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Congestion window
• The sender maintains an estimate of the amount of in-flight data 

needed to keep the pipe full without congesting it. 

• This estimate is called the congestion window (cwnd)

• Recall: There is a relationship between the sending rate 
(throughput) and the sender’s window:  sender transmits a 
window’s worth of data over an RTT duration 
• Rate = window / RTT



Interaction b/w flow & congestion control
• Use window = min(congestion window, receiver advertised 

window) 
• Overwhelm neither the receiver nor network links & routers
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Review: Goal of steady state operation
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Review: Getting to steady: TCP New Reno
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TCP BBR: finding the bottleneck link rate
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TCP BBR: finding the bottleneck link rate
• Assuming that the link rate of the bottleneck
• == the rate of data getting across the bottleneck link
• == the rate of data getting to the receiver
• == the rate at which ACKs are generated by the receiver
• == the rate at which ACKs reach the sender

• Measuring ACK rate provides an estimate of bottleneck link rate

• BBR: Send at the maximum ACK rate measured in the recent past
• Update max with new bottleneck rate estimates, i.e., larger ACK rate 
• Forget estimates last measured a long time ago
• Incorporated into a rate filter



TCP BBR: Adjustments by gain cycling
• BBR periodically increases its sending rate by a gain factor to 

see if the link rate has increased (e.g., due to a path change)
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Bandwidth-Delay Product



Steady state cwnd for a single flow
• Suppose the bottleneck link has rate C
• Suppose the propagation round-trip delay (propRTT) between 

sender and receiver is T
• Ignore transmission delays for this example; 
• Assume steady state: highest sending rate with no bottleneck 

congestion

• Q: how much data is in flight over a single RTT?

• C * T data i.e., amount of data unACKed at any point in time
• ACKs take time T to arrive (without any queueing). In the 

meantime, sender is transmitting at rate C



The Bandwidth-Delay Product
• C * T = bandwidth-delay product: 
• The amount of data in flight for a sender transmitting at the ideal rate during 

the ideal round-trip delay of a packet

• Note: this is just the amount of data “on the pipe”
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The Bandwidth-Delay Product
• Q: What happens if cwnd > C * T?
• i.e., where are the rest of the in-flight packets?

• A: Waiting at the bottleneck router queues

Data
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Router buffers and the max cwnd
• Router buffer memory is finite: queues can only be so long
• If the router buffer size is B, there is at most B data waiting in the queue

• If cwnd increases beyond C * T + B, data is dropped!
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Summary
• Bandwidth-Delay Product (BDP) governs the window size of a 

single flow at steady state

• The bottleneck router buffer size governs how much the cwnd
can exceed the BDP before packet drops occur

• BDP is the ideal desired window size to use the full bottleneck 
link, without any queueing. 
• Accommodating flow control, also the min socket buffer size to use the 

bottleneck link fully



Detecting and Reacting to 
Packet Loss



Detecting packet loss
• So far, all the algorithms we’ve studied have a coarse loss 

detection mechanism: RTO timer expiration
• Let the RTO expire, drop cwnd all the way to 1 MSS

• Analogy: you’re driving a car
• You’re waiting until the next car in front is super close to you (RTO) and 

then hitting the brakes really hard (set cwnd := 1)
• Q: Can you see obstacles from afar and slow down proportionately?

• That is, can the sender see packet loss coming in advance?
• And reduce cwnd more gently?



Can we detect loss earlier than RTO?
• Key idea: use the information in the ACKs. How?

• Suppose successive (cumulative) ACKs contain the same ACK#
• Also called duplicate ACKs
• Occur when network is reordering packets, or one (but not most) packets 

in the window were lost

• Reduce cwnd when you see many duplicate ACKs
• Consider many dup ACKs a strong indication that packet was lost
• Default threshold: 3 dup ACKs, i.e., triple duplicate ACK
• Make cwnd reduction gentler than setting cwnd = 1; recover faster



Fast Retransmit & Fast 
Recovery



Distinction: In-flight versus window
• So far, window and in-flight referred to the same data  
• Fast retransmit & fast recovery differentiate the two notions
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TCP fast retransmit (RFC 2581)
• The fact that ACKs are coming means that data is getting delivered 

to the receiver, albeit with some loss.
• Note: Before the dup ACKs arrive, we assume inflight = cwnd

• TCP sender does two actions with fast retransmit



TCP fast retransmit (RFC 2581)
• (1) Reduce the cwnd and in-flight gently
• Don’t drop cwnd all the way down to 1 MSS

• Reduce the amount of in-flight data multiplicatively
• Set inflight à inflight / 2
• That is, set cwnd = (inflight / 2) + 3MSS
• This step is called multiplicative decrease
• Algorithm also sets ssthresh to inflight / 2



TCP fast retransmit (RFC 2581)
• Example: Suppose cwnd and inflight (before triple dup 

ACK) were both 8 MSS. 
• After triple dup ACK, reduce inflight to 4 MSS
• Assume 3 of those 8 MSS no longer in flight; set cwnd = 7 MSS
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TCP fast retransmit (RFC 2581)
• (2) The seq# from dup ACKs is immediately retransmitted

• That is, don’t wait for an RTO if there is sufficiently strong evidence 
that a packet was lost



TCP fast recovery (RFC 2581)
• Sender keeps the reduced inflight until a new ACK arrives
• New ACK: an ACK for the seq# that was just retransmitted
• May also include the (three or more) pieces of data that were subsequently 

delivered to generate the duplicate ACKs

• Conserve packets in flight: transmit some data over lossy periods 
(rather than no data, which would happen if cwnd := 1)



TCP fast recovery (RFC 2581)
• Keep incrementing cwnd by 1 MSS for each dup ACK
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TCP fast recovery (RFC 2581)
• Keep incrementing cwnd by 1 MSS for each dup ACK

Last cumulative 
ACK’ed seq #

cwnd = 7
inflight = 3

0 1 2 3 4 5 6 7 10 52 3 4 6 7 10

Assumed not in 
flight (dup ACK)



TCP fast recovery (RFC 2581)
• Keep incrementing cwnd by 1 MSS for each dup ACK
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TCP fast recovery (RFC 2581)
• Eventually a new ACK arrives, acknowledging the retransmitted 

data and all data in between
• Deflate cwnd to half of cwnd before fast retransmit.
• cwnd and inflight are aligned and equal once again

• Perform additive increase from this point!
cwnd = 3
inflight = 3
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Additive Increase/Multiplicative Decrease
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TCP New Reno performs additive increase and 
multiplicative decrease of congestion window.

In short, we often refer to this as AIMD.

Multiplicative decrease is a part of all TCP 
algorithms, including BBR.

[It is necessary for fairness across TCP flows.]



Summary: TCP loss detection & reaction

Fast Retransmit
• Triple dup ACK: sufficiently 

strong signal that network has 
dropped data, before RTO
• Immediately retransmit data
• Multiplicatively decrease in-

flight data to half of its value

Fast Recovery
• Maintain this reduced amount of 

in-flight data as long as dup 
ACKs arrive
• Data is successfully getting 

delivered
• When new ACK arrives, do 

additive increase from there on

• Don’t wait for an RTO and then set the cwnd to 1 MSS
• Tantamount to waiting to get super close to the car in front and then 

jamming the brakes really hard
• Instead, react proportionately by sensing pkt loss in advance


