CS 352
Ordered Delivery; Flow Control

Lecture 14
http://www.cs.rutgers.edu/~sn624/352-F22
Srinivas Narayana

NNNNNNNNNNNNNNNNNNNNNNN

http://www.cs.rutgers.edu/~sn624/352-F22

Recap of concepts TCP:

Connection-oriented

ACK pkts after a drop?
NO/ \ Yes

Go-back-N Selective repeat

0 . 2 , Cumulative ACK — \Selective ACK

012345678901234567890123456789¢01

S ACK X ACK X

| Source Port Destination Port |
SACK x1-x2,x3-x4,x5-x6

T_+_+_+_+_+_+_+_+_+ —t—t—t—t -ttt —t—F=
Precision of info:
<

Time to recover from loss

Sequence Number

Acknowledgment Number
e s S T

tet ettt —t—+
| Data |

| offset| Reserved |R|C|S|S|Y|I]|
I | |G|k|H|T|N|N|
B i S T e E e S e et e e e S e e ST

All these fields may
carry useful info on

Window

: e — proert P°i“Ee-+-+-+-+-T the same packet. >
Options Paddin . . g .
Fotot et -+-+-+-E-+-+-+-+- -+-+-+-+-+-+-+-+-+?+-+-+ TCP IS b|d|reCt|0na|

d
e S e s St e

Complexity, bugs, ...

Cumulative ACK
Selective ACK

TCP Header Format

Note that one tick mark represents one bit position.

Observing a TCP exchange

* sudo tcpdump -1 enol tcp portrange 56000-56010

*curl --local-port 56000-56010
https://www.google.com > output.html

* Bonus: Try crafting TCP packets with scapy!

Buffering and
Ordering in TCP

NNNNNNNNNNNNNNNNNNNNNNN

Memory Buffers at the
Transport Layer

Sockets need receive-side memory buffers

» Since TCP uses selective repeat, the receiver must buffer data that
IS received after loss:

* e.g., hold packets so that only the “holes” (due to loss) need to be filled in
later, without having to retransmit packets that were received successfully

* Apps read from the receive-side socket buffer when you do a
recv() call.

* Even if data is always reliably received, applications may not always
read the data immediately
» What if you invoked recv () in your program infrequently (or never)?
» For the same reason, UDP sockets also have receive-side buffers

Receiver app’s interaction with TCP

- Upon reception of data, the receiver’s R ass
TCP stack deposits the data in the recv()
receive-side socket buffer -

TCP socket
receiver buffers

« An app with a TCP socket reads from —
the TCP receive socket buffer code

* €.g., when you do data = sock.recv() from sender

receiver TCP interaction

Sockets need send-side memory buffers

» The possibility of packet retransmission in R ass
the future means that data can’t be send()

iImmediately discarded from the sender once =
. TCP socket
transmitted. sender buffers
] TCP
* App has issued send () and moved on; code
TCP stack must buffer this data o receiver

 Transport layer must wait for ACK of a piece
of data before reclaiming (freeing) the
memory for that data.

sender TCP interaction

Ordered Delivery

Reordering packets at the receiver side

« Let’s suppose receiver gets packets 1, 2, and Sender Receiver
4, but not 3 (dropped) 1
o 2
« Suppose you’re trying to download a 4
document containing a report 21

* What would happen if transport at the 4
receiver directly presents packets 1, 2, and 4 5
to the application (i.e., recelvmg 1 2 4
through the recv () CaII)

Reordering packets at the receiver side

- Reordering can happen for a few reasons: Sender Receiver

* Drops |
» Packets taking different paths through a network 3

* Receiver needs a general strategy to ensure 4
that data is presented to the application in the 5
same order that the sender pushed it. Ideas?

* To implement ordered delivery, the receiver uses 3
» Sequence numbers £ 5
* Receiver socket buffer

* We've already seen the use of these for
reliability; but they can be used to order too!

