CS 352
Transport: Wrap-Up

Lecture 18
http://www.cs.rutgers.edu/~sn624/352-F22

Srinivas Narayana

RUTGERS

NNNNNNNNNNNNNNNNNNNNNN

http://www.cs.rutgers.edu/~sn624/352-F22

TCP New Reno
= slow start

,,
@ \ + congestion avoidance (Al)
+ fast retransmit & recovery (MD)

Triple duplicate ACK

r
\ Perceived loss occurs at

cwnd = 80K

Switch to additive =~ siadeagpenss New ACK RTO

increase at cwnd = o

Se n Se a n d ReaCt ssthresh = 64K o Multiplicative . /
In-flight data | =~ =xeeeeeoprmes [ce decrease o J 1 RTO: window drops all
\ s © | the way to 1 MSS
& .

.................... i
Fast retransmit: (1) retransmitidup-ACKed segment

- (2) Set inflight
5 = ssthresh = 40K Fast recovery keeps inf1ight stable until new ACK
1K e ceccannnnnn s e e e e e A a e TR A R AT IR e R P e = 2. u S R S A AN S
H C Time]
: TCP BBR: Galn cycling

Signals Knobs }fé;;i}il H
Bandwidth-Delay Product '

red a th g
/F gtl& ore
tmaxACK t
t thgh ACK ate:

EN

=

/@

Congestion Control

Sending rate

nge :
in ACK rate H Update sending ra

cwnd < BDP: sender under-uses the link
BDP = cwnd: 100% link use, zero queues (ideal)
BDP < cwnd < BDP + B: persistent queue @ router

Bottleneck link . Bottleneck link
@ g ' ' rate increase Time rate decrease

Data —

T BDP + B < cwnd: packet drops

C*T

Detecting and Reacting to
Packet Loss

Congestion
Window

Grow too /} Drop too

fast
1 MSS brrr=recsnsnssbannnnnnsn

Detecting packet loss

Time
 So far, all the algorithms we’ve studied have a coarse loss
detection mechanism: RTO timer expiration
* Let the RTO expire, drop cwnd all the way to 1 MSS

* Analogy: you're driving a car
* You accelerate until the next car in front is super close to you (RTO) and
then hit the brakes hard (cwnd = 1)

« Q: Can you see obstacles from afar and slow down proportionately?

 That is, can the sender see packet loss coming in advance?
« And reduce cwnd more gently?

Can we detect loss earlier than RTO?

« Key idea: use the information in the ACKs. How?

» Suppose successive (cumulative) ACKs contain the same ACK#

« Also called duplicate ACKs

« Occur when network is reordering packets, or one (but not most) packets
In the window were lost

« Reduce cwnd when you see many duplicate ACKs
« Consider many dup ACKs a strong indication that packet was lost
 Default threshold: 3 dup ACKs, i.e., triple duplicate ACK
« Make cwnd reduction gentler than setting cwnd = 1; recover faster

Fast Retransmit & Fast
Recovery

Distinction: In-flight versus window

« So far, window and in-flight referred to the same data
« Fast retransmit/recovery differentiate the two notions

cwnd =6 inflight = 3
—>

+t—>

Ul 0 1 2 3 45 6 7 0 1
VIEW!

01 23 45 6 7 0 1

t t —_
Triple duplicate ACKs
(assume subsequent 3 pieces of data

were successfully received)

cwnd Is the interval between the last cumulatively inflight is the data currently
ACK’ed seg# and the last transmitted seq# believed to be in flight.

Last cumulative Last transmitted
ACK’ed seq # seq #

TCP fast retransmit (RFC 2581)

* The fact that ACKs are coming means that data is getting delivered
to the receiver, albeit with some loss.

* Note: Before the dup ACKs arrive, we assume inflight = cwnd

« TCP sender does two actions with fast retransmit

TCP fast retransmit (RFC 2581)

* (1) Reduce the cwnd and in-flight gently
« Don’t drop cwnd all the way down to 1 MSS

* Reduce the amount of in-flight data multiplicatively
« Set inflight - inflight / 2
 Thatis, setcwnd = (inflight / 2) + 3MSS
* This step is called multiplicative decrease
 Algorithm also sets ssthresh to inflight / 2

TCP fast retransmit (RFC 2581)

« Example: Suppose cwnd and inflight (before triple dup
ACK) were both 8 MSS.

« After triple dup ACK, reduce inflight to 4 MSS
« Assume 3 of those 8 MSS no longer in flight; set cwnd = 7 MSS

d = inflight = 8 I:> inflight = 4
cwnd = 1nflig = cwnd = 7

01 23 45 6 7 01 23 45 6 7 0 1

t

Last cumulative Assumed not in
ACK’ed seq # flight (dup ACK)

TCP fast retransmit (RFC 2581)

* (2) The seg# from dup ACKs is immediately retransmitted

* That is, don’t wait for an RTO if there is sufficiently strong evidence
that a packet was lost

TCP fast recovery (RFC 2581)

» Sender keeps the reduced inflight until a new ACK arrives
 New ACK: an ACK for the seg# that was just retransmitted

« May also include the (three or more) pieces of data that were subsequently
delivered to generate the duplicate ACKs

» Conserve packets in flight: transmit some data over lossy periods
(rather than no data, which would happen if cwnd = 1)

TCP fast recovery (RFC 2581)

« Keep incrementing cwnd by 1 MSS for each dup ACK

cwnd = 6
inflight = 3
4+t

0123 45 6 7 0 1,23 45 6 7 0 1

[

Last cumulative Assumed not in
ACK’ed seq # flight (dup ACK)

TCP fast recovery (RFC 2581)

