
CS 352
Congestion Control (Part 1)

Lecture 16
http://www.cs.rutgers.edu/~sn624/352-F22

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-F22

application
process

TCP socket
receiver buffers

TCP
code

receiver

from sender

recv()

sender Multiple locations
for bottlenecks

What’s the
bottleneck? How
to adapt how
much data to
keep in flight?

Fl
ow

 C
on

tro
l

Congestion Control

Flow Control: Receiver informs
sender free buffer over time

0 1 2 3 4 5 6 7 10

Last cumulative
ACK’ed seq #

Last transmitted
seq #

Window <= Advertised window

Sender’s
view:

Buffer >= desired W

Low socket buffering
==

Poor TCP throughput

The approach that the Internet takes is to use a
distributed algorithm to converge to an efficient and fair
outcome.

Congestion control

Each endpoint acts by
itself. No central vantage

point or control.

Use whatever bottleneck
capacity available, even with

a single TCP connection.

Share bottleneck capacity
equitably

Sense and React

H C

Signals and Knobs in Congestion Control
• Signals
• Packets being ACK’ed
• Packets being dropped (e.g. RTO fires)
• Packets being delayed (RTT)
• Rate of incoming ACKs

• Knobs
• What can you change to “probe” the available bottleneck capacity?
• Suppose receiver buffer is unbounded:
• Increase window/sending rate: e.g., add x or multiply by a factor of x
• Decrease window/sending rate: e.g., subtract x or reduce by a factor of x

Implicit feedback signals
measured directly at sender.
(There are also explicit signals
that the network might provide.)

Sense and react, sure…but how?
• Where do you want to be?
• The steady state

• How do you get there?
• Congestion control algorithms

• Sense accurately
• React proportionately

H C

The Steady State
Efficiency of a single TCP conversation

What does efficiency look like?
• Suppose we want to achieve an efficient outcome for one TCP

conversation by observing network signals from the endpoint

• Q: How should the endpoint behave at steady state?
• Challenge: bottleneck link is remotely located

Steady state: Ideal goal
• High sending rate: Use the full capacity of the bottleneck link
• Low delay: Minimize the overall delay of packets to get to the

receiver
• Overall delay = propagation + queueing + transmission
• Assume propagation and transmission components fixed

• “Low delay” reduces to low queueing delay
• i.e., don’t push so much data into the network that packets have to

wait in queues

• Key question: When to send the next packet?

When to send the next packet?

Sender Receiver

1. Send packet
burst (as allowed
by window)

Fast link Bottleneck link
Inter-packet delay T

T

T
T

T

2. Receive data
packet

3. Send ACK4. Receive ACK

Data

ACKs

5. Send data
packet on ACK

Rationale
• When the sender receives an ACK, that’s a signal that the previous

packet has left the bottleneck link (and the rest of the network)

• Hence, it must be safe to send another packet without congesting the
bottleneck link

• Such transmissions are said to follow packet conservation

• ACK clocking: “Clock” of ACKs governs packet transmissions

ACK clocking: analogy
• How to avoid crowding a grocery

store?

• Strategy: Send the next waiting
customer exactly when a customer
exits the store

• However, this strategy alone can
lead to inefficient use of resources…

ACK clocking alone can be inefficient

Sender Receiver

Large delay T
T

Data

ACKs

Send data
packet on ACK

T
T

T

Sender pushing
data slowly

ACK clocking alone can be inefficient

Sender Receiver

T

Data

The sending rate should be high enough to keep the “pipe” full
Analogy: a grocery store with only 1 customer in entire store
If the store isn’t “full”, you’re using store space inefficiently

Large delay T

Send data
packet on ACK

Sender pushing
data slowly

Steady State of Congestion Control
• Send at the highest rate possible (to keep the pipe full)
• while being ACK-clocked (to avoid congesting the pipe)

• So, how to get to steady state?

Finding the Right Congestion
Window

Let’s play a game
• Suppose I’m thinking of a positive integer. You need to guess

the number I have in mind.

• Each time you guess, I will tell you whether your number is
smaller or larger than (or the same as) the one I’m thinking of

• Note that my number can be very large

• How would you go about guessing the number?

Finding the right congestion window
• TCP congestion control algorithms solve a similar problem!

• There is an unknown bottleneck link rate that the sender must
match

• If sender sends more than the bottleneck link rate:
• packet loss, delays, etc.

