
CS 352
Reliability; Ordered Delivery

Lecture 13
http://www.cs.rutgers.edu/~sn624/352-F22

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-F22

Quick recap of concepts

Tp layer

TCP: Connection-oriented

Stop and Wait

RTT

RTO

SEQ 0

SEQ 1

Retransmit

ACK

Pipelined Reliability
SEQ 0

RTT

Q2. Which packets were
successfully delivered?

Q3. Which packets should
the sender retransmit?

Q1. Which packets are
currently in flight?

SEQ 1SEQ 2SEQ 3

1 2 3 4 5 6 7 00

Latest
ACK’ed

Latest transmitted
(or) acceptable

ACK pkts after a drop?

??
No

What ACK no?
Yes

Sliding windows

ACK 1

ACK 2

ACK 3

ACK 4

Which packets to retransmit?

How to identify dropped packets?
• Suppose 4 packets sent, but 1 dropped. How

does sender know which one(s) dropped?

• Recall: Receiver writes sequence numbers on
the ACK indicating successful reception
• Key idea: Sender can infer which data was

received successfully using the ACK #s!
• Hence, sender can know which data to retransmit

• Q1: Should receivers ACK subsequent
packets upon detecting data loss?
• Q2: If so, what sequence number should

receiver put on the ACK?

Sender Receiver

RTT

RTO

Should this
ACK exist
???

SEQ 1
SEQ 2

SEQ 3
SEQ 4

ACK 2

ACK 3

ACK ??

Receiver strategies upon packet loss
Sender Receiver

1
2

3
4

5

ACK pkts after a drop?

Go-back-N Selective Repeat
What # on ACK?

Last seq# in order
Cumulative ACK

Seq# ranges
received so far
Selective ACK

No Yes

TCP’s default

Sliding Window with Go Back N
• When the receiver notices missing data:

• It simply discards all data with greater sequence numbers
• i.e.: the receiver will send no further ACKs

• The sender will eventually time out (RTO) and retransmit all the
data in its sending window

• Subtle: conceptually, separate timer per byte to infer RTO

Go back N

Discarded by
receiver

Dropped packet
(or) Packet with

error

RTO

AC
K

1

Time

Sender

Receiver

Maximum
window size = 8

Maximum
window size = 8

0

0 1

1
AC

K
2

2

E

3

D

4

D

2 3

2

AC
K

3

4 5 6

3 4 5

AC
K

4

AC
K

5

AC
K

6

6

AC
K

7

Go back N
• Go Back N can recover from erroneous or missing packets.

• But it is wasteful.

• If there are errors, the sender will spend time and network
bandwidth retransmitting data the receiver has already seen.

Selective repeat with cumulative ACK
Idea: sender should only retransmit dropped/corrupted data.
• The receiver stores all the correct frames that arrive following

the bad one. (Note that the receiver requires memory to hold
data for each sequence number in the receiver window.)
• When the receiver notices a skipped sequence number, it keeps

acknowledging the first in-order sequence number it wants to
receive. This is termed cumulative ACK.
• When the sender times out waiting for an acknowledgement, it

just retransmits the first unacknowledged data, not all its
successors.
• Recall that RTO applies independently to each sequence #

Selective repeat with cumulative ACK

Buffered by
receiver in
its memory

Packet with
error (or)

dropped packet

RTO

AC
K

1

Time

Sender

Receiver

Maximum
window size = 8

Maximum
window size = 8

0

0 1

1
AC

K
2

2

E

3 4 2 5

2

AC
K

5

6

5

AC
K

6

6

AC
K

7

3 4

AC
K

2

AC
K

2

Subtle: Even if there were multiple drops, retransmission after an RTO only includes
the first dropped sequence number. Recovering each drop will require one RTO after
corresponding packet was transmitted.

Selective repeat with selective ACK

Buffered by
receiver in
its memory

Packet with
error

RTO

AC
K

1

Time

Sender

Receiver

Maximum
window size = 8

Maximum
window size = 8

0

0 1

1
AC

K
2

2

E

3 4 2 5

2

AC
K

5

6

5

AC
K

6

6

AC
K

7

3 4

AC
K

2
SA

CK
 0

--1
, 3

AC
K

2
SA

CK
 0

,--
1,

 3
--4

This slide assumes retransmissions are only triggered by an RTO.
If other signals were to be used to retransmit earlier (e.g., triple dup ACK -- more on this soon),
SACK significantly reduces the number of duplicate transmissions compared to cumulative-only ACKs.

