
CS 352
Network: ICMP, NAT, Routing

Lecture 22
http://www.cs.rutgers.edu/~sn624/352-F22

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-F22

Review
IPv4 datagramDst IP Prefix Output port

65.0.0.0/8 3
128.9.0.0/16 1
200.23.18.0/23 4 (towards B)
200.23.16.0/20 7 (towards A)

200.23.16.0/20

Longest Prefix Matching

Net layer

Echo
request

A

Tim
e

B

…

Echo
replyPi

ng
 ti

m
e

…

ICMP echo
request and reply.
ping

Traceroute
• A tool that can record the router-level path taken by packets
• A clever use of the IP time-to-live (TTL) field
• In general, when a router receives an IP packet, it decrements

the TTL field on the packet
• A failsafe mechanism to ensure packets don’t keep taking up network

resources for too long
• If a router receives a packet with TTL=0, it sends an ICMP time

exceeded message (type=11, code=0) to the source endpoint

Traceroute
• Traceroute sends multiple packets to a destination endpoint
• But it progressively increases the TTL on those packets: 1, 2, ...
• Every time a time exceeded message is received, record the

router’s IP address
• Process repeated until the destination endpoint is reached
• If the packet reaches the destination endpoint (i.e.: TTL is high

enough), then the endpoint sends a port unreachable message
(type=3, code=3)

Traceroute

Tim
e

TTL=1, dest = B,
dstport = invalid

A BR1 R2 R3

A small demo…

Time exceeded
Source: R1 TTL = 2

TE(R2)

Port un-

reachable
Source: B

Similarly, capture IP
addresses of routers at

distance 3, 4, …

Have full router-level
path until destination

Summary of ICMP
• A protocol for network diagnostics and troubleshooting

• Two useful tools: ping and traceroute

• Ping: test connectivity to a machine totally outside your control
• Use ICMP echo request and reply

• Traceroute: determine router-level path to a remote endpoint
• A smart use of the TTL field in the IP header

Network Address Translation
(NAT)

Background: The Internet’s growing pains
• Networks had incompatible addressing
• IPv4 versus other network-layer protocols (X.25)
• Routable address ranges different across networks

• Entire networks were changing their Internet Service Providers
• ISPs don’t want to route directly to internal endpoints

• IPv4 address exhaustion
• Insufficient large IP blocks even for large networks
• Rutgers (AS46) has > 130,000 publicly routable IP addresses
• IIT Madras (a well-known public university in India, AS141340) has 512

(Source: ipinfo.io)

Network Address Translation
• When a router modifies fields in an IP packet to:
• Enable communication across networks with different (network-

layer) addressing formats and address ranges
• Allow a network to change its connectivity to the Internet en

masse by modifying the source IP to a (publicly-visible) gateway
IP address
• Masquerade as an entire network of endpoints using (say) one

publicly visible IP address
• Effect: use fewer IP addresses for more endpoints!

• We’ll see a standard design: “Network address and port
translation” (NAPT, RFC 2663)

Typical NAT setup (NAPT)

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

138.76.29.7

local network
10.0.0/24

rest of
the Internet

• The gateway’s IP, 138.76.29.7 is publicly visible
• The local endpoint IP addresses in 10.0.0/24 are private
• All datagrams leaving local network have the same source IP

as the gateway

Gateway router

Typical NAT setup (NAPT)

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

local network
10.0.0/24

rest of
the Internet

That is, for the rest of the Internet, the gateway masquerades as
a single endpoint representing (hiding) all the private endpoints.

The entire network just needs one (or a few) public IP addresses.

Gateway router138.76.29.7

Typical NAT setup (NAPT)

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

local network
10.0.0/24

rest of
the Internet

The NAT gateway router accomplishes this by using a different
transport port for each distinct (transport-level) conversation

between the local network and the Internet.

Gateway router138.76.29.7

Typical NAT setup (NAPT)

10.0.0.1

10.0.0.2

10.0.0.3

S: 10.0.0.1, 3345
D: 128.119.40.186, 80

1

1: host 10.0.0.1
sends datagram to
an external host,
128.119.40.186, at port 80

S: 128.119.40.186, 80
D: 10.0.0.1, 3345 4

S: 138.76.29.7, 5001
D: 128.119.40.186, 80

2

2: NAT router
changes datagram
src addr, port from
10.0.0.1, 3345 to
138.76.29.7, 5001,
Updates table

S: 128.119.40.186, 80
D: 138.76.29.7, 5001

3

3: Reply arrives to
dst addr, port
138.76.29.7, 5001

4: NAT gateway
changes datagram
dest addr, port from
138.76.29.7, 5001 to
10.0.0.1, 3345