Receive-side app and TCP

» TCP receiver software only releases R ass
the data from the receive-side socket recv()
buffer to the application if... -
TCP socket

receiver buffers

* the data is in order relative to all
other data already read by the code
application

from sender %
|
|
|

* This process is called TCP reassembly

receiver protocol stack

TCP Reassembly

Se.r;deréNet ““““““ « Application
Wi _eS e‘re 1 can recv ()
e BN N up o her

Socket buffer memory on the receiver

Implications of ordered delivery

« Packets cannot be delivered to the application if there is an in-
order packet missing from the receiver’s buffer
* The receiver can only buffer so much out-of-order data
« Subsequent out-of-order packets dropped

* [t won’t matter that those packets successfully arrive at the receiver
from the sender over the network

« TCP application-level throughput will suffer if there is too much
packet reordering in the network

« Data may have reached the receiver, but won’t be delivered to apps
upon a recv() (...or may not even be buffered!)

Stream-Oriented Data
Transfer

Sequence numbers in the app’s stream

Data written by application over time
e.g., send() call

100 150 180 240 273
packet packet packet | packet packet

Increasing sequence #s

TCP uses byte sequence numbers

Sequence numbers in the app’s stream

Data written by application over time
e.g., send() call

100 150 180 240 273
packet packet packet | packet packet

Increasing sequence #s

Packet boundaries aren’t important for TCP software

TCP is a stream-oriented protocol
(We use SOCK_STREAM when creating sockets)

Sequence numbers in the app’s stream

Data written by application over time
e.g., send() call

2nd
recv()| recv()

A recv() call may
return a part of a
packet, a full packet,

or multiple packets
App does a recv() together.

= window size Proportional to throughput

How much data to keep In

flight? \ { S

Stop and Wait >4

SEQO —] \(\’\
= %

T o

3 <

_I

Ack)

SEQ 1

RO, Pipelined Reliability

We want to increase throughput, but ...

\ D Multiple locations —

> process L L Wik

Per()

What’s the

TCP socket
receiver buffersf’ h
; c‘ 4 _\‘ NER)/
W 1 A
YNy TCP
bottleneck? How M
to adapt how
from sender
v
| |
| |
:

Flow Control

/ code
much data to D Congestion

=

Flow Control

Socket buffers can become full

* Applications may read data slower than
the sender is pushing data in

« Example: what if an app infrequently or
never calls recv()?

* There may be too much reordering or
packet loss in the network

« What if the first few bytes of a window are
lost or delayed?

* Receivers can only buffer so much
before dropping subsequent data

application
process

y
r

TCP socket
receiver buffers

|

from sender %
|
|
|

TCP receiver

Goal: avoid drops due to buffer fill

« Have a TCP sender only send as much
as the free buffer space available at the
receiver.

* Amount of free buffer varies over time!
« TCP implements flow control

* Receiver’s ACK contains the amount of
data the sender can transmit without
running out the receiver’s socket buffer

 This number is called the advertised
window size

application
process

y
r

TCP socket
receiver buffers

from sender %
|
|
|

receiver protocol stack

Flow control in TCP headers

0
01234
+—t—t—t—t—+

+—t—t—t—t—+

+ot—t—t—t—+

totot—t—t—+
| Data |

| Offset| Reserved |R|C|S|S|Y|I|

+—t—t—t—t—+

+—t—t—t—t—+

totot—t—t—+

+—t—t—t—t—+

Note

1 2 3
56 7890123456789 0123456789°01
B T Sk Tt T S S ks Tt S S Sy R S
Source Port | Destination Port
R s (R ek Tt R R ek et S L e e
Sequence Number
s e S T e s Tk T S SR e R S e ek Tt FEE S S
Acknowledgment Number
B s T S R Sk Tt I S S R St S et [ENE _BEE R R S
|U|a|P|R|S|F|

|G|K|H|T|N|N]
s s T s __ . o +ot—t—t—t—t-—
Checksum | Urgent Pointer
O I I I S U S S o
Options | Padding
—t—t—t—t ottt —t ettt bttt bttt ===+
data
—t—t—t—t oottt —t ettt ottt —F—F—t—t—F =+ =+

TCP Header Format

that one tick mark represents one bit position.

