CS 352 Network: QoS, Wrap-Up

Lecture 25

http://www.cs.rutgers.edu/~sn624/352-F22

Srinivas Narayana

- Suppose a router in AS1 wants to forward a packet destined to external prefix X.
- How is the forwarding table entry for X at 1d computed?
- How is the forwarding table entry for X at 1c computed?

eBGP and iBGP announcements

- AS2 router 2c receives path announcement AS3,X (via eBGP) from AS3 router 3a
- Based on AS2 import policy, AS2 router 2c imports and selects path AS3,X, propagates (via iBGP) to all AS2 routers
- Based on AS2 export policy, AS2 router 2a announces (via eBGP) path AS2, AS3, X to AS1 router 1c

eBGP and iBGP announcements

A given router may learn about multiple paths to destination:

- AS1 gateway router 1c learns path AS2, AS3, X from 2a (next hop 2a)
- AS1 gateway router 1c learns path AS3,X from 3a (next hop 3a)
- Through BGP route selection process, AS1 gateway router 1c chooses path AS3,X, and announces path within AS1 via iBGP (next hop 1c)

Setting forwarding table entries

Setting forwarding table entries

Summary: Inter-domain routing

- Federation and scale introduce new requirements for routing on the Internet
- BGP is *the* protocol that handles Internet routing
- Path vector: exchange paths to a destination with attributes
- Policy-based import of routes, route selection, and export

BGP's impact: October '21 FB++ outage

https://engineering.fb.com/2021/10/05/networking-traffic/outage-details/

By Doug Madory - https://www.kentik.com/blog/facebooks-historic-outage-explained/, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=110816752

Beyond best effort networking

Network support for applications

- A best effort Internet architecture does not offer any guarantees on delay, bandwidth, and loss
 - Network may drop, reorder, corrupt packets
 - Network may treat traffic randomly regardless of their "importance"
- However, apps may require special treatment & guarantees
 - E.g., voice over IP (phone calls) require strict delay guarantees
 - E.g., HD video requires a reasonable minimum bandwidth
 - E.g., remote surgery with 3D-vision requires strict sync & latency
- Q: How to provide quality of service (QoS) for apps?
 - Designed for Internet, but more widely used in private networks today

Why best effort isn't enough: Contention

- Resource contention occurs in the core of the network
- Congestion control will react, but may be too little & too late:
 - Congestion control can't prevent packet drops "now"
 - Congestion control won't prevent high-sending-rate flows from inflicting large delays or recurring drops

Can networks help improve the quality of service for applications?

Yes, but networks must become better than best-effort.

Approach 1: Provision more capacity

- If you're an ISP (e.g., AT&T), you might deploy enough capacity so that contention doesn't occur any more
 - Low complexity: can use current "best effort" network
- However, this approach incurs high costs (e.g., bandwidth)
- A key challenge: estimating how much bandwidth is enough
 - Need to estimate demand over time
 - Network operators can do this quite well usually
 - But there are exceptional circumstances: pandemics, Superbowl, etc.

Approach 2: Classes of service

- Have the network treat different traffic differently
 - Also called traffic differentiation
- Analogy: lines at an airport (e.g., first class vs. economy)
- Partition traffic into classes and offer service guarantees per class and across classes
 - Classes may be indicated using the IP type of service header bits
 - Classes may be inferred from IP & transport headers (e.g., src/dst/ports)
- Packet classification: assigning packets to classes
 - (Not in scope: we won't discuss packet classification)

Kinds of Service Guarantees

(1) Strict prioritization

- Suppose a 1Mbps interactive flow and an HTTP connection share a 1.5 Mbps link.
- A network operator (e.g., Rutgers admin) might choose to prioritize the interactive app strictly over the HTTP flow.

Token bucket

policer

- What if a flow doesn't respect its allocation?
 - Example: Say, conf call flow goes beyond 1 Mbit/s
 - Don't want to starve HTTP flow!
- An operator might want to limit a flow to a certain max rate
- Isolation: HTTP should not be impacted by the conf call

(3) Weighted fair sharing

- An operator might want to partition the link's rate C into separate allocations for each class
 - Partitions may have weights w (example: 2, 1)
- Usually, class i gets the illusion of traversing a logical link of rate

 $w_i * C / \sum_j w_j$

(3) Weighted fair sharing

- Customary to think of different classes as belonging to different queues
- For this reason, weighted fair sharing is also called weighted fair queueing (WFQ)
- Each queue is first-in-first-out (FIFO)
- The link multiplexes among these queues
- Intuitively, packets of one queue should not influence the behavior of other queues
- Hence, fair queueing is also a form of isolation across traffic classes

(3) Weighted fair sharing

- But what if one class doesn't use its share?
 - Can other classes use the spare capacity?
- Yes! WFQ is work-conserving: a router implementing WFQ will allow other classes to use the unused capacity
- Work conservation makes WFQ different from rate limits applied separately to each class
 - Class i's usage can exceed $w_i * C / \sum_i w_i$
 - (only if spare capacity is available, of course.)

