
CS 352
Reliability: Pipelined Delivery

Lecture 12
http://www.cs.rutgers.edu/~sn624/352-F22

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-F22

Quick recap of concepts

Tp layer

Error detection

UDP
Connectionless

TCP
Connection-oriented

Sender

f(.)

Receiver

f(.)
Checksum Checksum

Compare*

Detecting errors is insufficient.
Need to correct errors.

Also, data may simply be lost.
(checksum is also lost)

Need better mechanisms for
reliable data delivery!

TCP uses 3 simple ideas
Note: actual impl more nuanced

Review:
• Sender sends a single packet, then

waits for an ACK to know the packet
was successfully received. Then the
sender transmits the next packet.

• If ACK is not received until a timeout
(RTO), sender retransmits the packet

• How to set the RTO?
• Bad RTO: retransmit too early or too

late

Sender Receiver

RTT

RTO

Retransmit

ACK delayed
ACK dropped
Pkt dropped
Pkt corrupted

How should the RTO be set?
• A good RTO must predict the round-trip time

(RTT) between the sender and receiver
• RTT: the time to send a single packet and receive

a (corresponding) single ACK at the sender

• Intuition: If an ACK hasn’t returned, and our
(best estimate of) RTT has elapsed, the
packet was likely dropped.

• RTT can be measured directly at the sender.
No receiver or router help needed.

Sender Receiver

ACK

RTO

Coping with packet duplication
Sender Receiver

ACK

RTO

• If ACKs delayed beyond the RTO,
sender may retransmit the same data
• Receiver wouldn’t know that it just

received duplicate data from this
retransmitted packet

• Add some identification to each
packet to help distinguish between
adjacent transmissions
• This is known as the sequence number

Duplicate
packet
received!
(Receiver
doesn’t
know…)

Coping with packet loss: (3) Sequence #s
Sender Receiver

ACK

RTO

• A bad scenario: Suppose an ACK was
delayed beyond the RTO; sender
ended up retransmitting the packet.

• At the receiver: sequence number
helps disambiguate a fresh
transmission from a retransmission
• Sequence number same as earlier:

retransmission
• Fresh sequence number: fresh data

0

0

Coping with packet loss: (3) Sequence #s
Sender Receiver

RTO

• A good scenario: packet successfully
received and ACK returned within
RTO

• Sequence numbers of successively
transmitted packets are different

Receiver
knows
these are
not
duplicate,
because
sequence
numbers
are
different

SEQ 0

SEQ 1

ACK

RTO

Coping with packet loss: (3) Sequence #s
Sender Receiver

RTO

• A good scenario: packet successfully
received and ACK returned within
RTO

• Sequence numbers of successively
transmitted packets are different RTO

Receiver
knows
these are
not
duplicate,
because
sequence
numbers
are
different

ACKACK

ACK

SEQ 0

SEQ 1

Q: What is the seq# of third packet?
Sender Receiver

ACK

RTO

• Goal: Avoid ambiguity on which
packet was received/ACK’ed from
both the sender and receiver’s
perspective
• One option: increment seq#: 2, 3, …
• Alternative: since seq # 0 was

successfully ACK’ed earlier, it is OK to
reuse seq #0 for next transmission.
• Seq #s reusable if older packets with

those seq #s known to be delivered

SEQ 0

SEQ 1

ACK

???

RTO

Stop-and-Wait Reliability
• Sender sends a single packet, then

waits for an ACK to know the packet
was successfully received. Then the
sender transmits the next packet.

• If ACK is not received until a timeout
(RTO), sender retransmits the packet

• Disambiguate duplicate vs. fresh
packets using sequence numbers
that change on “adjacent” packets

Sender Receiver

RTT

RTO

SEQ 0

ACK

SEQ 1

Retransmit

In principle, these three ideas are sufficient
to implement reliable data delivery!

Making reliable data transfer
efficient

Efficiency problem with stop-and-wait
• Sender sends one packet, waits for an ACK

(or RTO) before transmitting next one
• Unfortunately, too slow L

• Suppose RTO = RTT = 100 milliseconds
• Packet size (bytes in 1 packet) = 12,000 bits
• Bandwidth of links from sender to receiver =

12 Mbit/s (1 M = 106)

• Rate of data transfer = data size / time

Sender Receiver

RTT

120 Kilobit/s == 1% of bw!

RTO

Sending one packet per RTT makes the data
transfer rate limited by the time between the
endpoints, rather than the bandwidth.

Ensure you got the (one)
box safely; make N trips
Ensure you get N boxes
safely; make just 1 trip! Keep many packets in flight

Pipelined reliability
• Data in flight: data that has been sent, but sender hasn’t yet

received ACKs from the receiver
• Note: can refer to packets in flight or bytes in flight

• New packets sent at the same time as older ones still in flight
• New packets sent at the same time as ACKs are returning
• More data moving in same time!
• Improves throughput
• Rate of data transfer

Pipelined reliability
• Stop and wait: send 1 packet per RTT

• Pipelined: send N packets per RTT

• If there are N packets in flight, throughput
improves by N times compared to stop-and-
wait!

Sender Receiver

RTT

RTO

Pipelining makes reliable data transfer efficient.

However, pipelining also makes it more complex.

Which packets were
successfully delivered?

Which packets should
the sender retransmit?

Which packets are
currently in flight?

Sliding Windows

Setup
• Assume packets are labeled by sequence

numbers
• Increasing from 0, …, N-1, then roll back to 0

• Assume ACKs indicate the sequence
numbers of data that was received
• Note: Didn’t need this for stop-and-wait

• Convention: ACK#s carry the next
sequence number expected
• Used in TCP.

