CS 352
Error Detection & Reliability

Lecture 11
http://www.cs.rutgers.edu/~sn624/352-F22
Srinivas Narayana

RUTGERS

NNNNNNNNNNNNNNNNNNNNNN

http://www.cs.rutgers.edu/~sn624/352-F22

Quick recap of concepts

((\‘\(\Q

TCP established:
(src IP, src port, dst IP, dst port)

TCP listening:
(dst IP, dst port)

UDP:
(dst IP, dst port)

Src IP address _
Dst IP address Endpoint

UDP: Abstraction to
send & receive one-
L Packet at the off packets. That’s it.

network layer
UDP segment structure

Seeing UDP packets in action

* How to craft and send (UDP) packets?
* |[t's simpler than you think!

* sudo tcpdump -i lo -XAvvv udp # observe packets
* sudo scapy # tool used to send crafted packets

« Example:

* send(IP(dst="127.0.0.1")/UDP(sport=1024, dport=2048)/"hello
world”, iface="lo")

« See other fields of UDP using ubp().fields desc

« Scapy can send and receive crafted packets!
* However, it requires sudo (superuser privileges)

Error Detection in the
Transport Layer

Why error detection?

* Network provides best effort service

« UDP is a simple and low overhead transport
« Data may be lost
« Data may be corrupted along the way (e.g., 1 -> 0)
« Data may be reordered

* However, simple error detection is possible!
 Was the data | received the same data the remote machine sent?

 Error detection is a useful feature for all transport protocols
including TCP

Error Detection in UDP and TCP

« Key idea: have sender compute a function over the data
 Store the result in the packet
* Receiver can check the function’s value in received packet

* An analogy: you’re sending a package of goodies and want
your recipient to know if goodies were leaked along the way

* Your idea: weigh the package; stamp the weight on the package

» Have the recipient weigh the package and cross-check the weight with
the stamped value

Requirements on error detection function

* Function must be easy to compute

» Function value must change if the packet changes

* |f the packet was modified through “likely” changes, the function value
must change

» Function must be easy to verify

« UDP and TCP use a class of function called a checksum

* Very common idea: used in multiple parts of networks and computer
systems

UDP & TCP’s Checksum function

Sender:

* freat segment contents as
sequence of 16-bit integers

» checksum: addition (1’s
complement sum) of segment
contents

» sender puts checksum value
into UDP/TCP checksum field

Receiver:

« compute a checksum of the
received segment, including
the checksum in packet itself

* check if the resulting
(computed) checksum is O

« NO — an error is detected
* YES — assume no error

Computing 1’s complement sum

* Very similar to regular (unsigned) binary addition.

* However, when adding numbers, a carryout from the most
significant bit needs to be added to the result

N

« Example: add two 16-bit integers

1110011001

10 0
110101010101 1

011
010

wraparound @101110111011101}1

Sum

101110111011 1100
checksum 0100010001000011

From the UDP specification (RFC 768)

* Checksum is the 16-bit one's complement of the one's

complement sum of a pseudo
header, the UDP header, and t
at the end (if necessary) to ma

neader of information from the IP
ne data, padded with zero octets

Ke a multiple of two octets.

* The pseudo header conceptually prefixed to the UDP header
contains the source address, the destination address, the

protocol, and the UDP length.

Warning: Technical
language ahead

LA

Some observations on checksums

» Checksums don’t detect all bit errors
« Consider (x, y) vs. (x— 1,y + 1) as adjacent 16-bit values in packet

« Analogy: you can’t assume the package hasn’t been meddled with if its
weight matches the one on the stamp. More smarts needed for that. ©

 But it’s a lightweight method that works well in many cases

« Checksums are part of the packet; they can get corrupted too

* The receiver will just declare an error if it finds an error

« However, checksums don’t enable the receiver to detect where the error lies
or correct the error(s)

 Checksum is an error detection mechanism; not a correction mechanism.

Some observations on checksums

« Checksums are insufficient for reliable data delivery
* |If a packet is lost, so is its checksum

« UDP and TCP use the same checksum function
« TCP also uses the lightweight error detection capability

« However, TCP has more mature mechanisms for reliable data delivery
(up next!)

Playing with checksums

Let’s craft some UDP packets (again)!

sudo tcpdump -i lo udp —XAvvv # observe packets
sudo scapy # tool used to send crafted packets

send (IP(dst="127.0.0.1")/UDP(sport=1024,
dport=2048)/"hello world”, iface="1lo")

* Now can you craft two UDP packets with an identical

checksum?

