CS 352
Congestion Control (Part 1)

Lecture 16
http://www.cs.rutgers.edu/~sn624/352-F22
Srinivas Narayana

NNNNNNNNNNNNNNNNNNNNNNN

http://www.cs.rutgers.edu/~sn624/352-F22

D _sender D Multiple locations
= y for bottlenecks _
] O
TCP socket ‘ s
CongeSt|On COﬂthl receiver buffers(l’ | "j CC)
' @1 — ' P
TCP
What’s the W code c;)
bottleneck? How B —
to adapt how from sender LL
. . v
much data to E, Flow Control: Receiver informs L
. . ? - . 1 1
keep in flight? = sender free buffer over time
CmEeeeTnisidf™ Lastcumulative Lasttransmitted Q htatias
BU———] ACK’ed seq # seq # s
[T e e P Buffer >= desired W
| | |G|k|H|T|N|N |
T ow: IR NI ow socket buffering
| Options | Padding |
+|-_+_+_+-+-+-+-+-+-+-+-+-+-+-+-;;:;+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—-i- % —_——
TCP Header Format WindOW <= Advertised WindOW Poor TCP throughput

Note that one tick mark represents one bit position.

Congestion control

The approach that the Internet takes is to use a
distributed algorithm to converge to an efficient and fair

outcome/ / /

| Each endpoint acts by Use.whate.ver bottleneck. Share bottleneck capacity
itself. No central vantage capacity available, even with :
: . : equitably
point or control. a single TCP connection.

Sense and React

Signals and Knobs in Congestion Control

° SlgnaIS Implicit feedback signals

* Packets being ACK’ed | measured directly at sender.
» Packets being dropped (e.g. RTO fires) (There are also explicit signals

* Packets being delayed (RTT) that the network might provide.)
« Rate of incoming ACKs

* Knobs
« What can you change to “probe” the available bottleneck capacity?
« Suppose receiver buffer is unbounded:
* Increase window/sending rate: e.g., add x or multiply by a factor of x
* Decrease window/sending rate: e.g., subtract x or reduce by a factor of x

Sense and react, sure...but how?

* Where do you want to be?
* The steady state

* How do you get there?
« Congestion control algorithms

« Sense accurately
* React proportionately

The Steady State

Efficiency of a single TCP conversation

What does efficiency look like?

« Suppose we want to achieve an efficient outcome for one TCP
conversation by observing network signals from the endpoint

@6\ % .
Vf(\
a /——_

« Q: How should the endpoint behave at steady state?
 Challenge: bottleneck link is remotely located

d/! (
AN ‘ —
Q‘&w

Steady state: Ideal goal

* High sending rate: Use the full capacity of the bottleneck link

» Low delay: Minimize the overall delay of packets to get to the
receiver
» Overall delay = propagation + queueing + transmission
« Assume propagation and transmission components fixed

* “Low delay” reduces to low queueing delay

* i.e., don’t push so much data into the network that packets have to
wait in queues

« Key question: When to send the next packet?

When to send the next packet?

Fast link Bottleneck link <+—>

1. Send packet
burst (as allowed
by window)

Inter-packet delay T

<+

2. Receive data

packet on ACK w
Sender T <« Receiver
L PR J
4. Receive ACK ACKS 3. Send ACK

Rationale

* When the sender receives an ACK, that’s a signal that the previous
packet has left the bottleneck link (and the rest of the network)

* Hence, it must be safe to send another packet without congesting the
bottleneck link

e Such transmissions are said to follow packet conservation

» ACK clocking: “Clock” of ACKs governs packet transmissions

ACK clocking: analogy

* How to avoid crowding a grocery
store?

» Strategy: Send the next waiting
customer exactly when a customer
exits the store

* However, this strategy alone can
lead to inefficient use of resources...

ACK clocking alone can be inefficient

Sender pushing T
data slowl
e Ty Large delay T —
4+—>
—_—>
Send data
packet on ACK Data ———
T T i

Sender —3 Receiver

(N == »

—— A\ CKs

ACK clocking alone can be inefficient

Sender pushing T
data slowl 4—>
B Large delay T
4>
—>

Send data

packet on ACK Datga ———>

Sender Receiver

The sending rate should be high enough to keep the “pipe” full
Analogy: a grocery store with only 1 customer in entire store
If the store isn’t “full”, you’re using store space inefficiently

Steady State of Congestion Control

« Send at the highest rate possible (to keep the pipe full)
 while being ACK-clocked (to avoid congesting the pipe)

* S0, how to get to steady state?

Finding the Right Congestion
Window

Let’s play a game

» Suppose I'm thinking of a positive integer. You need to guess
the number | have in mind.

» Each time you guess, | will tell you whether your number is
smaller or larger than (or the same as) the one I’'m thinking of

* Note that my number can be very large

* How would you go about guessing the number?

Finding the right congestion window

« TCP congestion control algorithms solve a similar problem!

 There is an unknown bottleneck link rate that the sender must
match

 |f sender sends more than the bottleneck link rate:
» packet loss, delays, etc.

