
CS 352
Network: Routing

Lecture 23
http://www.cs.rutgers.edu/~sn624/352-F22

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-F22

How would one design a “Google Maps”
to navigate the Internet?

Routing is a fundamental problem in networking.

Routing
Algorithm

data
plane

control
plane

4.1 • OVERVIEW OF NETWORK LAYER 309

tables. In this example, a routing algorithm runs in each and every router and both
forwarding and routing functions are contained within a router. As we’ll see in Sec-
tions 5.3 and 5.4, the routing algorithm function in one router communicates with
the routing algorithm function in other routers to compute the values for its forward-
ing table. How is this communication performed? By exchanging routing messages
containing routing information according to a routing protocol! We’ll cover routing
algorithms and protocols in Sections 5.2 through 5.4.

The distinct and different purposes of the forwarding and routing functions can
be further illustrated by considering the hypothetical (and unrealistic, but technically
feasible) case of a network in which all forwarding tables are configured directly by
human network operators physically present at the routers. In this case, no routing
protocols would be required! Of course, the human operators would need to interact
with each other to ensure that the forwarding tables were configured in such a way
that packets reached their intended destinations. It’s also likely that human configu-
ration would be more error-prone and much slower to respond to changes in the net-
work topology than a routing protocol. We’re thus fortunate that all networks have
both a forwarding and a routing function!

Values in arriving
packet’s header

1

2
3

Local forwarding
table

header

0100
0110
0111
1001

1101

3
2
2
1

output

Control plane

Data plane

Routing algorithm

Figure 4.2 ♦ Routing algorithms determine values in forward tables

M04_KURO4140_07_SE_C04.indd 309 11/02/16 3:14 PM

1

2

0111

values in arriving
packet header,
i.e, destination IP address

3

Data plane
per-packet
processing, moving
packet from input port
to output port

Distributed
control plane:
Components in every
router interact with
other components to
produce a routing
outcome.

Per-router control plane

Q1. What info
exchanged?

Q2. What
computation?

Routing
protocol

The graph abstraction
• Routing algorithms work over an abstract representation of a

network: the graph abstraction

• Each router is a node in a graph
• Each link is an edge in the graph
• Edges have weights (also called link metrics). Set by netadmin

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5Ex: Rutgers campus

u: Computer Science
v: School of Engineering

…

The graph abstraction
• Routing algorithms work over an abstract representation of a

network: the graph abstraction

• G = (N, E)
• N = {u, v, w, x, y, z}
• E = { (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5Ex: Rutgers campus

u: Computer Science
v: School of Engineering

…

The graph abstraction
• Cost of an edge: c(x, y)
• Examples: c(u, v) = 2, c(u, w) = 5

• Cost of a path = sum of edge costs
• c(path x à w à y à z) = 3 + 1 + 2 = 6

• Outcome of routing: each node should determine the least cost
path to every other node
• Q1: What information should nodes exchange with each other to

enable this computation?
• Q2: What algorithm should each node run to compute the least

cost path to every node?

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

Coming up next
Routing

protocols

Link state
protocols

Distance vector
protocols

Each router has complete information of
the graph

Messages exchanged by flooding all over
the network

Communication expensive, but complete

Each router only maintains distances &
next hop to others

Messages are exchanged over each
link and stay within the link

Communication cheap, but incomplete

Link State Protocols

Link state protocol
• Each router knows the state of all the links and routers in the

network

• Every router performs an independent computation on globally
shared knowledge of network’s complete graph representation

Distance vector
protocols

Routing protocols

Link state
protocols

Q1: Information exchange
• Link state flooding: the process by which

neighborhood information of each network
router is transmitted to all other routers
• Each router sends a link state advertisement

(LSA) to each of its neighbors
• LSA contains the router ID, the IP prefix

owned by the router, the router’s neighbors,
and link cost to those neighbors
• Upon receiving an LSA, a router forwards it to

each of its neighbors: flooding

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

Q1: Information exchange
• Eventually, the entire network receives LSAs

originated by each router
• LSAs put into a link state database
• LSAs occur periodically and whenever the

graph changes
• Example: if a link fails
• Example: if a new link or router is added