Q: Where are guarantees enforced?

- We've seen three kinds of service guarantees: prioritization, rate limiting, and fair sharing
- Common goal: allocate the bottleneck link capacity across packets from traffic classes
- This allocation occurs in the packet scheduler in the bottleneck router
 - Recall: scheduling is the task of choosing the packet (among buffered packets) which is transmitted over the output link. Typically happens at the output port.
- A router is said to implement packet scheduling policies

Why care about service guarantees?

- Influences how packets are treated at contentious resources in the core of the network
 - Regardless of the endpoint transport
- Service guarantees: prioritization, rate limiting, fair sharing
- Implementations of scheduling (QoS) within large networks have implications for debates on network neutrality
- Scheduling is a fundamental problem in computer networks

Google study from 2016

					Small but
Region	Policed segments		Loss rate		non-trivial
	(among lossy)	(overall)	(policed)	(no n pol.)	fraction of
India	6.8%	1.4% <	28.2%	3.9%	policed links
Africa	6.2%	1.3%	27.5%	4.1%	•
Asia (w/o India)	6.5%	1.2%	22.8%	2.3%	Significant
South America	4.1%	0.7%	22.8%	2.3%	impact on
Europe	5.0%	0.7%	20.4%	1.3%	packet loss
Australia	2.0%	0.4%	21.0%	1.8%	rato
North America	2.6%	0.2%	22.5%	→1.0%	

Table 2: % segments policed among lossy segments (\geq 15 losses, the threshold to trigger the policing detector), and overall. Avg. loss rates for policed and unpoliced segments.

Flach et al., An Internet-Wide Analysis of Traffic Policing, SIGCOMM 2016

Policers drop multiple packets in a burst: causing RTOs and retransmissions after emptying of token bucket

Slow start period: burst allowed with a full bucket of tokens

Effect on actual apps: YouTube

Video rebuffer rate: rebuffer time / overall watch time

Synthesis of protocols

Synthesis: a day in the life of a web request

- Goal: identify, review, understand protocols (at all layers) involved in seemingly simple scenario: requesting www page
- Scenario: student attaches laptop to campus network, requests/receives www.google.com

A day in the life: scenario

A day in the life... connecting to the Internet

- connecting laptop needs to get its own IP address, addr of firsthop router, addr of DNS server: use DHCP
- DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in link layer Ethernet
- Packet broadcast (dest: FFFFFFFFFFF) on the local network, received at a router running DHCP server
- Ethernet decapsulated to IP decapsulated to UDP decapsulated to DHCP

A day in the life... connecting to the Internet

- DHCP server formulates DHCP ACK containing client's IP address, IP address of first-hop router for client, name & IP address of DNS server
- DHCP client receives DHCP ACK reply

Client now has IP address, knows name & addr of DNS server, IP address of its first-hop router

A day in the life... ARP (before DNS, before HTTP)

- before sending *HTTP* request, need IP address of www.google.com: *DNS*
- DNS query created, encapsulated in UDP, encapsulated in IP, encapsulated in Eth. To send frame to router, need MAC address of router interface: ARP
- ARP query broadcast, received by router, which replies with ARP reply giving MAC address of router interface
- client now knows MAC address of gateway router, so can now send packet containing DNS query

 IP datagram containing DNS query from client to gateway router

- BGP routing protocols) to DNS server
- decapsulated to DNS server
- DNS server replies to client with IP address of www.google.com

A day in the life...TCP connection carrying HTTP

- to send HTTP request, client first opens TCP socket to web server
- TCP packet routed using inter-domain routing (BGP) and intra-domain routing (OSPF, EIGRP) to web server

A day in the life... HTTP request/reply

Internet Technology

Outro

- Computer networks are a stack of layers
 - Built for modularity
 - Each layer does one set of functions very well
 - Each layer depends on the layers beneath it
- Many general and useful principles
 - Applicable to real life (e.g., feedback control)
 - Applicable to computer system design (e.g., indirection & hierarchy)

Outro: Now what?

- Go about life as usual
 - One difference: enhanced abilities to work with Internet-based tech
- Apply your new skills to solve a problem you care about
 - Tons of free and open-source software and platforms. Opportunities
- Deepen your understanding of the Internet and its tech
 - CS 553 Internet services (Spring 2023)
- Push the boundaries of Internet tech
 - Talk to me if you're interested in research