* |If sender sends less than the bottleneck link rate:
+ all packets get through; successful ACKs

Quickly finding a rate: TCP slow start
e Initially cwnd = 1 MSS - HoitA

* MSS is “maximum segment size”

MSS e

» Upon receiving an ACK of each MSS, L[S seament
increase the cwnd by 1 MSS "

 Effectively, double cwnd every RTT

= |[nitial rate is slow but ramps up
exponentially fast

* On loss (RTO), restart from cwnd := 1 time
MSS |

Behavior of slow start

Packet drops/

- RTO\

Congestion
Window
&
6\(0' \(OS\ \(b{\.
\0$ N K
%) (O\O (o\g
RV Pyt B R N NPT FPPPPPRTTY

Slow start has problems

« Congestion window increases too rapidly
« Example: suppose the “right” window size cwnd is 17
« cwnd would go from 16 to 32 and then dropping down to 1
* Result: massive packet drops

« Congestion window decreases too rapidly
« Suppose the right cwnd is 31, and there is a loss when cwnd is 32

« Slow start will resume all the way back from cwnd 1
» Result: unnecessarily low throughput

* Instead, perform finer adjustments of cwnd based on signals

Use slow start mainly at the beginning

* You might accelerate your car a lot when you start, but you want to
make only small adjustments after.
« Want a smooth ride, not a jerky one!

» Slow start is a good algorithm to get close to the bottleneck link rate
when there is little info available about the bottleneck, e.g., starting of
a connection

* Once close enough to the bottleneck link rate, use a different set of
strategies to perform smaller adjustments to cwnd
 Called TCP congestion avoidance

TCP Congestion Avoidance

Two congestion control algorithms

TCP New Reno TCP BBR
* The most studied, classic * Recent algorithm developed &
“textbook” TCP algorithm deployed by Google

* The primary knob is congestion <« The primary knob is sending rate
window

* The primary signal is packet .
loss (RTO) The primary signal is rate of

incoming ACKs

* Adjustment using additive

Nerease * Adjustment using gain cycling

and filters

TCP New Reno: Additive Increase

« Remember the recent past to find a
good estimate of link rate

* The last good cwnd without packet
drop is a good indicator

e TCP New Reno calls this the slow start
threshold (ssthresh)

* Increase cwnd by 1 MSS every RTT
after cwnd hits ssthresh

« Effect: increase window additively per
RTT

H

J

{

+— RTT—+—RTT— «RTT—

@)
(¢)]
~—
>

W

say ssthresh=4 &4

four Segments

TCP New Reno: Additive increase

« Start with ssthresh = 64K bytes (TCP default)
* Do slow start until ssthresh

* Once the threshold is passed, do additive increase
* Add one MSS to cwnd for each cwnd worth data ACK’ed
 For each MSS ACK’ed, cwnd = cwnd + (MSS * MSS) / cwnd

* Upon a TCP timeout (RTO),
e Setcwnd = 1 MSS
 Set ssthresh = max(2 * MSS, 0.5 * cwnd)
* |.e., the next linear increase will start at half the current cwnd

Behavior of Additive Increase

Say MSS =1 KByte
Default ssthresh = 64KB = 64 MSS

Packet drops/
Loss occurs at RTO

cwnd = 54K / Loss occurs at
54 MSS presssssnnnnnnnnnnnnnnnns cwnd = 40K
<

‘\\\1
M e (@
Set ssthresh to P‘\(\G(eae P\dd\“\la%e
. \ (@
Congestion B T N ot
. Set ssthresh to
Window & & 20 MSS
&° 2/ L s
\0$ \O$
S S xR
2 ,b{\
1K Irrmm e e e nnnnnnnnnnnnns HT e s s nnssssssnnnnnnnnnnnnnnnnnnnnnn’e) EX

TCP BBR: finding the bottleneck link rate

;biﬁﬂ? rda?tea ata Data gets across the bottleneck
at the bottleneck link rate.

L

Use ACK receive
rate to/determine
sending rate

2. Receive data
packet

=~

Sender Receiver
4. Measure rate 3. Send ACK
of incoming +—— ACKs

ACKs

TCP BBR: finding the bottleneck link rate

* Assuming that the link rate of the bottleneck
» == the rate of data getting across the bottleneck link
» == the rate of data getting to the receiver

« == the rate at which ACKs are generated by the receiver
« == the rate at which ACKs reach the sender

» Measuring ACK rate provides an estimate of bottleneck link rate

 BBR: Send at the maximum ACK rate measured in the recent past
« Update max with new bottleneck rate estimates, i.e., larger ACK rate
* Forget estimates last measured a long time ago
* Incorporated into a rate filter

TCP BBR: Adjustments by gain cycling

* BBR periodically increases its sending rate by a gain factor to
see if the link rate has increased (e. g due to a path change)

Steady state operation:
constant sending rate Last max ACK rate was
_ measured a while ago.
Gain cycle Forget it & use a more
- recent max ACK rate

No change
in ACK rate

Sending rate

Detect higher ACK rate:
Update sending rate

Bottleneck link

Bottleneck link
rate increase rate decrease

Time

Summary: Getting to Steady State

» Want to get to highest sending rate that doesn’t congest the
bottleneck link

» Slow start: Exponential increase towards a reasonable estimate
of link rate

» Congestion avoidance: milder adjustments to get close to
correct link rate estimate.

« TCP New Reno: additive increase
« TCP BBR: gain cycling and filters