• The routing algorithm running at each router
can use the entire network’s graph to
compute least cost paths

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

Q2: The algorithm

Dijkstra’s algorithm
• Given a network graph, the

algorithm computes the least cost
paths from one node (source) to all
other nodes
• This can then be used to compute

the forwarding table at that node
• Iterative algorithm: maintain

estimates of least costs to reach
every other node. After k iterations,
each node definitively knows the
least cost path to k destinations

Notation:
• c(x,y): link cost from node x to y;

= ∞ if not direct neighbors
• D(v): current estimate of cost of

path from source to destination v
• p(v): (predecessor node) the last

node before v on the path from
source to v
• N': set of nodes whose least cost

path is definitively known

Dijsktra’s Algorithm
1 Initialization:
2 N' = {u}
3 for all nodes v
4 if v adjacent to u
5 then D(v) = c(u,v)
6 else D(v) = ∞
7
8 Loop
9 find w not in N' such that D(w) is a minimum
10 add w to N'
11 update D(v) for all v adjacent to w and not in N' :
12 D(v) = min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
14 shortest path cost to w plus cost from w to v */
15 until all nodes in N'

Initial estimates of
distances are just the
link costs of neighbors.

Least cost node among
all estimates. This cost
cannot decrease further.

Relaxation

Visualization

v

w

u

N’
nodes whose least

cost paths from u are
definitively known

v’

v’’

N \ N’
Nodes with estimated
least path costs, not
definitively known to
be smallest possible

min cost in N \ N’

D(w)

c(w, v)

D(v)

W should
move to N’.

Relaxation: for each v
in N \ N’, is the cost of
the path via w smaller
than known least cost
path to v?
If so, update D(v)
Predecessor of v is w.

Cost of path via w: D(w) + c(w,v)
Cost of known best path: D(v)

Dijkstra’s algorithm: example
Step

0
1
2
3
4
5

N'
u

ux
uxy

uxyv
uxyvw

uxyvwz

D(v),p(v)
2,u
2,u
2,u

D(w),p(w)
5,u
4,x
3,y
3,y

D(x),p(x)
1,u

D(y),p(y)
∞

2,x

D(z),p(z)
∞
∞

4,y
4,y
4,y

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

Constructing the forwarding table
• To find the router port to use for a given destination (router), find

the predecessor of the node iteratively until reaching an
immediate neighbor of the source u

• The port connecting u to this neighbor is the output port for this
destination

Constructing the forwarding table
• Suppose we want forwarding entry for z.

D(v),p(v)
2,u

D(w),p(w)
3,y

D(x),p(x)
1,u

D(y),p(y)
2,x

D(z),p(z)
4,y

z: p(z) = y
y: p(y) = x
x: p(x) = u
x is an immediate
neighbor of u

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

z (u,x)
destination linkForwarding

table at u:

Summary of link state protocols
• Each router announces link state to the entire network using

flooding

• Each node independently computes least cost paths to every
other node using the full network graph

• Dijkstra’s algorithm can efficiently compute these best paths
• Easy to populate the forwarding table from predecessor information

computed during the algorithm

Distance Vector Protocols

Distance Vector Protocol
• Each router only exchanges a distance vector with its neighbors
• Distance: how far the destination is
• Vector: a value for each destination

• DVs are only exchanged between neighbors; not flooded

• Use incomplete view of graph derived from neighbors’ distance
vectors to compute the shortest paths

Distance vector
protocols

Routing protocols

Link state
protocols

21

Q1: Distance Vectors
• Dx(y) = estimate of least cost from x to y
• Distance vector: Dx = [Dx(y): y є N]
• Node x knows cost of edge to each neighbor v: c(x,v)
• Node x maintains Dx

• Node x also maintains its neighbors’ distance vectors
• For each neighbor v, x maintains Dv = [Dv(y): y є N]

• Nodes exchange distance vector periodically and whenever the
local distance vector changes (e.g., link failure, cost changes)

