Measurement, App Layer

Lecture 3

http://www.cs.rutgers.edu/~sn624/352-F24

Srinivas Narayana

Review

- Switching: Circuit, Message, Packet
- Layering: Modularity

Application: useful user-level functions

Transport: provide guarantees to apps

Network: best-effort global pkt delivery

Link: best-effort local pkt delivery

Functionality is implemented in protocols

.

User space

Kernel space

Protocols: The "rules" of networking

- Protocols consist of two things
- Message format
 - structure of messages exchanged with an endpoint
- Actions
 - operations upon receiving, or not receiving, messages
- Example of a Zoom conversation:
 - Message format: English words and sentences
 - Actions: when a word is heard, say "yes"; when nothing is heard for more than 3 seconds, say "can you hear me?"

The protocols of the Internet

Standardized by the Internet Engineering Task Force (IETF)
through documents called RFCs ("Request For Comments")

Layering

- Communication over the Internet is a complex problem.
- Layering simplifies understanding, testing, maintaining
- Easy to improve or replace protocol at one layer without affecting others

This course has layers

Measuring the Internet

Speed, by any other name

What exactly do we mean by speed?

- A packet consists of many bits, including header and data
 - Packet size: length of the packet (bits or bytes) incl. header and data

• Bandwidth: For a single link, amount of data it can transmit per unit time (bits/second or Bytes/second or packets/second)

 Total packet delay: time from the first bit@sender to the last bit@receiver

Bandwidth and delay are related but distinct

- Total packet delay = time for a box to travel the length of the belt
- Bandwidth = the number of boxes put on the belt per minute ("rate")

Total Packet Delay has a few pieces

- Propagation delay: Time needed to move one bit across (second)
 - Imposed by the communication medium; depends on the link "length"
- Transmission delay: Time from first bit@sender to last bit@sender
 - Determined by link bandwidth and packet size
 - Packet size / link bandwidth
- Queueing delay: Time that a packet waits for transmission
 - Determined by contention for the link
- Total packet delay = propagation delay + queueing delay + transmission delay for a single packet

Visualizing the components of delay

Bandwidth and delay demo

• Throughput (related to bandwidth)

- iperf -s # at the destination
- iperf -c <destination> # at the source,
- e.g., iperf -c localhost
- (total) delay
 - ping <destination>
 - e.g., ping google.com
- (you can try it!)

Application Layer

App-layer communication

- E.g., Telephone network: xxx-yyy-zzzz
- Internet: Internet Protocol (IP) addresses
 - IPv4 (32 bits) 128.6.24.78
 - IPv6 (128 bits) 2001:4000:A000:C000:6000:B001:412A:8000
- Which app on each endpoint? Port number

How are addresses used?

• Socket: abstraction (API) of the Internet for applications

App-layer connection is a 4-tuple: (IP_A , port_A, IP_B , port_B)

Socket system calls

Seeing app-layer connections

- netstat
- SS