TCP: Cumulative & Selective ACKs
• Sender retransmits the seq #s it thinks aren’t

received successfully yet
• Pros & cons: selective vs. cumulative ACKs
• Precision of info available to sender
• Redundancy of retransmissions
• Packet header space
• Complexity (and bugs) in transport software

• On modern Linux, TCP uses selective ACKs
by default

Sender Receiver
1

2
3

4
2

3
4

5
5

TCP reliability metadata

Metadata on TCP packets for Reliability
• TCP uses metadata in the form of sequence #s and ACK #s

• Where are these stored? Naturally, in the packet header!

TCP header structure
Source port, destination

port (connection
demultiplexing)

Size of the TCP header
(in 32-bit words)

Basic error detection
through checksums

(similar to UDP)

TCP header structure
Identifies data in the

packet from sender’s
perspective

TCP uses byte seq #s

Identifies the data being
ACKed from the

receiver’s perspective.
TCP uses next seq # that
the receiver is expecting.

Observing a TCP exchange
• sudo tcpdump -i eno1 tcp portrange 56000-56010

• curl --local-port 56000-56010
https://www.google.com > output.html

• Bonus: Try crafting TCP packets with scapy!

Buffering and
Ordering in TCP

18

Memory Buffers at the
Transport Layer

Sockets need receive-side memory buffers
• Since TCP uses selective repeat, the receiver must buffer data that

is received after loss:
• e.g., hold packets so that only the “holes” (due to loss) need to be filled in

later, without having to retransmit packets that were received successfully

• Apps read from the receive-side socket buffer when you do a
recv() call.

• Even if data is always reliably received, applications may not always
read the data immediately
• What if you invoked recv() in your program infrequently (or never)?
• For the same reason, UDP sockets also have receive-side buffers

Receiver app’s interaction with TCP
• Upon reception of data, the receiver’s

TCP stack deposits the data in the
receive-side socket buffer

• An app with a TCP socket reads from
the TCP receive socket buffer
• e.g., when you do data = sock.recv()

application
process

TCP socket
receiver buffers

TCP
code

receiver TCP interaction

from sender

recv()

Sockets need send-side memory buffers
• The possibility of packet retransmission in

the future means that data can’t be
immediately discarded from the sender once
transmitted.

• App has issued send() and moved on;
TCP stack must buffer this data

• Transport layer must wait for ACK of a piece
of data before reclaiming (freeing) the
memory for that data.

application
process

TCP socket
sender buffers

TCP
code

sender TCP interaction

to receiver

send()

Ordered Delivery

Reordering packets at the receiver side
• Let’s suppose receiver gets packets 1, 2, and

4, but not 3 (dropped)

• Suppose you’re trying to download a
document containing a report

• What would happen if transport at the
receiver directly presents packets 1, 2, and 4
to the application (i.e., receiving 1,2,4
through the recv() call)?

Sender Receiver
1

2
3

4
1

2

4
5

Reordering packets at the receiver side
• Reordering can happen for a few reasons:
• Drops
• Packets taking different paths through a network

• Receiver needs a general strategy to ensure
that data is presented to the application in the
same order that the sender pushed it
• To implement ordered delivery, the receiver uses
• Sequence numbers
• Receiver socket buffer

• We’ve already seen the use of these for
reliability; but they can be used to order too!

Sender Receiver
1

2
3
4

1
2

3
55

Receive-side app and TCP
• TCP receiver software only releases

the data from the receive-side socket
buffer to the application if:

• the data is in order relative to all
other data already read by the
application

• This process is called TCP reassembly

application
process

TCP socket
receiver buffers

TCP
code

receiver protocol stack

from sender

recv()

TCP Reassembly

1 2

1 2 4

1 2 43

Application
can recv()
up to here

Sender/Net
writes here

Socket buffer memory on the receiver

Implications of ordered delivery
• Packets cannot be delivered to the application if there is an in-

order packet missing from the receiver’s buffer
• The receiver can only buffer so much out-of-order data
• Subsequent out-of-order packets dropped
• It won’t matter that those packets successfully arrive at the receiver

from the sender over the network

• TCP application-level throughput will suffer if there is too much
packet reordering in the network
• Data may have reached the receiver, but won’t be delivered to apps

upon a recv() (...or may not even be buffered!)