« Keep incrementing cwnd by 1 MSS for each dup ACK

cwnd = 7
inflight = 3

4+
0123 45 6 7 01 23 45 6 7 0 1

Last cumulative Assumed not in
ACK’ed seq # flight (dup ACK)

TCP fast recovery (RFC 2581)

« Keep incrementing cwnd by 1 MSS for each dup ACK

cwnd = 8
inflight = 3
S EE—

0123 45 6 7 0 1,23 45 6 7 0 1

Last cumulative Assumed not in
ACK’ed seq # flight (dup ACK)

TCP fast recovery (RFC 2581)

» Eventually a new ACK arrives, acknowledging the retransmitted
data and all data in between

 Deflate cwnd to half of cwnd before fast retransmit.
 cwnd and inflight are aligned and equal once again

» Perform additive increase from this point!

cwnd = 3
inflight = 3

01 23 45 6 7 01,23 45 6 7 0 1

Last cumulative _
ACK’ed seq # New ACK acknowledged this data

Additive Increase/Multiplicative Decrease
Say MSS =1 KByte
Default ssthresh = 64KB = 64 MSS

Triple duplicate ACK

Fast retransmit: (1) retransmit dup-ACKed segment
Perceived loss occurs at
cwnd = 80K
Switch to addi

tive

------ New ACK RTO
increase at cwnd = (2) Multiplicative
_ ssthresh = 64K dd\»{\\le decrease " , / |
In-flight data | ~ seeeeees = N (005° S I RTO: window drops all
Y % | thewayto 1 MSS
& (\O‘
\é llllllllllllllllllll \ ||
0$6 (2) Set inflight Fast recovery keeps inflight stable until new ACK
) = ssthresh = 40K I.
1K

TCP New Reno performs additive increase and
multiplicative decrease of congestion window.

In short, we often refer to this as AIMD.
Multiplicative decrease is a part of all TCP

algorithms, including BBR.
[It Is necessary for fairness across TCP flows.]

Summary: TCP loss detection & reaction

« Don’t wait for an RTO and then set the cwnd to 1 MSS
* Instead, react proportionately by sensing pkt loss in advance

Fast Retransmit Fast Recovery
* Triple dup ACK: sufficiently * Maintain this reduced amount of
strong signal that network has in-flight data as long as dup
dropped data, before RTO ACKs arrive
» Immediately retransmit data ' ggti%fe%“cce%fu”y getting

» Multiplicatively decrease in-

flight data to half of its value * When new ACK arrives, do

additive increase from there on

Connection Management

Sender
e.g., browser

Starting a TCP connection

« TCP requires sender/receiver to set up some context
« Sequence numbers, window size, buffers, OS table entries

RTO

Provision enough
socket buffers.

Connection

finished.
E Server | Attack by
forgot. resource
Entries in operating e;(haustlon
system tables Server at server
© Bnnection thinks new
% c; OOKUp), choose connection, | (SYN flood)
0 ¢ ! sequence #, etc. may accept

data!

TCP 3-way handshake i
3 erver state

_ Ss = socket(AF INET, SOCK STREAM)
Client state

cs = socket(AF INET, SOCK_ STREAM) ss.llsten(l)
csockid, addr = ss.accept()

Padding
data
TCP Header Format
I ISTE N Note that one tick mark represents one bit position.

cs.connect((host,server port)) N /\/Oéz

choose init seq num, x ~__ Pp Qaty
send TCP SYN msg SYNDbit=1, Seq=x

~~~, choose init seq num, y
> send TCP SYNACK
msg, acking SYN

SYNbit=1, Seqg=y
ACKbit=1; ACKnum=x+1
received SYNACK(x) —
indicates server is live; ~— received ACK(y)
h_send ACthor SYNA:[C_K; ACKbit=1, ACKnum=y+1 | indicates client is live
is segment may contain — . . .

client-to-server data

Provision resources



Implications of 3-way handshake

* Any application data can only be sent an RTT after

* Fresh connection: at least 2 RTTs to get a response
 Often fruitful to use “persistent” connections (HTTP header)



The Transport Layer

« Communication abstraction between processes

* Intelligent endpoints implementing guarantees fcylications

4




Network

Application

Transport

Network

Host-to-Net

HTTPS| | FTP | | HTTP| | SMTP| | DNS
N/ e
TCP UDP

IP

802.11

X.25

ATM




Endpoint

The network layer

« Main function: Move data from sending to receiving 2% ; | i
endpoint Process

* on sending endpoint: encapsulate transport
segments into datagrams

* on receiving endpoint: deliver datagrams to transport
layer

* The network layer also runs in every router
 Very challenging to evolve the network layer

* Routers examine headers on all passing through
Processg %

them

Endpomt



Two key network-layer functions

» Forwarding: move packets Analogy: taking a road
from router’s input to trip
appropriate router output

of getting through

* Routing: determine route single interchange

taken by packets from source
to destination

* routing algorithms

2 .

% = Routing: process of
T % planning trip from
N\ . source to destination

)
—\
S SangamonfS
S MorgaVn st
y Femval d UMIT
el 3:22: 20: (30
GARMIN
Q Ve .
E' : everywhere

runs
§ —
==

* The network layer solves
the routing problem.




Data plane and Control Plane

Data plane = Forwarding
* local, per-router function

* determines how datagram
arriving on router input port is
forwarded to router output port

values in arriving
packet header

11—
as 2?

Control plane = Routing
* network-wide logic

» determines how datagram is routed
along end-to-end path from source
to destination endpoint

 two control-plane approaches:

* Distributed routing algorithm
running on each router

 Centralized routing algorithm
running on a (logically)
centralized server



