
CS 352
Transport: Wrap-Up

Lecture 18
http://www.cs.rutgers.edu/~sn624/352-F22

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-F22

Congestion Control

TCP New Reno
= slow start
+ congestion avoidance (AI)
+ fast retransmit & recovery (MD)

Bandwidth-Delay Product

cwnd < BDP: sender under-uses the link
BDP = cwnd: 100% link use, zero queues (ideal)
BDP < cwnd < BDP + B: persistent queue @ router
BDP + B < cwnd: packet drops

TCP BBR: Gain cycling

Sense and React

H C

Signals Knobs

Detecting and Reacting to
Packet Loss

Detecting packet loss
• So far, all the algorithms we’ve studied have a coarse loss

detection mechanism: RTO timer expiration
• Let the RTO expire, drop cwnd all the way to 1 MSS

• Analogy: you’re driving a car
• You accelerate until the next car in front is super close to you (RTO) and

then hit the brakes hard (cwnd := 1)
• Q: Can you see obstacles from afar and slow down proportionately?

• That is, can the sender see packet loss coming in advance?
• And reduce cwnd more gently?

1 MSS

Congestion
Window

Time

Grow too
fast

Drop too
fast

Can we detect loss earlier than RTO?
• Key idea: use the information in the ACKs. How?

• Suppose successive (cumulative) ACKs contain the same ACK#
• Also called duplicate ACKs
• Occur when network is reordering packets, or one (but not most) packets

in the window were lost

• Reduce cwnd when you see many duplicate ACKs
• Consider many dup ACKs a strong indication that packet was lost
• Default threshold: 3 dup ACKs, i.e., triple duplicate ACK
• Make cwnd reduction gentler than setting cwnd = 1; recover faster

Fast Retransmit & Fast
Recovery

Distinction: In-flight versus window
• So far, window and in-flight referred to the same data
• Fast retransmit/recovery differentiate the two notions

0 1 2 3 4 5 6 7 10

Last cumulative
ACK’ed seq #

Last transmitted
seq #

cwnd = 6

0 1 2 3 4 5 6 7 10

inflight = 3

Triple duplicate ACKs
(assume subsequent 3 pieces of data

were successfully received)

Sender’s
view:

cwnd is the interval between the last cumulatively
ACK’ed seq# and the last transmitted seq#

inflight is the data currently
believed to be in flight.

TCP fast retransmit (RFC 2581)
• The fact that ACKs are coming means that data is getting delivered

to the receiver, albeit with some loss.
• Note: Before the dup ACKs arrive, we assume inflight = cwnd

• TCP sender does two actions with fast retransmit

TCP fast retransmit (RFC 2581)
• (1) Reduce the cwnd and in-flight gently
• Don’t drop cwnd all the way down to 1 MSS

• Reduce the amount of in-flight data multiplicatively
• Set inflight à inflight / 2
• That is, set cwnd = (inflight / 2) + 3MSS
• This step is called multiplicative decrease
• Algorithm also sets ssthresh to inflight / 2

TCP fast retransmit (RFC 2581)
• Example: Suppose cwnd and inflight (before triple dup

ACK) were both 8 MSS.
• After triple dup ACK, reduce inflight to 4 MSS
• Assume 3 of those 8 MSS no longer in flight; set cwnd = 7 MSS

Last cumulative
ACK’ed seq #

cwnd = inflight = 8

5

0 1 2 3 4 5 6 7 10 52 3 4 6 7 10

Assumed not in
flight (dup ACK)

inflight = 4
cwnd = 7

TCP fast retransmit (RFC 2581)
• (2) The seq# from dup ACKs is immediately retransmitted

• That is, don’t wait for an RTO if there is sufficiently strong evidence
that a packet was lost

TCP fast recovery (RFC 2581)
• Sender keeps the reduced inflight until a new ACK arrives
• New ACK: an ACK for the seq# that was just retransmitted
• May also include the (three or more) pieces of data that were subsequently

delivered to generate the duplicate ACKs

• Conserve packets in flight: transmit some data over lossy periods
(rather than no data, which would happen if cwnd := 1)

TCP fast recovery (RFC 2581)
• Keep incrementing cwnd by 1 MSS for each dup ACK

Last cumulative
ACK’ed seq #

cwnd = 6
inflight = 3

0 1 2 3 4 5 6 7 10 52 3 4

5

6 7 10

Assumed not in
flight (dup ACK)

TCP fast recovery (RFC 2581)
• Keep incrementing cwnd by 1 MSS for each dup ACK

Last cumulative
ACK’ed seq #

cwnd = 7
inflight = 3

0 1 2 3 4 5 6 7 10 52 3 4 6 7 10

Assumed not in
flight (dup ACK)

TCP fast recovery (RFC 2581)
• Keep incrementing cwnd by 1 MSS for each dup ACK

Last cumulative
ACK’ed seq #

cwnd = 8
inflight = 3

0 1 2 3 4 5 6 7 10 52 3 4 6 7 10

Assumed not in
flight (dup ACK)

