CS 352
Network: Routing

Lecture 23
http://www.cs.rutgers.edu/~sn624/352-F22

Srinivas Narayana

RUTGERS

NNNNNNNNNNNNNNNNNNNNNN

http://www.cs.rutgers.edu/~sn624/352-F22

Routing is a fundamental problem in networking.

How would one design a “Google Maps’
to navigate the Internet?

Iceland Snaien
Russia

& R
< Kir\ d 2 Larues
\-Belarus' ‘
> / Sea of
Ireland { Poland ¥ 5 \ Okhotsk
ey Ukraine ™, N \ . ;
Austrial_- <N] v Kazakhstan
Fran F 3 Mo’ A
A S 7
¢ Spain
Y Turkey 31 Sea of Japan
Portugal { Trurkmems\anv ;
| apan
~ ' syria/ s 5 China
L Tunisia s Afghanistan
Morocco ¢ el N ran L ¢ A J
{ \ - W' {__Pakistan o st China <)
Al 3 & Nepal
Igeria Libya Egypt 2 2
Westérm S ¢
Sahara | Saudi Arabia\ / i India
k \ \ Oman
Mauritania | L —
) Mali Niger r
vy) Ju Chedlyy Sudan Yemen £
o e s 4 A o 5 Bay of Bengal e Hilipe
7~ S) n Gulf of Aden Arabian Sea Philippines
Guineajad_| \ 7
1/ Nigeria / Y~y .
P | o) South Sudan EthioPia -
Gulfof Guinea, N~ 4 C~7Somald e
£ Kenya| <
7‘ DR Congo Indonesia
Banda Sea Papua New
Guinea

e K qanania
f 2. §

Per-router control plane

Distributed

control plane:
Components in every

router interact with "52}{3'
other components to _ o _
produce a routing e data
outcome. o0 lane .
Data pl / i ~ ™" Routing
n

ala plane — protocol
per-packet r

rocessing, movin Q1. What info
p 9 9 o [« é exchanged?

packet from input port ’ N

to output port e <= =
values in arriving i_, N Q2. What
packet header, 1 tation?
é computation?

\.\
I.e, destination IP address =

-

The graph abstraction

* Routing algorithms work over an abstract representation of a
network: the graph abstraction

Ex: Rutgers campus

u: Computer Science
v: School of Engineering

« Each router is a node in a graph
» Each link is an edge in the graph
* Edges have weights (also called link metrics). Set by netadmin

The graph abstraction

* Routing algorithms work over an abstract representation of a
network: the graph abstraction

Ex: Rutgers campus

u: Computer Science
v: School of Engineering

G = (N, E)
*N={u,v,w, x,vy, z}
* E={(uVv), (U)x), (v,x), (v,w), (X,w), (X,y), (Wy), (W,2), (y,2) }

The graph abstraction

« Cost of an edge: c(x,)
« Examples: c(u,v) =2, c(u,w) =5

 Cost of a path = sum of edge costs
e c(pathx >wW—>y>2)=3+1+2=6

« Qutcome of routing: each node should determine the least cost
path to every other node

« Q1: What information should nodes exchange with each other to
enable this computation?

« Q2: What algorithm should each node run to compute the least
cost path to every node?

Coming up next

Routing

/ protocols \

Link state
protocols

Each router has complete information of
the graph

Messages exchanged by flooding all over
the network

Communication expensive, but complete

Distance vector
protocols

Each router only maintains distances &
next hop to others

Messages are exchanged over each
link and stay within the link

Communication cheap, but incomplete

Link State Protocols

Link state protocol

 Each router knows the state of all the links and routers in the
network

* Every router performs an independent computation on globally
shared knowledge of network’s complete graph representation

Routing protocols

/"

Link state Distance vector
protocols protocols

Q1: Information exchange

* Link state flooding: the process by which
neighborhood information of each network
router is transmitted to all other routers

 Each router sends a link state advertisement
(LSA) to each of its neighbors

* LSA contains the router ID, the IP prefix
owned by the router, the router’s neighbors,
and link cost to those neighbors

