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Congestion Control

TCP New Reno
= slow start
+ congestion avoidance (AI)
+ fast retransmit & recovery (MD)

Bandwidth-Delay Product

cwnd < BDP: sender under-uses the link
BDP = cwnd: 100% link use, zero queues (ideal)
BDP < cwnd < BDP + B: persistent queue @ router
BDP + B < cwnd: packet drops

TCP BBR: Gain cycling

Sense and React

H C

Signals Knobs



Detecting and Reacting to 
Packet Loss



Detecting packet loss
• So far, all the algorithms we’ve studied have a coarse loss 

detection mechanism: RTO timer expiration
• Let the RTO expire, drop cwnd all the way to 1 MSS

• Analogy: you’re driving a car
• You accelerate until the next car in front is super close to you (RTO) and 

then hit the brakes hard (cwnd := 1)
• Q: Can you see obstacles from afar and slow down proportionately?

• That is, can the sender see packet loss coming in advance?
• And reduce cwnd more gently?

1 MSS

Congestion 
Window

Time

Grow too 
fast

Drop too 
fast



Can we detect loss earlier than RTO?
• Key idea: use the information in the ACKs. How?

• Suppose successive (cumulative) ACKs contain the same ACK#
• Also called duplicate ACKs
• Occur when network is reordering packets, or one (but not most) packets 

in the window were lost

• Reduce cwnd when you see many duplicate ACKs
• Consider many dup ACKs a strong indication that packet was lost
• Default threshold: 3 dup ACKs, i.e., triple duplicate ACK
• Make cwnd reduction gentler than setting cwnd = 1; recover faster



Fast Retransmit & Fast 
Recovery



Distinction: In-flight versus window
• So far, window and in-flight referred to the same data  
• Fast retransmit/recovery differentiate the two notions
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Last cumulative 
ACK’ed seq #

Last transmitted 
seq #

cwnd = 6
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inflight = 3

Triple duplicate ACKs
(assume subsequent 3 pieces of data 

were successfully received)

Sender’s 
view:

cwnd is the interval between the last cumulatively 
ACK’ed seq# and the last transmitted seq#

inflight is the data currently 
believed to be in flight.



TCP fast retransmit (RFC 2581)
• The fact that ACKs are coming means that data is getting delivered 

to the receiver, albeit with some loss.
• Note: Before the dup ACKs arrive, we assume inflight = cwnd

• TCP sender does two actions with fast retransmit



TCP fast retransmit (RFC 2581)
• (1) Reduce the cwnd and in-flight gently
• Don’t drop cwnd all the way down to 1 MSS

• Reduce the amount of in-flight data multiplicatively
• Set inflight à inflight / 2
• That is, set cwnd = (inflight / 2) + 3MSS
• This step is called multiplicative decrease
• Algorithm also sets ssthresh to inflight / 2



TCP fast retransmit (RFC 2581)
• Example: Suppose cwnd and inflight (before triple dup 

ACK) were both 8 MSS. 
• After triple dup ACK, reduce inflight to 4 MSS
• Assume 3 of those 8 MSS no longer in flight; set cwnd = 7 MSS

Last cumulative 
ACK’ed seq #

cwnd = inflight = 8
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Assumed not in 
flight (dup ACK)

inflight = 4
cwnd = 7



TCP fast retransmit (RFC 2581)
• (2) The seq# from dup ACKs is immediately retransmitted

• That is, don’t wait for an RTO if there is sufficiently strong evidence 
that a packet was lost



TCP fast recovery (RFC 2581)
• Sender keeps the reduced inflight until a new ACK arrives
• New ACK: an ACK for the seq# that was just retransmitted
• May also include the (three or more) pieces of data that were subsequently 

delivered to generate the duplicate ACKs

• Conserve packets in flight: transmit some data over lossy periods 
(rather than no data, which would happen if cwnd := 1)



TCP fast recovery (RFC 2581)
• Keep incrementing cwnd by 1 MSS for each dup ACK
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TCP fast recovery (RFC 2581)
• Keep incrementing cwnd by 1 MSS for each dup ACK

Last cumulative 
ACK’ed seq #

cwnd = 7
inflight = 3
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flight (dup ACK)



TCP fast recovery (RFC 2581)
• Keep incrementing cwnd by 1 MSS for each dup ACK

Last cumulative 
ACK’ed seq #

cwnd = 8
inflight = 3
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Assumed not in 
flight (dup ACK)