TCP fast recovery (RFC 2581)
• Eventually a new ACK arrives, acknowledging the retransmitted

data and all data in between
• Deflate cwnd to half of cwnd before fast retransmit.
• cwnd and inflight are aligned and equal once again

• Perform additive increase from this point!
cwnd = 3
inflight = 3

0 1 2 3 4 5 6 7 10 52 3 4 6 7 10

New ACK acknowledged this data
Last cumulative

ACK’ed seq #

Additive Increase/Multiplicative Decrease

1K

Time

Triple duplicate ACK

Slow
 sta

rt

In-flight data

Say MSS = 1 KByte
Default ssthresh = 64KB = 64 MSS

Switch to additive
increase at cwnd =
ssthresh = 64K

Perceived loss occurs at
cwnd = 80K

(2) Set inflight
= ssthresh = 40K

Additive

increase
Additive

increase

Fast retransmit: (1) retransmit dup-ACKed segment

New ACK RTO

RTO: window drops all
the way to 1 MSS

(2) Multiplicative
decrease

Fast recovery keeps inflight stable until new ACK

TCP New Reno performs additive increase and
multiplicative decrease of congestion window.

In short, we often refer to this as AIMD.

Multiplicative decrease is a part of all TCP
algorithms, including BBR.

[It is necessary for fairness across TCP flows.]

Summary: TCP loss detection & reaction

Fast Retransmit
• Triple dup ACK: sufficiently

strong signal that network has
dropped data, before RTO
• Immediately retransmit data
• Multiplicatively decrease in-

flight data to half of its value

Fast Recovery
• Maintain this reduced amount of

in-flight data as long as dup
ACKs arrive
• Data is successfully getting

delivered
• When new ACK arrives, do

additive increase from there on

• Don’t wait for an RTO and then set the cwnd to 1 MSS
• Instead, react proportionately by sensing pkt loss in advance

Connection Management
How does a TCP connection start?

Starting a TCP connection
• TCP requires sender/receiver to set up some context
• Sequence numbers, window size, buffers, OS table entries

Se
nd

er
e.

g.
,b

ro
w

se
r

R
ec

ei
ve

r
e.

g.
,w

eb
se

rv
er

Let’s talk. Here’smy request.

OK. Here’s my

response.

Provision enough
socket buffers.

Entries in operating
system tables
(connection
lookup), choose
sequence #, etc.

RT
O

Connection
finished.
Server
forgot.

Server
thinks new
connection,
may accept
data!

Attack by
resource
exhaustion
at server

(SYN flood)

TCP 3-way handshake

SYNbit=1, Seq=x
choose init seq num, x

send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;

send ACK for SYNACK;
this segment may contain

client-to-server data

received ACK(y)
indicates client is live

SYNSENT

ESTAB

SYN RCVD

Client state

LISTEN

Server state

LISTEN

cs = socket(AF_INET, SOCK_STREAM)

ss = socket(AF_INET,SOCK_STREAM)
ss.bind((‘’,server_port))
ss.listen(1)
csockid, addr = ss.accept()

cs.connect((host,server_port))

Provision resources

No app data

Implications of 3-way handshake
• Any application data can only be sent an RTT after

• Fresh connection: at least 2 RTTs to get a response
• Often fruitful to use “persistent” connections (HTTP header)

The Transport Layer
• Communication abstraction between processes

• Intelligent endpoints implementing guarantees for applications

Network

Application

Transport

Network

Host-to-Net …

FTP HTTP SMTP DNS

TCP UDP

IP

802.11 X.25 ATM

HTTPS

Net layer

The network layer
• Main function: Move data from sending to receiving

endpoint
• on sending endpoint: encapsulate transport

segments into datagrams
• on receiving endpoint: deliver datagrams to transport

layer
• The network layer also runs in every router
• Very challenging to evolve the network layer

• Routers examine headers on all passing through
them

Network Layer

Process

Endpoint

Process

Endpoint

Two key network-layer functions

• Forwarding: move packets
from routerʼs input to
appropriate router output

• Routing: determine route
taken by packets from source
to destination
• routing algorithms

• The network layer solves
the routing problem.

Analogy: taking a road
trip

§ Forwarding: process
of getting through
single interchange

§ Routing: process of
planning trip from
source to destination

27
network

layer runs
everywhere

Data plane and Control Plane
Data plane = Forwarding
• local, per-router function
• determines how datagram

arriving on router input port is
forwarded to router output port

Control plane = Routing
• network-wide logic
• determines how datagram is routed

along end-to-end path from source
to destination endpoint
• two control-plane approaches:
• Distributed routing algorithm

running on each router
• Centralized routing algorithm

running on a (logically)
centralized server

0111

values in arriving
packet header

1

23