* Upon receiving an LSA, a router forwards it to
each of its neighbors: flooding

Q1: Information exchange

« Eventually, the entire network receives LSAs
originated by each router

« LSAs put into a link state database

* LSAs occur periodically and whenever the
graph changes
« Example: if a link fails
« Example: if a new link or router is added

 The routing algorithm running at each router
can use the entire network’s graph to
compute least cost paths

Q2: The algorithm @é@

Dijkstra’s algorithm Notation:

» Given a network graph, the e ¢(X,Y): link cost from node x to y;
algorithm computes the least cost = o0 if not direct neighbors
paths from one node (source) to all _
other nodes * D(Vv): current estimate of cost of

. ath from source to destination v
* This can then be used to compute P

the forwarding table at that node * p(Vv): (predecessor node) the last
- Iterative algorithm: maintain node before v on the path from
source to v

estimates of least costs to reach
every other node. After k iterations, < N': set of nodes whose least cost
each node definitively knows the path is definitively known

least cost path to k destinations

Dijsktra’s Algorithm

1 Initialization:

2 N'={u}

3 for all nodes v

4 if vadjacenttou

3 then D(v) = c(u,v)
6 elseD(v)=

Initial estimates of
distances are just the
link costs of neighbors.

2

8 Loop Least cost node among
9 find w not in N' such that D(w) is @ minimum } all estimates. This cost

10 addwto N cannot decrease further.

11 update D(v) for all v adjacent to w and not in N' :

12 D(v) = min(D(v), D(w) + c(w,v))

13 /* new cost to v is either old cost to v or known

u4 shortest path cost to w plus cost from w to v */
1

Relaxation

5 until all nodes in N’

Visualization @

W should - min cost in N\ N’ N\N’

p)
4 I;I east move toN'. Nodes with estimated
ngt e:ﬂ:vs frzfn eaasre least path costs, not
P u definitively known to

definitively known be smallest possible

Relaxation: for each v
in N\ N’, is the cost of
the path via w smaller
&€® than known least cost
path to v?

If so, update D(v)

Cost of path via w: D(w) + c(w,v) Predecessor of v is w.

Cost of known best path: D(v)

Dijkstra’s algorithm: example

Step ' D(v),p(v) Dw),p(w) D(x),p(x) D(y).p(y) D(z).p(z)
0 u 2,U 9,u 1,u oo oo
1 UXW 2.X oo
2 uxyW 4,y
3 uxyv/ 3,y 4,y
4 uxva/
5 uxyvwz

Constructing the forwarding table

* To find the router port to use for a given destination (router), find
the predecessor of the node iteratively until reaching an
immediate neighbor of the source u

* The port connecting u to this neighbor is the output port for this
destination

Constructing the forwarding table

* Suppose we want forwarding entry for z.

D(v),p(v) D(w),p(w) D(x),p(x) D(y),p(y) D(z),p(z) Z:p(z) =
2,u 3.y 1,u 2,X 4.y / Y. DEy; =)}2

\/\/ X: p(X) = u

X is an immediate
neighbor of u

Forwarding destination | link
table at u: Z ‘ (u,X)

Summary of link state protocols

« Each router announces link state to the entire network using
flooding

« Each node independently computes least cost paths to every
other node using the full network graph

* Dijkstra’s algorithm can efficiently compute these best paths

« Easy to populate the forwarding table from predecessor information
computed during the algorithm

Distance Vector Protocols

Distance Vector Protocol

» Each router only exchanges a distance vector with its neighbors

e Distance: how far the destination is
e Vector: a value for each destination

* DVs are only exchanged between neighbors; not flooded

» Use incomplete view of graph derived from neighbors’ distance

vectors to compute the shortest paths Routing protocols
Link state Distance vector

protocols protocols

Q1: Distance Vectors

* D,(y) = estimate of least cost from xto y

* Distance vector: D, = [D,(y): y € N]

