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Traceroute
• A tool that can record the router-level path taken by packets
• A clever use of the IP time-to-live (TTL) field
• In general, when a router receives an IP packet, it decrements 

the TTL field on the packet
• A failsafe mechanism to ensure packets don’t keep taking up network 

resources for too long
• If a router receives a packet with TTL=0, it sends an ICMP time 

exceeded message (type=11, code=0) to the source endpoint



Traceroute
• Traceroute sends multiple packets to a destination endpoint
• But it progressively increases the TTL on those packets: 1, 2, ...
• Every time a time exceeded message is received, record the 

router’s IP address
• Process repeated until the destination endpoint is reached
• If the packet reaches the destination endpoint (i.e.: TTL is high 

enough), then the endpoint sends a port unreachable message 
(type=3, code=3)
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Summary of ICMP
• A protocol for network diagnostics and troubleshooting

• Two useful tools: ping and traceroute

• Ping: test connectivity to a machine totally outside your control
• Use ICMP echo request and reply

• Traceroute: determine router-level path to a remote endpoint
• A smart use of the TTL field in the IP header



Network Address Translation 
(NAT)



Background: The Internet’s growing pains
• Networks had incompatible addressing
• IPv4 versus other network-layer protocols (X.25)
• Routable address ranges different across networks

• Entire networks were changing their Internet Service Providers
• ISPs don’t want to route directly to internal endpoints

• IPv4 address exhaustion
• Insufficient large IP blocks even for large networks
• Rutgers (AS46) has > 130,000 publicly routable IP addresses
• IIT Madras (a well-known public university in India, AS141340) has 512

(Source: ipinfo.io)



Network Address Translation
• When a router modifies fields in an IP packet to:
• Enable communication across networks with different (network-

layer) addressing formats and address ranges
• Allow a network to change its connectivity to the Internet en

masse by modifying the source IP to a (publicly-visible) gateway 
IP address
• Masquerade as an entire network of endpoints using (say) one 

publicly visible IP address
• Effect: use fewer IP addresses for more endpoints!

• We’ll see a standard design: “Network address and port 
translation” (NAPT, RFC 2663)



Typical NAT setup (NAPT)

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

138.76.29.7

local network
10.0.0/24

rest of
the Internet

• The gateway’s IP, 138.76.29.7 is publicly visible
• The local endpoint IP addresses in 10.0.0/24 are private
• All datagrams leaving local network have the same source IP 

as the gateway

Gateway router



Typical NAT setup (NAPT)

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

local network
10.0.0/24

rest of
the Internet

That is, for the rest of the Internet, the gateway masquerades as 
a single endpoint representing (hiding) all the private endpoints.

The entire network just needs one (or a few) public IP addresses.

Gateway router138.76.29.7



Typical NAT setup (NAPT)

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

local network
10.0.0/24

rest of
the Internet

The NAT gateway router accomplishes this by using a different 
transport port for each distinct (transport-level) conversation 

between the local network and the Internet.

Gateway router138.76.29.7



Typical NAT setup (NAPT)

10.0.0.1

10.0.0.2

10.0.0.3

S: 10.0.0.1, 3345
D: 128.119.40.186, 80

1

1: host 10.0.0.1 
sends datagram to
an external host,
128.119.40.186, at port 80

S: 128.119.40.186, 80 
D: 10.0.0.1, 3345 4

S: 138.76.29.7, 5001
D: 128.119.40.186, 80

2

2: NAT router
changes datagram
src addr, port from
10.0.0.1, 3345 to
138.76.29.7, 5001,
Updates table

S: 128.119.40.186, 80 
D: 138.76.29.7, 5001

3

3: Reply arrives to
dst addr, port 
138.76.29.7, 5001

4: NAT gateway
changes datagram
dest addr, port from
138.76.29.7, 5001 to
10.0.0.1, 3345

Translation table
Internet-side          Local side

138.76.29.7, 5001   10.0.0.1, 3345
……                                         ……4: Map back

138.76.29.7
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• Use one or a few public IPs: You don’t need a lot of addresses from 
your ISP
• Change addresses of devices inside the local network freely, without 

notifying the rest of the Internet
• Change the public IP address freely independent of network-local 

endpoints
• Devices inside the local network are not publicly visible, routable, or 

accessible
• Most IP masquerading NATs block incoming connections originating 

from the Internet
• Only way to communicate is if the internal host initiates the conversation

Features of IP-masquerading NAT



If you’re home, you’re likely behind NAT
• Most access routers (e.g., your home WiFi router) implement 

network address translation

• You can check this by comparing your local address (visible 
from ifconfig) and your externally-visible IP address (e.g., type 
“what’s my IP address?” on your browser search bar)



If you’re home, you’re likely behind NAT



On public cloud, you’re behind NAT

VM

Physical Machine

Each VM believes it has 
its own IP address.