Q2: Algorithm
Bellman-Ford algorithm
• Each node initializes its own distance vector (DV) to edge costs
• Each node sends its DVs to its neighbors
• When a node x receives new DV from a neighbor v, it updates

its own DV using the Bellman-Ford equation:
• Given dx(y) := estimated cost of the least-cost path from x to y
• Update dx(y) = minv {c(x,v) + dv(y) }

cost to reach neighbor v directly from x
minimum taken over
all neighbors v of x

cost of path from neighbor v to destination y

Visualization
• Which neighbor v offers

the current best path from
x to y?
• Path through neighbor v

has cost c(x,v) + dv(y)
• Choose min-cost neighbor
• Remember min-cost

neighbor as the one used
to reach node y
• This neighbor determines

the output port!

x

v

y

c(x,v)

Neighbor v sends
its distance vector
to x.

dv(y)
v’

v’’

v’’’Use v’’ and link
(x,v’’) to reach y.

x y z

x
y
z

0 2 7

∞ ∞ ∞
∞ ∞ ∞

fro
m

cost to

fro
m

fro
m

x y z

x
y
z

0 2 3

fro
m

cost to
x y z

x
y
z

0 2 3

fro
m

cost to

x y z

x
y
z

∞ ∞

∞ ∞ ∞

cost to
x y z

x
y
z

0 2 7

fro
m

cost to
x y z

x
y
z

0 2 3

fro
m

cost to

x y z

x
y
z

0 2 3

fro
m

cost to
x y z

x
y
z

0 2 7

fro
m

cost to
x y z

x
y
z

∞ ∞ ∞
7 1 0

cost to

2 0 1

∞ ∞ ∞

2 0 1
7 1 0

2 0 1
7 1 0

2 0 1
3 1 0

2 0 1
3 1 0

2 0 1

3 1 0
2 0 1

3 1 0

time

x z
12

7

y

node x table

node y table

node z table

Dx(y) = min{c(x,y) + Dy(y), c(x,z) + Dz(y)}
= min{2+0 , 7+1} = 2

Dx(z) = min{c(x,y) + Dy(z),
c(x,z) + Dz(z)}

= min{2+1 , 7+0} = 3

∞

Good news travels fast
• Suppose the link cost reduces or a new better

path becomes available in a network.
• The immediate neighbors of the change detect

the better path immediately
• Since their DV changed, these nodes notify their

neighbors immediately.
• And those neighbors notify still more neighbors
• … until the entire network knows to use the better path

• Good news travels fast through the network
• This is despite messages only being exchanged

among neighbors

x z
14

2

y
1

Bad news travels slowly
• If router goes down, could be a while before network realizes it.

A B C D E

1 2 3 4

3 2 3 4

3 4 3 4

5 4 5 4

5 6 5 6

7 6 7 6

Initially

After 1 exchange

After 2 exchanges

After 3 exchanges

After 4 exchanges

After 5 exchanges etc… to infinity

Count to infinity problem

B still thinks it can reach
A through C… bad!

C thinks it can reach A
through B… worse!

B, D think they can reach
A through C… ugly!

Bad news travels slowly
• Reacting appropriately to bad news requires information that

only other routers have. DV does not exchange sufficient info.

• B needs to know that C has no other path to A other than via B.
• DV does not exchange paths; just distances!
• Poisoned reverse: if X gets its route to Y via Z, then X will

announce dX(Y) = ∞ in its message to Z
• Effect: Z won’t use X to route to Y
• However, this won’t solve the problem in general (think why.)

A B C D E

Summary: Comparison of LS and DV

Link State Algorithms
• Nodes have full visibility into

the network’s graph
• Copious message exchange:

each LSA is flooded over the
whole network
• Robust to network changes

and failures

Distance Vector Algorithms
• Only distances and neighbors

are visible
• Sparse message exchange: DVs

are exchanged among
neighbors only
• Brittle to router failures. Incorrect

info may propagate all over net
OSPF

Open Shortest Path First
(v2 RFC 2328)

EIGRP
Enhanced Interior Gateway Routing Protocol

(RFC 7868)