* Node x knows cost of edge to each neighbor v: c(x,V)
* Node x maintains D,

* Node x also maintains its neighbors’ distance vectors
* For each neighbor v, x maintains D, = [D,(y): y € N]

* Nodes exchange distance vector periodically and whenever the
local distance vector changes (e.g., link failure, cost changes)

21

Q2: Algorithm &2

Bellman-Ford algorithm
« Each node initializes its own distance vector (DV) to edge costs
» Each node sends its DVs to its neighbors

* When a node x receives new DV from a neighbor v, it updates
its own DV using the Bellman-Ford equation:

* Given d,(y) := estimated cost of the least-cost path from x to y
» Update d,(y) = min, {c(x,v) + d(

/ \ cost of path from neighbor v to destination y
minimum taken over
all neighbors v of x cost to reach neighbor v directly from x

¢ 1
N

Visualization =7
Neighbor v sends
» Which neighbor v offers its distance vector
the current best path from toX. o
Xtoy? 0\"“\“ \\
 Path through neighbor v !
has cost c(x,v) + d,(y) .
« Choose min-cost neighbor o ‘\ W(Y)

N
« Remember min-cost 0 \\
neighbor as the one used \ 4
to reach node y o
+ This neighbor determines Use v and ink @G
the output port! (x,v”) to reach y.

node x table

from

node y table

Di(y) = min{c(x,y) + Dy(y), c(x,z) + D.(y)}

=min{2+0, 7+1} =2

cost to
Xy z

x67

O OO ©O

from

from

node z table

from

O OO ©O

cost to
Xy z

oo OO OO

O OO ©O

cost to
Xy z

O OO OO

O OO ©O

from

cost to
Xy z

Dy(2) = min{c(x,y) + Dy(2),

c(x,z) + D,(2)}

= min{2+1, 7+0} =3

cost to
Xy z

027
201
z|710

cost to
Xy z

02 3
2 01
310

cost to
Xy z

Xx|02 7
201

from
<<

02 3
201
310

cost to
Xy z

from

02 3
201

310
» time

S

Good news travels fast

N

» Suppose the link cost reduces or a new better
path becomes available in a network.

» The immediate neighbors of the change detect
the better path immediately

» Since their DV changed, these nodes notify their
neighbors immediately.

« And those neighbors notify still more neighbors
e ... until the entire network knows to use the better path

* Good news travels fast through the network

* This is despite messages only being exchanged
among neighbors

s
e//’;/’= Y/ S\
Bad news travels slowly ’ \6552;52225—5

==

* If router goes down, could be a while before network realizes it.

B still thinks it can reach

A
A through C... bad!

B
W
1 Initially C thinks it can reach A
3 /34/After1e&abaﬂge/ through B... worse!
3 4 4 After 2 exch B, D think they can reach
57 4 5 fter 3 exchanges Athrough C... ugly!

5 6 5 6 Afteraexchanges Count to infinity problem
7 6 7 6 After 5 exchanges etc... to infinity

D E
® ®
3

C
®
2
2

Bad news travels slowly
* Reacting appropriately to bad news requires information that
only other routers have. DV does not exchange sufficient info.

A B C D E
> —e ® ® ®

* B needs to know that C has no other path to A other than via B.
* DV does not exchange paths; just distances!

* Poisoned reverse: if X gets its route to Y via Z, then X will
announce dy(Y) =« in its message to Z
 Effect: Zwon’t use X to route to Y
* However, this won’t solve the problem in general (think why.)

Summary: Comparison of LS and DV

Link State Algorithms Distance Vector Algorithms

* Nodes have full visibility into + Only distances and neighbors
the network’s graph are visible

» Copious message exchange: < Sparse message exchange: DVs
each LSA is flooded over the are exchanged among
whole network neighbors only

» Robust to network changes » Brittle to router failures. Incorrect
and failures iInfo may propagate all over net

OSPF EIGRP
Open Shortest Path First Enhanced Interior Gateway Routing Protocol

(v2 RFC 2328) (RFC 7868)

