response time for client requests
- Reduce traffic on an organization's access link

Web caching using a proxy server

- You can configure a HTTP proxy on your laptop's network settings.
- If you do, your browser sends all HTTP requests to the proxy (cache).
- Hit: cache returns object
- Miss: obtain object from originating web server (origin server) and return to client
 - Also cache the object locally

Caching in the HTTP protocol

Cache/Client server Conditional GET HTTP request msg guarantees cache content If-modified-since: object <date> is up-to-date while still not saves traffic and response modified **HTTP** response X-Cache: time whenever possible HTTP/1.0HIT 304 Not Modified Date in the cache's HTTP request msg request is the last time the If-modified-since: server provided in its object <date> response header Lastmodified HTTP response Modified HTTP/1.0 200 OK Last-modified: <date> DATA DATA DATA

9

Content Distribution Networks (CDNs)

A global network of web caches

- Provisioned by ISPs and network operators
- Or content providers, like Netflix, Google, etc.

Uses (overlaps with uses of web caching in general)

- Reduce traffic on a network's Internet connection, e.g., Rutgers
- Improve response time for users: CDN nodes are closer to users than origin servers (servers holding original content)
- · Reduce bandwidth requirements on the content provider
- Reduce cost to maintain origin servers

Without CDN

	DOMAIN NAME	IP ADDRESS
	www.yahoo.com	98.138.253.109
	cs.rutgers.edu	128.6.4.2
	www.google.com	74.125.225.243
	www.princeton.edu	128.112.132.86

Clients distributed all over the world

Cluster of Rutgers CS origin servers (located in NJ, USA)

• Problems:

128.6.4.2

• Huge bandwidth requirements for Rutgers

ONS

• Large propagation delays to reach users

Where the CDN comes in

- Distribute content of the origin server over geographically distributed CDN servers
- But how will users get to these CDN servers?
- Use DNS!
 - DNS provides an additional layer of indirection
 - Instead of returning an IP address, return another DNS server (NS record)
 - Much like a response to any other iterative query
 - The second DNS server (run by the CDN) returns the IP address of the client
- The CDN runs its own DNS servers (CDN name servers)
 - Custom logic to send users to the "closest" CDN web server

Seeing a CDN in action

- dig +trace freshtohome.com
- dig web.mit.edu (or) dig +trace web.mit.edu

Summary of HTTP

- Request/response protocol
- ASCII-based human-readable message structures
- Enhanced stateful functionality using cookies
- Improve performance using caching and CDN
- Persistence and pipelining to improve performance
- Simple, highly-customizable protocol
 - Just add headers
- The protocol that is the basis of the web we enjoy today

Multimedia over the Internet

Internet Multimedia

- Many applications on the Internet use audio or video
- Comparison with traditional web/HTTP:
 - Cannot tolerate loss, but a little delay may be ok
 - Data used after the transfer is complete
- Multimedia is more real-time
 - Performance *during* the data transfer matters