Translation table
Internet-side Local side

138.76.29.7, 5001 10.0.0.1, 3345
…… ……4: Map back

138.76.29.7

14

• Use one or a few public IPs: You don’t need a lot of addresses from
your ISP
• Change addresses of devices inside the local network freely, without

notifying the rest of the Internet
• Change the public IP address freely independent of network-local

endpoints
• Devices inside the local network are not publicly visible, routable, or

accessible
• Most IP masquerading NATs block incoming connections originating

from the Internet
• Only way to communicate is if the internal host initiates the conversation

Features of IP-masquerading NAT

If you’re home, you’re likely behind NAT
• Most access routers (e.g., your home WiFi router) implement

network address translation

• You can check this by comparing your local address (visible
from ifconfig) and your externally-visible IP address (e.g., type
“what’s my IP address?” on your browser search bar)

If you’re home, you’re likely behind NAT

On public cloud, you’re behind NAT

VM

Physical Machine

Each VM believes it has
its own IP address.

VM

Each VM believes it has
its own IP address.

Physical Machine

Physical
addresses

used
NAT NAT

18

Limitations of IP-masquerading NATs

• Connection limit due to 16-bit port-number field
• ~64K total simultaneous connections with a single public IP address

• NAT can be controversial
• “Routers should only manipulate headers up to the network layer, not

modify headers at the transport layer!”
• Application developers must take NAT into account
• e.g., peer-to-peer applications like Skype

• Internet “purists”: instead, solve address shortage with IPv6
• 32-bit IP addresses are just not enough
• Esp. with more devices (your watch, your fridge, …) coming online

Routing Protocols

The network layer is all about reachability.
Every protocol below solves a sub-problem.

DHCP

How does an endpoint
get an address?

How does an endpoint
talk to another within
the same network?
ARP

How does an endpoint talk to another
outside its network?

Routing
protocols

OSPF, RIP,
BGPGateways

NAT

Debugging
ICMP
ping
traceroute

Net layer

IPv6

Review: Key network-layer functions

• Forwarding (data plane):
move packets from routerʼs
input to appropriate router
output

• Routing (control plane):
determine route taken by
packets from source to
destination

Analogy: taking a road
trip

§ Forwarding: process
of getting through
single interchange

§ Routing: process of
planning trip from
source to destination

21

network
layer runs

everywhere

How would one design a “Google Maps”
to navigate the Internet?

Routing is a fundamental problem in networking.

Goals of Routing Protocols #1
• Determine good paths from source to destination

• “Good” = least cost
• Least propagation delay
• Least cost per unit bandwidth (e.g., $ per Gbit/s)
• Least congested (workload-driven)

• “Path” = a sequence of router ports (links)

Goals of Routing Protocols #2
• Make networks resilient to failures

• Routers & links can fail without taking down the entire network

• Entire subsets can be unreachable; rest still reachable

• Hence, the protocol must be distributed

Routing
Algorithm

data
plane

control
plane

4.1 • OVERVIEW OF NETWORK LAYER 309

tables. In this example, a routing algorithm runs in each and every router and both
forwarding and routing functions are contained within a router. As we’ll see in Sec-
tions 5.3 and 5.4, the routing algorithm function in one router communicates with
the routing algorithm function in other routers to compute the values for its forward-
ing table. How is this communication performed? By exchanging routing messages
containing routing information according to a routing protocol! We’ll cover routing
algorithms and protocols in Sections 5.2 through 5.4.

The distinct and different purposes of the forwarding and routing functions can
be further illustrated by considering the hypothetical (and unrealistic, but technically
feasible) case of a network in which all forwarding tables are configured directly by
human network operators physically present at the routers. In this case, no routing
protocols would be required! Of course, the human operators would need to interact
with each other to ensure that the forwarding tables were configured in such a way
that packets reached their intended destinations. It’s also likely that human configu-
ration would be more error-prone and much slower to respond to changes in the net-
work topology than a routing protocol. We’re thus fortunate that all networks have
both a forwarding and a routing function!

Values in arriving
packet’s header

1

2
3

Local forwarding
table

header

0100
0110
0111
1001

1101

3
2
2
1

output

Control plane

Data plane

Routing algorithm

Figure 4.2 ♦ Routing algorithms determine values in forward tables

M04_KURO4140_07_SE_C04.indd 309 11/02/16 3:14 PM

1

2

0111

values in arriving
packet header,
i.e, destination IP address

3

Data plane
per-packet
processing, moving
packet from input port
to output port

Distributed
control plane:
Components in every
router interact with
other components to
produce a routing
outcome.

Per-router control plane

Q1. What info
exchanged?

Q2. What
computation?