Summary of UDP

A simple transport: Send or receive a single packet from/to the
correct application process. That’s it
« Just a thin shim around network layer’s best-effort delivery
* No connection building, no latency
« Suitable for one-off request/response messages
 Suitable for loss-tolerant but delay-sensitive applications

 No reliability, performance, or ordering guarantees

« Can do basic error detection (bit flips) using checksums
 Error detection is necessary to deliver data reliably, but it is insufficient

Reliable data delivery

Packet loss

Sender Receiver _
* How might a sender and

receiver ensure that data is
delivered reliably (despite
some packets being lost)?

« TCP uses three mechanisms

Coping with packet loss: (1) ACK

- Key idea: Receiver returns an Sender Recelver
acknowledgment (ACK) per packet
sent &
packet
ACK
* |If sender receives an ACK, it knows
that the receiver got the packet.

ACK

Coping with packet corruption: (1) ACK

 ACKs also work to detect packet Sender Recelver
corruption on the way to the receiver

* One possibility: A receiver could send a .
negative acknowledgment, or a NAK,; if it packet
receives a corrupted packet NAK

* Q: How to detect corrupted packet?
* One method: Checksum! &
. . packet

TCP only uses positive ACKSs. ACK

Coping with packet loss: (2) RTO

 What if a packet is dropped? Sender Receiver

« Key idea: Wait for a duration of time
(called retransmission timeout or
RTO) before re-sending the packet

* In TCP, the onus is on the sender to
retransmit lost data when ACKSs are

not received

* Note that retransmission works also if
ACKs are lost or delayed

How should the RTO be set?

» A good RTO must predict the round-trip time ~ Sender Receiver

(RTT) between the sender and receiver ———
» RTT: the time to send a single packet and receive \g»

a (corresponding) single ACK at the sender

* Intuition: If an ACK hasn’t returned, and our
(best estimate of) RTT has elapsed, the
packet was likely dropped.

 RTT can be measured directly at the sender.
No receiver involvement needed.

Coping with packet duplication

+ If ACKs delayed beyond the RTO, Sender Recelver
sender may retransmit the same data

* Receiver wouldn’t know that it just
received duplicate data from this
retransmitted packet

P S
OoLd |/

Duplicate
packet
eceived!
(Receiver
doesn’t
Know...)

« Add some identification to each
packet to help distinguish between
adjacent transmissions ACK

* This is known as the sequence number)

Coping with packet loss: (3) Sequence #s

» A bad scenario: Suppose an ACK was Sender Recelver

delayed beyond the RTO; sender ; 0
ended up retransmitting the packet. m\g»
: 3
At the receiver: sequence number v
helps disambiguate a fresh 2
transmission from a retransmission
« Sequence number same as earlier:

retransmission
* Fresh sequence number: fresh data

Coping with packet loss: (3) Sequence #s

» A good scenario: packet successfully ~Sender . Recelver
received and ACK returned within : Qo Receiver
RTO T knows

: O AC these are

. : v not

Sequence numbers of successively duplicate,

d

transmitted packets are different ‘\%» hecaUse
: I sequence

: numbers
v are
different

O

Coping with packet loss: (3) Sequence #s

- A good scenario: packet successfully Sender SEQ 0 Recelver

received and ACK returned within ‘\g» Receiver
RTO s knows

45'/%0/ these are
. not

[- v
Sequence numbers of successively duplicate,

transmitted packets are different ‘\%» hecaUse
: sequence

* Further, the receiver informs the W numbers
are

sender which packet was ACK’ed A .
using an ACK sequence number lfreren

Q: What is the seg# of third packet?

» Goal: Avoid ambiguity on which Sender Receiver
packet was received/ACK’ed from SEQO
both the sender and receiver’s ‘\g»
perspective : X
: O AC

* One p033|b|I|ty keep incrementing the j

seq #:2,3, . \%»

* Alternative: since seq # 0 was :/ACKJ/

successfully ACK’ed earlier, itis OKto |v_ =3
reuse seq #0 for next transmission. - 777

» Seq #s reused if enough time elapsed &

O.LE:I

Summary: Stop-and-Wait Reliability

» Sender sends a single packet, then Sender Receiver
waits for an ACK to know the packet
was successfully received. Then the
sender transmits the next packet.

SEQO

Y
- ACK O

1

* [f ACK is not received until a timeout
(RTO), sender retransmits the packet

\ SEQ 1
» Disambiguate duplicate vs. fresh

packets using sequence numbers
that change on “adjacent” packets

Retransmit