Sender Receiver

SEQ 0

ACK 1

SEQ 1

SEQ N-1
SEQ 0

…ACK 2

Sliding window (sender side)
• Window: Sequence numbers of in-flight data
• Window size: The amount of in-flight data (unACKed)

Sender’s
point of

view:

Window size = 3

Last seq # known to
be received (ACK
recv’d at sender)

Last sequence
sent

0 1 2 3 4 5 6 7 10

Sequence numbers
restart from 0 beyond
a point (finite space
on header)

Transmissions later in time

0

4

26
7

5

1

3

Sliding window (sender side)
• Suppose sequence number 2 is acknowledged by the receiver
• Sender receives the ACK. Sender can transmit sequence # 5
• The window “slides” forward

0 1 2 3 4 5 6 7 10

Window size = 3

Last seq # known to
be received (ACK
recv’d at sender)

Last sequence
sent

Sender’s
point of

view:
0

4

26
7

5

1

3

Sliding window (sender side)
• Suppose sequence number 2 is acknowledged by the receiver
• Sender receives the ACK. Sender can transmit sequence # 5
• The window “slides” forward

0 1 2 3 4 5 6 7 10

Window size = 3

Last seq # known to
be received (ACK
recv’d at sender)

Last sequence
sent

Sender’s
point of

view:
0

4

26
7

5

1

3

Sliding window (receiver side)
• Window of in-flight packets can look different between sender

and the receiver
• Receiver only accepts sequence #s allowed by the current

receiver window

0 1 2 3 4 5 6 7 10

Window size = 3

Last seq # received
and ACK’ed by

receiver

Highest
sequence #

accepted

Receiver’s
point of

view:

Receiver will not
accept this seq #.
Packet dropped

Summary of sliding windows
• Sender and receiver can keep several packets of in-flight data
• Book-keep the sequence numbers using the window

• Windows slide forward as packets are ACKed (at receiver) and
ACKs are received (at sender)

• Common case: Improve throughput by sending and ACKing more
packets in the same duration

Pipelining makes reliable data transfer efficient.

However, pipelining also makes it more complex.

Which packets were
successfully delivered?

Which packets should
the sender retransmit?

Which packets are
currently in flight?

Which packets to retransmit?

How to identify dropped packets?
• Suppose 4 packets sent, but 1 dropped. How

does sender know which one(s) dropped?

• Recall: Receiver writes sequence numbers on
the ACK indicating successful reception
• Key idea: Sender can infer which data was

received successfully using the ACK #s!
• Hence, sender can know which data to retransmit

• Q1: Should receivers ACK subsequent
packets upon detecting data loss?
• Q2: If so, what sequence number should

receiver put on the ACK?

Sender Receiver

RTT

RTO

Should this
ACK exist
???

SEQ 1
SEQ 2

SEQ 3
SEQ 4

ACK 2

ACK 3

ACK ??

Receiver strategies upon packet loss
Sender Receiver

1
2

3
4

5

ACK pkts after a drop?

Go-back-N Selective Repeat
What # on ACK?

Last seq# in order
Cumulative ACK

Seq# ranges
received so far
Selective ACK

No Yes

TCP’s default

Sliding Window with Go Back N
• When the receiver notices missing data:

• It simply discards all data with greater sequence numbers
• i.e.: the receiver will send no further ACKs

• The sender will eventually time out (RTO) and retransmit all the
data in its sending window

• Subtle: conceptually, separate timer per byte to infer RTO

Go back N

Discarded by
receiver

Dropped packet
(or) Packet with

error

RTO

AC
K

1

Time

Sender

Receiver

Maximum
window size = 8

Maximum
window size = 8

0

0 1

1
AC

K
2

2

E

3

D

4

D

2 3

2

AC
K

3

4 5 6

3 4 5

AC
K

4

AC
K

5

AC
K

6

6

AC
K

7

Go back N
• Go Back N can recover from erroneous or missing packets.

• But it is wasteful.

• If there are errors, the sender will spend time and network
bandwidth retransmitting data the receiver has already seen.

Selective repeat with cumulative ACK
Idea: sender should only retransmit dropped/corrupted data.
• The receiver stores all the correct frames that arrive following

the bad one. (Note that the receiver requires memory to hold
data for each sequence number in the receiver window.)
• When the receiver notices a skipped sequence number, it keeps

acknowledging the first in-order sequence number it wants to
receive. This is termed cumulative ACK.
• When the sender times out waiting for an acknowledgement, it

just retransmits the first unacknowledged data, not all its
successors.
• Recall that RTO applies independently to each sequence #

Selective repeat with cumulative ACK

Buffered by
receiver in
its memory

Packet with
error (or)

dropped packet

RTO

AC
K

1

Time

Sender

Receiver

Maximum
window size = 8

Maximum
window size = 8

0

0 1

1
AC

K
2

2

E

3 4 2 5

2

AC
K

5

6

5

AC
K

6

6

AC
K

7

3 4

AC
K

2

AC
K

2

Selective repeat with selective ACK

Buffered by
receiver in
its memory

Frame with
error

RTO

AC
K

1

Time

Sender

Receiver

Maximum
window size = 8

Maximum
window size = 8

0

0 1

1
AC

K
2

2

E

3 4 2 5

2

AC
K

5

6

5

AC
K

6

6

AC
K

7

3 4

AC
K

2
SA

CK
 0

--1
, 3

AC
K

2
SA

CK
 0

,--
1,

 3
--4

TCP: Cumulative & Selective ACKs
• Sender retransmits the seq #s it thinks aren’t

received successfully yet
• Pros & cons: selective vs. cumulative ACKs
• Precision of info available to sender
• Redundancy of retransmissions
• Packet header space
• Complexity (and bugs) in transport software

• On modern Linux, TCP uses selective ACKs
by default

Sender Receiver
1

2
3

4
2

3
4

5
5

