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The approach that the Internet takes is to use a 
distributed algorithm to converge to an efficient and fair 
outcome.

Congestion control

Each endpoint acts by 
itself. No central vantage 

point or control.

Use whatever bottleneck
capacity available, even with 

a single TCP connection.

Share bottleneck capacity 
equitably

Sense and React
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Signals and Knobs in Congestion Control
• Signals
• Packets being ACK’ed
• Packets being dropped (e.g. RTO fires)
• Packets being delayed (RTT)
• Rate of incoming ACKs

• Knobs
• What can you change to “probe” the available bottleneck capacity?
• Suppose receiver buffer is unbounded:
• Increase window/sending rate: e.g., add x or multiply by a factor of x
• Decrease window/sending rate: e.g., subtract x or reduce by a factor of x

Implicit feedback signals 
measured directly at sender.
(There are also explicit signals 
that the network might provide.)



Sense and react, sure…but how?
• Where do you want to be?
• The steady state

• How do you get there?
• Congestion control algorithms

• Sense accurately
• React proportionately
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The Steady State
Efficiency of a single TCP conversation



What does efficiency look like?
• Suppose we want to achieve an efficient outcome for one TCP 

conversation by observing network signals from the endpoint

• Q: How should the endpoint behave at steady state?
• Challenge: bottleneck link is remotely located



Steady state: Ideal goal
• High sending rate: Use the full capacity of the bottleneck link
• Low delay: Minimize the overall delay of packets to get to the 

receiver
• Overall delay = propagation + queueing + transmission
• Assume propagation and transmission components fixed

• “Low delay” reduces to low queueing delay
• i.e., don’t push so much data into the network that packets have to 

wait in queues

• Key question: When to send the next packet?



When to send the next packet?
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Rationale
• When the sender receives an ACK, that’s a signal that the previous 

packet has left the bottleneck link (and the rest of the network)

• Hence, it must be safe to send another packet without congesting the 
bottleneck link

• Such transmissions are said to follow packet conservation

• ACK clocking: “Clock” of ACKs governs packet transmissions



ACK clocking: analogy
• How to avoid crowding a grocery 

store?

• Strategy: Send the next waiting 
customer exactly when a customer 
exits the store

• However, this strategy alone can 
lead to inefficient use of resources…



ACK clocking alone can be inefficient
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ACK clocking alone can be inefficient

Sender Receiver
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The sending rate should be high enough to keep the “pipe” full
Analogy: a grocery store with only 1 customer in entire store
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Steady State of Congestion Control
• Send at the highest rate possible (to keep the pipe full) 
• while being ACK-clocked (to avoid congesting the pipe)

• So, how to get to steady state? 



Finding the Right Congestion 
Window



Let’s play a game
• Suppose I’m thinking of a positive integer. You need to guess 

the number I have in mind.

• Each time you guess, I will tell you whether your number is 
smaller or larger than (or the same as) the one I’m thinking of

• Note that my number can be very large

• How would you go about guessing the number?



Finding the right congestion window
• TCP congestion control algorithms solve a similar problem!

• There is an unknown bottleneck link rate that the sender must 
match

• If sender sends more than the bottleneck link rate:
• packet loss, delays, etc.

• If sender sends less than the bottleneck link rate:
• all packets get through; successful ACKs



Quickly finding a rate: TCP slow start
• Initially cwnd = 1 MSS

• MSS is “maximum segment size”

• Upon receiving an ACK of each MSS, 
increase the cwnd by 1 MSS

• Effectively, double cwnd every RTT

§ Initial rate is slow but ramps up 
exponentially fast

§ On loss (RTO), restart from cwnd := 1 
MSS
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Behavior of slow start
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Slow start has problems
• Congestion window increases too rapidly
• Example: suppose the “right” window size cwnd is 17
• cwnd would go from 16 to 32 and then dropping down to 1
• Result: massive packet drops

• Congestion window decreases too rapidly
• Suppose the right cwnd is 31, and there is a loss when cwnd is 32
• Slow start will resume all the way back from cwnd 1
• Result: unnecessarily low throughput

• Instead, perform finer adjustments of cwnd based on signals



Use slow start mainly at the beginning
• You might accelerate your car a lot when you start, but you want to 

make only small adjustments after.
• Want a smooth ride, not a jerky one!

• Slow start is a good algorithm to get close to the bottleneck link rate 
when there is little info available about the bottleneck, e.g., starting of 
a connection

• Once close enough to the bottleneck link rate, use a different set of 
strategies to perform smaller adjustments to cwnd
• Called TCP congestion avoidance



TCP Congestion Avoidance



Two congestion control algorithms
TCP New Reno
• The most studied, classic 

“textbook” TCP algorithm

• The primary knob is congestion 
window

• The primary signal is packet 
loss (RTO)

• Adjustment using additive 
increase

TCP BBR
• Recent algorithm developed & 

deployed by Google

• The primary knob is sending rate

• The primary signal is rate of 
incoming ACKs

• Adjustment using gain cycling 
and filters



TCP New Reno: Additive Increase
• Remember the recent past to find a 

good estimate of link rate
• The last good cwnd without packet 

drop is a good indicator
• TCP New Reno calls this the slow start 

threshold (ssthresh)

• Increase cwnd by 1 MSS every RTT 
after cwnd hits ssthresh
• Effect: increase window additively per 

RTT
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TCP New Reno: Additive increase
• Start with ssthresh = 64K bytes (TCP default)
• Do slow start until ssthresh
• Once the threshold is passed, do additive increase
• Add one MSS to cwnd for each cwnd worth data ACK’ed
• For each MSS ACK’ed, cwnd = cwnd + (MSS * MSS) / cwnd

• Upon a TCP timeout (RTO),
• Set cwnd = 1 MSS
• Set ssthresh = max(2 * MSS, 0.5 * cwnd)
• i.e., the next linear increase will start at half the current cwnd



Behavior of Additive Increase
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TCP BBR: finding the bottleneck link rate

Sender Receiver
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TCP BBR: finding the bottleneck link rate
• Assuming that the link rate of the bottleneck
• == the rate of data getting across the bottleneck link
• == the rate of data getting to the receiver
• == the rate at which ACKs are generated by the receiver
• == the rate at which ACKs reach the sender

• Measuring ACK rate provides an estimate of bottleneck link rate

• BBR: Send at the maximum ACK rate measured in the recent past
• Update max with new bottleneck rate estimates, i.e., larger ACK rate 
• Forget estimates last measured a long time ago
• Incorporated into a rate filter



TCP BBR: Adjustments by gain cycling
• BBR periodically increases its sending rate by a gain factor to 

see if the link rate has increased (e.g., due to a path change)

…

Time

Se
nd

in
g 

ra
te

Steady state operation: 
constant sending rate

Gain cycle

Detect higher ACK rate:
Update sending rate

Last max ACK rate was 
measured a while ago. 
Forget it & use a more 
recent max ACK rate 

…
No change
in ACK rate

Bottleneck link 
rate increase

Bottleneck link 
rate decrease



Summary: Getting to Steady State
• Want to get to highest sending rate that doesn’t congest the 

bottleneck link

• Slow start: Exponential increase towards a reasonable estimate 
of link rate

• Congestion avoidance: milder adjustments to get close to 
correct link rate estimate.
• TCP New Reno: additive increase
• TCP BBR: gain cycling and filters