TCP flow control

* Receiver advertises to sender (in the ACK)

how much free buffer is available

0

1 2

3

0123456789012345678901234561789°01
—+—+

+ette

e e e s St
Source Port | Desti

—t—t ettt —t-
nation Port

S S

ottt
|

+otet—
| Dat
| offs

+et—t-

+ott—

+etto

+—tt-

Sequence Number

D i S S e it (ot B B

Acknowledgment Number

e i T e i et

a | |u|a|P|R|S|F]

et| Reserved |R|C|S|S|Y|I]|

| |G|X|H|T|N|N]|

e s T S S o e S e n et B

Checksum | u

s T T T R S En as st (R e N
Options

i e S S R R R at St B B

data
e s o T e h sk (R SR e e

TCP Header Format

Note that one tick mark represents one

S S A

+

—+—+

—+—+

St S S S S
| Padding |
ottt ot ottt

—tetet—t bttt —t—+

bit position.

Sender
’

Receiver

TCP flow control

» Subsequently, the sender’s sliding window
cannot be larger than this value

 Restriction on new sequence numbers that
can be transmitted

» == restriction on sending rate!

Window <= Advertised window
4+—)

LA 0 1 2 3 45 6 7 0 1
View.

1 1

Last cumulative Last transmitted
ACK’ed seq # seq #

Sender

Receiver

TCP flow control

* If receiver app is too slow reading data:

* receiver socket buffer fills up

* S0, advertised window shrinks

* S0, sender’s window shrinks

« S0, sender’s sending rate reduces

Window <= Advertised window
4+—)

LA 0 1 2 3 45 6 7 0 1
View.

1 1

Last cumulative Last transmitted
ACK’ed seq # seq #

Sender

Receiver

TCP flow control

Flow control matches the sender’s
write speed to the receiver’s read
speed.

Window <= Advertised window
4+—)

LA 0 1 2 3 45 6 7 0 1
View.

1 1

Last cumulative Last transmitted
ACK’ed seq # seq #

Sender

Receiver

Sizing the receiver’s socket buffer

» Operating systems have a default receiver socket buffer size
* Listed among sysctl -a | grep net.inet.tcp on MAC
* Listed among sysctl -a | grep net.ipv4.tcp on Linux

* |If socket buffer is too small, sender can’t keep too many packets
in flight =» lower throughput

* If socket buffer is too large, too much memory consumed per
socket

* How big should the receiver socket buffer be?

Sizing the receiver’s socket buffer

» Case 1: Suppose the receiving app is reading data too slowly:

* no amount of receiver buffer can prevent low sender throughput if the
connection is long-lived!

Sizing the receiver’s socket buffer

» Case 2: Suppose the receiving app reads sufficiently fast on
average to match the sender’s writing speed.

« Assume the sender has a window of size W.
* The receiver must use a buffer of size at least W. Why?

« Captures two cases:

* (1) When the first sequence #s in the window are dropped

« Selective repeat. data in window buffered until the ACKs of delivered data
(within window) reach sender. Adv. win reduces sender’s window

* (2) When the sender sends a burst of data of size W
* Receiver may not match the instantaneous rate of the sender

Summary of flow control

« Keep memory buffers available at the receiver whenever the
sender transmits data

 Buffers needed to hold for selective repeat and reassemble
data in order

* Inform the sender on an on-going basis (each ACK)
* Function: match sender speed to receiver speed

 Correct socket buffer sizing is important for TCP throughput

Info on (tuning) TCP stack parameters

* https://www.ibm.com/support/knowledgecenter/linuxonibm/liaag/
wkvm/wkvm_c tune_tcpip.htm

* https://cloud.google.com/solutions/tcp-optimization-for-network-
performance-in-gcp-and-hybrid

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaag/wkvm/wkvm_c_tune_tcpip.htm
https://cloud.google.com/solutions/tcp-optimization-for-network-performance-in-gcp-and-hybrid