VM

Each VM believes it has 
its own IP address.

Physical Machine

Physical
addresses 

used
NAT NAT
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Limitations of IP-masquerading NATs

• Connection limit due to 16-bit port-number field
• ~64K total simultaneous connections with a single public IP address

• NAT can be controversial
• “Routers should only manipulate headers up to the network layer, not  

modify headers at the transport layer!”
• Application developers must take NAT into account
• e.g., peer-to-peer applications like Skype

• Internet “purists”: instead, solve address shortage with IPv6
• 32-bit IP addresses are just not enough
• Esp. with more devices (your watch, your fridge, …) coming online



Routing Protocols



The network layer is all about reachability.
Every protocol below solves a sub-problem.

DHCP

How does an endpoint 
get an address?

How does an endpoint 
talk to another within 
the same network?
ARP

How does an endpoint talk to another 
outside its network?

Routing 
protocols

OSPF, RIP, 
BGPGateways

NAT

Debugging
ICMP
ping
traceroute

Net layer

IPv6



Review: Key network-layer functions

• Forwarding (data plane):
move packets from routerʼs 
input to appropriate router 
output

• Routing (control plane):
determine route taken by 
packets from source to 
destination

Analogy: taking a road 
trip

§ Forwarding: process 
of getting through 
single interchange

§ Routing: process of 
planning trip from 
source to destination

21

network
layer runs

everywhere



How would one design a “Google Maps” 
to navigate the Internet?

Routing is a fundamental problem in networking.



Goals of Routing Protocols #1
• Determine good paths from source to destination

• “Good” = least cost
• Least propagation delay
• Least cost per unit bandwidth (e.g., $ per Gbit/s)
• Least congested (workload-driven)

• “Path” = a sequence of router ports (links)



Goals of Routing Protocols #2
• Make networks resilient to failures

• Routers & links can fail without taking down the entire network

• Entire subsets can be unreachable; rest still reachable

• Hence, the protocol must be distributed



Routing
Algorithm

data
plane

control
plane

4.1  •  OVERVIEW OF NETWORK LAYER     309

tables. In this example, a routing algorithm runs in each and every router and both 
forwarding and routing functions are contained within a router. As we’ll see in Sec-
tions 5.3 and 5.4, the routing algorithm function in one router communicates with 
the routing algorithm function in other routers to compute the values for its forward-
ing table. How is this communication performed? By exchanging routing messages 
containing routing information according to a routing protocol! We’ll cover routing 
algorithms and protocols in Sections 5.2 through 5.4.

The distinct and different purposes of the forwarding and routing functions can 
be further illustrated by considering the hypothetical (and unrealistic, but technically 
feasible) case of a network in which all forwarding tables are configured directly by 
human network operators physically present at the routers. In this case, no routing 
protocols would be required! Of course, the human operators would need to interact 
with each other to ensure that the forwarding tables were configured in such a way 
that packets reached their intended destinations. It’s also likely that human configu-
ration would be more error-prone and much slower to respond to changes in the net-
work topology than a routing protocol. We’re thus fortunate that all networks have 
both a forwarding and a routing function!
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Figure 4.2 ♦ Routing algorithms determine values in forward tables
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values in arriving 
packet header, 
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Data plane
per-packet 
processing, moving 
packet from input port 
to output port

Distributed
control plane:
Components in every 
router interact with 
other components to 
produce a routing 
outcome.

Per-router control plane

Q1. What info 
exchanged?

Q2. What 
computation?

Routing 
protocol



The graph abstraction
• Routing algorithms work over an abstract representation of a 

network: the graph abstraction

• Each router is a node in a graph
• Each link is an edge in the graph
• Edges have weights (also called link metrics). Set by netadmin
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u: Computer Science
v: School of Engineering
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The graph abstraction
• Routing algorithms work over an abstract representation of a 

network: the graph abstraction

• G = (N, E)
• N = {u, v, w, x, y, z}
• E = { (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }
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The graph abstraction
• Cost of an edge: c(x, y)
• Examples: c(u, v) = 2, c(u, w) = 5

