
The Web (part 2)
Lecture 7

http://www.cs.rutgers.edu/~sn624/352-F24

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-F24

Review of concepts

HyperText Transfer Protocol (HTTP)

Client-Server Protocol

Request

Response

GET, POST, …

200 OK, 301 Moved, etc.

ti
m

e

HTTP Persistence

Non-persistent HTTP

• At most one object is sent
over a TCP connection.

• HTTP/1.0 uses non-persistent
connections

Persistent HTTP

• Multiple objects can be sent
over single TCP connection
between client and server.

• HTTP/1.1 uses persistent
connections in default mode

TCP is a reliable communication protocol provided by the transport layer. It

requires setting up some resources (e.g., memory regions) for the

connection to be set up at the endpoints before data communication.

Two types of HTTP connectivity

5

Suppose a user
visits a page

with text and 10
embedded

images.

1a. HTTP client initiates TCP
connection to HTTP server

2. HTTP client sends HTTP

request message

1b. HTTP server at host “accepts”

connection, notifying client

3. HTTP server receives request

message, replies with response

message containing requested

object

time

Non-persistent HTTP (HTTP/1.0)

6

5. HTTP client receives response
message containing HTML file,
displays HTML. Parsing HTML
file, finds 10 referenced image
objects

6. Steps 1-5 repeated for each of

10 image objects

4. HTTP server closes TCP

connection.

time

Non-persistent HTTP (HTTP/1.0)

Single connection

per object
Useful at a time when web

pages contained 1 object: the

base HTML file.

How long does it take to download

an entire web page with non-

persistent HTTP?

i.e.: before your browser can load

the (entire) web page?

Non-persistent HTTP user response time
• Total delay = propagation + queueing +

transmission

• Response time for the user
• = sum of forward and backward total delays

• Round-Trip Time (RTT): total forward +
backward delay for a “small” packet
• Zero transmission delay

• Assumptions:
• TCP initiation packet, response, HTTP

requests are all “small” packets
• No processing delays at the server
• RTT is stable over time

• (2RTT + file transmission time) * #objects

File

transmission

time

for the

response

initiate TCP

connection

RTT

request

file

RTT

entire

file

received
time time

Per-object overheads quickly add up

Modern

web

pages

have 100s

of objects
in them.

Objects

(e.g.

images)
may not

be small.

10

Suppose user
visits a page

with text and 10
images.

1a. HTTP client initiates TCP
connection to HTTP server

2. HTTP client sends HTTP

request message

1b. HTTP server at host “accepts”

connection, notifying client

3. HTTP server receives request

message, replies with response

message containing requested

object

time

Persistent HTTP (HTTP/1.1)

11

5. HTTP client receives response
message containing HTML file,
displays HTML. Parsing HTML
file, finds 10 referenced image
objects

The 10 objects can be requested over the same

TCP connection.

i.e., save an RTT per object (otherwise spent

opening a new TCP connection in HTTP/1.0)

4. HTTP server sends a response.

Server keeps the TCP

connection alive.

time

Persistent HTTP (HTTP/1.1)

Persistent HTTP user response time

• Assume requests made one at a time (separate RTT per req)

• RTT + (RTT + file transmission time) * #objects

• Pipelining: send more than one HTTP request at a time
• Extreme case: all requests in one (small) packet

• 2RTT + (file transmission time) * #objects
• In practice, dependencies between objects

• Compare with non-persistent:
• (2RTT + file transmission time) * #objects

• Persistence (& pipelining) can save significant time, especially
on high-RTT connections

• Other advantages of persistence: CPU savings, reduced
network congestion, less memory (fewer connections)

Persistence vs. # of connections

• Persistence is distinct from the number of concurrent
connections made by a client

• Your browser has the choice to open multiple connections to a
server
• HTTP spec suggests to limit this to a small number (2)

• Further, a single connection can have multiple HTTP requests
in flight (pipelining) with persistent HTTP

Remembering Users
On the Web

15

So far, HTTP mechanisms considered stateless

• Each request processed independently at the server

• The server maintains no memory about past client requests

However, state, i.e., memory, about the user at the
server, is very useful!

• User authentication (e.g., gmail)

• Shopping carts (e.g., Amazon)

• Video recommendations (e.g., Netflix)

• Any user session state in general

HTTP: Remembering users

Familiar with these?

17

client server

http request msg + auth

http response +

Set-cookie: 1678

http request (no auth)

cookie: 1678

Personalized http

response

http request (no auth)

cookie: 1678

Personalized http

response

cookie-

specific

action

cookie-

specific

action

server

creates ID

1678 for user

Cookie file

Amazon: 1678

Cookie file

Amazon: 1678

Cookie file

Amazon: 1678

one week later:

Cookies: Keeping user memory

Netflix: 436

Netflix: 436

Netflix: 436

Cookie

is

typically

opaque

to client.

	Slide 1: The Web (part 2)
	Slide 2: Review of concepts
	Slide 3: HTTP Persistence
	Slide 4: Two types of HTTP connectivity
	Slide 5: Non-persistent HTTP (HTTP/1.0)
	Slide 6: Non-persistent HTTP (HTTP/1.0)
	Slide 7
	Slide 8: Non-persistent HTTP user response time
	Slide 9: Per-object overheads quickly add up
	Slide 10: Persistent HTTP (HTTP/1.1)
	Slide 11: Persistent HTTP (HTTP/1.1)
	Slide 12: Persistent HTTP user response time
	Slide 13: Persistence vs. # of connections
	Slide 14: Remembering Users On the Web
	Slide 15: HTTP: Remembering users
	Slide 16: Familiar with these?
	Slide 17: Cookies: Keeping user memory