• If sender sends less than the bottleneck link rate:
• all packets get through; successful ACKs

Quickly finding a rate: TCP slow start
• Initially cwnd = 1 MSS

• MSS is “maximum segment size”

• Upon receiving an ACK of each MSS,
increase the cwnd by 1 MSS

• Effectively, double cwnd every RTT

§ Initial rate is slow but ramps up
exponentially fast

§ On loss (RTO), restart from cwnd := 1
MSS

Host A

one segment

R
TT

Host B

time

two segments

four segments

PayloadTNL

MSS

Behavior of slow start

1 MSS

Congestion
Window

Time

Packet drops/
RTO

Slow
 sta

rt

Slow
 sta

rt

Slow
 sta

rt

Slow start has problems
• Congestion window increases too rapidly
• Example: suppose the “right” window size cwnd is 17
• cwnd would go from 16 to 32 and then dropping down to 1
• Result: massive packet drops

• Congestion window decreases too rapidly
• Suppose the right cwnd is 31, and there is a loss when cwnd is 32
• Slow start will resume all the way back from cwnd 1
• Result: unnecessarily low throughput

• Instead, perform finer adjustments of cwnd based on signals

Use slow start mainly at the beginning
• You might accelerate your car a lot when you start, but you want to

make only small adjustments after.
• Want a smooth ride, not a jerky one!

• Slow start is a good algorithm to get close to the bottleneck link rate
when there is little info available about the bottleneck, e.g., starting of
a connection

• Once close enough to the bottleneck link rate, use a different set of
strategies to perform smaller adjustments to cwnd
• Called TCP congestion avoidance

TCP Congestion Avoidance

Two congestion control algorithms
TCP New Reno
• The most studied, classic

“textbook” TCP algorithm

• The primary knob is congestion
window

• The primary signal is packet
loss (RTO)

• Adjustment using additive
increase

TCP BBR
• Recent algorithm developed &

deployed by Google

• The primary knob is sending rate

• The primary signal is rate of
incoming ACKs

• Adjustment using gain cycling
and filters

TCP New Reno: Additive Increase
• Remember the recent past to find a

good estimate of link rate
• The last good cwnd without packet

drop is a good indicator
• TCP New Reno calls this the slow start

threshold (ssthresh)

• Increase cwnd by 1 MSS every RTT
after cwnd hits ssthresh
• Effect: increase window additively per

RTT

Host A

R
TT

Host B

time

four segments

five segments

six segments

R
TT

say ssthresh=4

seven segments…

R
TT

TCP New Reno: Additive increase
• Start with ssthresh = 64K bytes (TCP default)
• Do slow start until ssthresh
• Once the threshold is passed, do additive increase
• Add one MSS to cwnd for each cwnd worth data ACK’ed
• For each MSS ACK’ed, cwnd = cwnd + (MSS * MSS) / cwnd

• Upon a TCP timeout (RTO),
• Set cwnd = 1 MSS
• Set ssthresh = max(2 * MSS, 0.5 * cwnd)
• i.e., the next linear increase will start at half the current cwnd

Behavior of Additive Increase

1K

Time

Packet drops/
RTO

Slow
 sta

rt

Slow
 sta

rt
Congestion

Window

Say MSS = 1 KByte
Default ssthresh = 64KB = 64 MSS

54 MSS

Set ssthresh to
27 MSS

Loss occurs at
cwnd = 40K

Loss occurs at
cwnd = 54K

Set ssthresh to
20 MSS

Additive

increase

Slow

sta
rt

Additive

increase

TCP BBR: finding the bottleneck link rate

Sender Receiver

1. Send data at a
specific rate Data gets across the bottleneck

at the bottleneck link rate.
2. Receive data
packet

3. Send ACK4. Measure rate
of incoming
ACKs

Data

ACKs

Use ACK receive
rate to determine
sending rate

TCP BBR: finding the bottleneck link rate
• Assuming that the link rate of the bottleneck
• == the rate of data getting across the bottleneck link
• == the rate of data getting to the receiver
• == the rate at which ACKs are generated by the receiver
• == the rate at which ACKs reach the sender

• Measuring ACK rate provides an estimate of bottleneck link rate

• BBR: Send at the maximum ACK rate measured in the recent past
• Update max with new bottleneck rate estimates, i.e., larger ACK rate
• Forget estimates last measured a long time ago
• Incorporated into a rate filter

TCP BBR: Adjustments by gain cycling
• BBR periodically increases its sending rate by a gain factor to

see if the link rate has increased (e.g., due to a path change)

…

Time

Se
nd

in
g

ra
te

Steady state operation:
constant sending rate

Gain cycle

Detect higher ACK rate:
Update sending rate

Last max ACK rate was
measured a while ago.
Forget it & use a more
recent max ACK rate

…
No change
in ACK rate

Bottleneck link
rate increase

Bottleneck link
rate decrease

Summary: Getting to Steady State
• Want to get to highest sending rate that doesn’t congest the

bottleneck link

• Slow start: Exponential increase towards a reasonable estimate
of link rate

• Congestion avoidance: milder adjustments to get close to
correct link rate estimate.
• TCP New Reno: additive increase
• TCP BBR: gain cycling and filters