TCP fast recovery (RFC 2581)
• Eventually a new ACK arrives, acknowledging the retransmitted 

data and all data in between
• Deflate cwnd to half of cwnd before fast retransmit.
• cwnd and inflight are aligned and equal once again

• Perform additive increase from this point!
cwnd = 3
inflight = 3

0 1 2 3 4 5 6 7 10 52 3 4 6 7 10

New ACK acknowledged this data
Last cumulative 

ACK’ed seq #



Additive Increase/Multiplicative Decrease

1K

Time

Triple duplicate ACK

Slow
 sta

rt

In-flight data

Say MSS = 1 KByte
Default ssthresh = 64KB = 64 MSS

Switch to additive 
increase at cwnd = 
ssthresh = 64K

Perceived loss occurs at 
cwnd = 80K

(2) Set inflight 
= ssthresh = 40K

Additive 
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Additive 
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Fast retransmit: (1) retransmit dup-ACKed segment

New ACK RTO

RTO: window drops all 
the way to 1 MSS

(2) Multiplicative 
decrease

Fast recovery keeps inflight stable until new ACK



TCP New Reno performs additive increase and 
multiplicative decrease of congestion window.

In short, we often refer to this as AIMD.

Multiplicative decrease is a part of all TCP 
algorithms, including BBR.

[It is necessary for fairness across TCP flows.]



Summary: TCP loss detection & reaction

Fast Retransmit
• Triple dup ACK: sufficiently 

strong signal that network has 
dropped data, before RTO
• Immediately retransmit data
• Multiplicatively decrease in-

flight data to half of its value

Fast Recovery
• Maintain this reduced amount of 

in-flight data as long as dup 
ACKs arrive
• Data is successfully getting 

delivered
• When new ACK arrives, do 

additive increase from there on

• Don’t wait for an RTO and then set the cwnd to 1 MSS
• Instead, react proportionately by sensing pkt loss in advance



Connection Management
How does a TCP connection start?



Starting a TCP connection
• TCP requires sender/receiver to set up some context
• Sequence numbers, window size, buffers, OS table entries
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TCP 3-way handshake

SYNbit=1, Seq=x
choose init seq num, x

send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x) 
indicates server is live;

send ACK for SYNACK;
this segment may contain 

client-to-server data

received ACK(y) 
indicates client is live

SYNSENT

ESTAB

SYN RCVD

Client state

LISTEN

Server state

LISTEN

cs = socket(AF_INET, SOCK_STREAM)

ss = socket(AF_INET,SOCK_STREAM)
ss.bind((‘’,server_port))
ss.listen(1)
csockid, addr = ss.accept()

cs.connect((host,server_port))

Provision resources

No app data



Implications of 3-way handshake
• Any application data can only be sent an RTT after

• Fresh connection: at least 2 RTTs to get a response
• Often fruitful to use “persistent” connections (HTTP header)



The Transport Layer
• Communication abstraction between processes

• Intelligent endpoints implementing guarantees for applications



Network

Application

Transport

Network

Host-to-Net …

FTP HTTP SMTP DNS

TCP UDP

IP

802.11 X.25 ATM

HTTPS

Net layer



The network layer
• Main function: Move data from sending to receiving 

endpoint
• on sending endpoint: encapsulate transport 

segments into datagrams
• on receiving endpoint: deliver datagrams to transport 

layer
• The network layer also runs in every router
• Very challenging to evolve the network layer

• Routers examine headers on all passing through 
them

Network Layer

Process

Endpoint

Process

Endpoint



Two key network-layer functions

• Forwarding: move packets 
from routerʼs input to 
appropriate router output

• Routing: determine route 
taken by packets from source 
to destination
• routing algorithms

• The network layer solves 
the routing problem.

Analogy: taking a road 
trip

§ Forwarding: process 
of getting through 
single interchange

§ Routing: process of 
planning trip from 
source to destination

27
network

layer runs
everywhere



Data plane and Control Plane
Data plane = Forwarding
• local, per-router function
• determines how datagram 

arriving on router input port is 
forwarded to router output port

Control plane = Routing
• network-wide logic
• determines how datagram is routed 

along end-to-end path from source 
to destination endpoint
• two control-plane approaches:
• Distributed routing algorithm 

running on each router
• Centralized routing algorithm 

running on a (logically) 
centralized server

0111

values in arriving 
packet header
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