Routing
protocol

The graph abstraction
• Routing algorithms work over an abstract representation of a

network: the graph abstraction

• Each router is a node in a graph
• Each link is an edge in the graph
• Edges have weights (also called link metrics). Set by netadmin

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5Ex: Rutgers campus

u: Computer Science
v: School of Engineering

…

The graph abstraction
• Routing algorithms work over an abstract representation of a

network: the graph abstraction

• G = (N, E)
• N = {u, v, w, x, y, z}
• E = { (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5Ex: Rutgers campus

u: Computer Science
v: School of Engineering

…

The graph abstraction
• Cost of an edge: c(x, y)
• Examples: c(u, v) = 2, c(u, w) = 5

• Cost of a path = sum of edge costs
• c(path x à w à y à z) = 3 + 1 + 2 = 6

• Outcome of routing: each node should determine the least cost
path to every other node
• Q1: What information should nodes exchange with each other to

enable this computation?
• Q2: What algorithm should each node run to compute the least

cost path to every node?

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

Coming up next
Routing

protocols

Link state
protocols

Distance vector
protocols

Each router has complete information of
the graph

Messages exchanged by flooding all over
the network

Communication expensive, but complete

Each router only maintains distances &
next hop to others

Messages are exchanged over each
link and stay within the link

Communication cheap, but incomplete

Link State Protocols

Link state protocol
• Each router knows the state of all the links and routers in the

network

• Every router performs an independent computation on globally
shared knowledge of network’s complete graph representation

Distance vector
protocols

Routing protocols

Link state
protocols

Q1: Information exchange
• Link state flooding: the process by which

neighborhood information of each network
router is transmitted to all other routers
• Each router sends a link state advertisement

(LSA) to each of its neighbors
• LSA contains the router ID, the IP prefix

owned by the router, the router’s neighbors,
and link cost to those neighbors
• Upon receiving an LSA, a router forwards it to

each of its neighbors: flooding

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

Q1: Information exchange
• Eventually, the entire network receives LSAs

originated by each router
• LSAs put into a link state database
• LSAs occur periodically and whenever the

graph changes
• Example: if a link fails
• Example: if a new link or router is added

• The routing algorithm running at each router
can use the entire network’s graph to
compute least cost paths

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

Q2: The algorithm

Dijkstra’s algorithm
• Given a network graph, the

algorithm computes the least cost
paths from one node (source) to all
other nodes
• This can then be used to compute

the forwarding table at that node
• Iterative algorithm: maintain

estimates of least costs to reach
every other node. After k iterations,
each node definitively knows the
least cost path to k destinations

Notation:
• c(x,y): link cost from node x to y;

= ∞ if not direct neighbors
• D(v): current estimate of cost of

path from source to destination v
• p(v): (predecessor node) the last

node before v on the path from
source to v
• N': set of nodes whose least cost

path is definitively known

Dijsktra’s Algorithm
1 Initialization:
2 N' = {u}
3 for all nodes v
4 if v adjacent to u
5 then D(v) = c(u,v)
6 else D(v) = ∞
7
8 Loop
9 find w not in N' such that D(w) is a minimum
10 add w to N'
11 update D(v) for all v adjacent to w and not in N' :
12 D(v) = min(D(v), D(w) + c(w,v))
13 /* new cost to v is either old cost to v or known
14 shortest path cost to w plus cost from w to v */
15 until all nodes in N'

Initial estimates of
distances are just the
link costs of neighbors.

Least cost node among
all estimates. This cost
cannot decrease further.

Relaxation

Visualization

v

w

u

N’
nodes whose least

cost paths from u are
definitively known

v’

v’’

N \ N’
Nodes with estimated
least path costs, not
definitively known to
be smallest possible

min cost in N \ N’

D(w)

c(w, v)

D(v)

W should
move to N’.

Relaxation: for each v
in N \ N’, is the cost of
the path via w smaller
than known least cost
path to v?
If so, update D(v)
Predecessor of v is w.

Cost of path via w: D(w) + c(w,v)
Cost of known best path: D(v)

Dijkstra’s algorithm: example
Step

0
1
2
3
4
5

N'
u

ux
uxy

uxyv
uxyvw

uxyvwz

D(v),p(v)
2,u
2,u
2,u

D(w),p(w)
5,u
4,x
3,y
3,y

D(x),p(x)
1,u

D(y),p(y)
∞

2,x

D(z),p(z)
∞
∞

4,y
4,y
4,y

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

Constructing the forwarding table
• To find the router port to use for a given destination (router), find

the predecessor of the node iteratively until reaching an
immediate neighbor of the source u

• The port connecting u to this neighbor is the output port for this
destination

Constructing the forwarding table
• Suppose we want forwarding entry for z.

D(v),p(v)
2,u

D(w),p(w)
3,y

D(x),p(x)
1,u

D(y),p(y)
2,x

D(z),p(z)
4,y

z: p(z) = y
y: p(y) = x
x: p(x) = u
x is an immediate
neighbor of u

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

z (u,x)
destination linkForwarding

table at u:

Summary of link state protocols
• Each router announces link state to the entire network using

flooding

• Each node independently computes least cost paths to every
other node using the full network graph

• Dijkstra’s algorithm can efficiently compute these best paths
• Easy to populate the forwarding table from predecessor information

computed during the algorithm