• Cost of a path = sum of edge costs
• c(path x à w à y à z) = 3 + 1 + 2 = 6

• Outcome of routing: each node should determine the least cost 
path to every other node
• Q1: What information should nodes exchange with each other to 

enable this computation?
• Q2: What algorithm should each node run to compute the least 

cost path to every node?
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Coming up next
Routing 

protocols

Link state 
protocols

Distance vector 
protocols

Each router has complete information of 
the graph

Messages exchanged by flooding all over 
the network

Communication expensive, but complete

Each router only maintains distances & 
next hop to others

Messages are exchanged over each 
link and stay within the link

Communication cheap, but incomplete



Link State Protocols



Link state protocol
• Each router knows the state of all the links and routers in the 

network

• Every router performs an independent computation on globally 
shared knowledge of network’s complete graph representation

Distance vector 
protocols

Routing protocols

Link state 
protocols



Q1: Information exchange
• Link state flooding: the process by which 

neighborhood information of each network 
router is transmitted to all other routers
• Each router sends a link state advertisement

(LSA) to each of its neighbors
• LSA contains the router ID, the IP prefix 

owned by the router, the router’s neighbors, 
and link cost to those neighbors
• Upon receiving an LSA, a router forwards it to 

each of its neighbors: flooding
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Q1: Information exchange
• Eventually, the entire network receives LSAs 

originated by each router
• LSAs put into a link state database
• LSAs occur periodically and whenever the 

graph changes
• Example: if a link fails
• Example: if a new link or router is added

• The routing algorithm running at each router 
can use the entire network’s graph to 
compute least cost paths
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Q2: The algorithm

Dijkstra’s algorithm
• Given a network graph, the 

algorithm computes the least cost 
paths from one node (source) to all 
other nodes
• This can then be used to compute 

the forwarding table at that node
• Iterative algorithm: maintain 

estimates of least costs to reach 
every other node. After k iterations, 
each node definitively knows the 
least cost path to k destinations

Notation:
• c(x,y): link cost from node x to y;  

= ∞ if not direct neighbors
• D(v): current estimate of cost of 

path from source to destination v
• p(v): (predecessor node) the last 

node before v on the path from 
source to v
• N': set of nodes whose least cost 

path is definitively known



Dijsktra’s Algorithm
1  Initialization:
2    N' = {u} 
3    for all nodes v 
4      if v adjacent to u 
5          then D(v) = c(u,v) 
6      else D(v) = ∞
7 
8   Loop
9     find w not in N' such that D(w) is a minimum 
10    add w to N'
11    update D(v) for all v adjacent to w and not in N' : 
12       D(v) = min( D(v), D(w) + c(w,v) ) 
13    /* new cost to v is either old cost to v or known 
14     shortest path cost to w plus cost from w to v */ 
15  until all nodes in N'

Initial estimates of 
distances are just the 
link costs of neighbors.

Least cost node among 
all estimates. This cost 
cannot decrease further.

Relaxation



Visualization

v

w

u

N’
nodes whose least 

cost paths from u are 
definitively known 

v’

v’’

N \ N’
Nodes with estimated 
least path costs, not 
definitively known to 
be smallest possible

min cost in N \ N’

D(w)

c(w, v)

D(v)

W should 
move to N’.

Relaxation: for each v 
in N \ N’, is the cost of 
the path via w smaller 
than known least cost 
path to v?
If so, update D(v)
Predecessor of v is w.

Cost of path via w: D(w) + c(w,v)
Cost of known best path: D(v)



Dijkstra’s algorithm: example
Step
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2,u
2,u
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D(w),p(w)
5,u
4,x
3,y
3,y

D(x),p(x)
1,u

D(y),p(y)
∞

2,x

D(z),p(z)
∞ 
∞ 

4,y
4,y
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Constructing the forwarding table
• To find the router port to use for a given destination (router), find 

the predecessor of the node iteratively until reaching an 
immediate neighbor of the source u

• The port connecting u to this neighbor is the output port for this 
destination



Constructing the forwarding table
• Suppose we want forwarding entry for z.

D(v),p(v)
2,u

D(w),p(w)
3,y

D(x),p(x)
1,u

D(y),p(y)
2,x

D(z),p(z)
4,y

z: p(z) = y
y: p(y) = x
x: p(x) = u
x is an immediate 
neighbor of u

u
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wv

z
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2
1

3

1

1

2

5
3

5

z (u,x)
destination linkForwarding 

table at u:



Summary of link state protocols
• Each router announces link state to the entire network using 

flooding

• Each node independently computes least cost paths to every 
other node using the full network graph

• Dijkstra’s algorithm can efficiently compute these best paths
• Easy to populate the forwarding table from predecessor information 

computed during the algorithm


