
CS 352
Error Detection & Reliability

Lecture 11
http://www.cs.rutgers.edu/~sn624/352-F22

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-F22

Quick recap of concepts

Tp layer Interface1

Port1
Port2
Port3

TCP established:
(src IP, src port, dst IP, dst port)

TCP listening:
(dst IP, dst port)

UDP:
(dst IP, dst port)

Endpoint

Interface2

socket

Incoming

packet

UDP: Abstraction to
send & receive one-
off packets. That’s it.

dst port #

…
Src IP address
Dst IP address
…

src port #

length chksum Packet at the
network layer

UDP segment structure

App

Seeing UDP packets in action
• How to craft and send (UDP) packets?
• It’s simpler than you think!

• sudo tcpdump -i lo -XAvvv udp # observe packets
• sudo scapy # tool used to send crafted packets

• Example:
• send(IP(dst="127.0.0.1")/UDP(sport=1024, dport=2048)/"hello
world”, iface="lo")

• See other fields of UDP using UDP().fields_desc
• Scapy can send and receive crafted packets!

• However, it requires sudo (superuser privileges)

Error Detection in the
Transport Layer

Why error detection?
• Network provides best effort service
• UDP is a simple and low overhead transport
• Data may be lost
• Data may be corrupted along the way (e.g., 1 -> 0)
• Data may be reordered

• However, simple error detection is possible!
• Was the data I received the same data the remote machine sent?

• Error detection is a useful feature for all transport protocols
including TCP

Error Detection in UDP and TCP
• Key idea: have sender compute a function over the data
• Store the result in the packet
• Receiver can check the function’s value in received packet

• An analogy: you’re sending a package of goodies and want
your recipient to know if goodies were leaked along the way

• Your idea: weigh the package; stamp the weight on the package
• Have the recipient weigh the package and cross-check the weight with

the stamped value

Requirements on error detection function
• Function must be easy to compute
• Function value must change if the packet changes
• If the packet was modified through “likely” changes, the function value

must change
• Function must be easy to verify

• UDP and TCP use a class of function called a checksum
• Very common idea: used in multiple parts of networks and computer

systems

Sender:
• treat segment contents as

sequence of 16-bit integers
• checksum: addition (1’s

complement sum) of segment
contents
• sender puts checksum value

into UDP/TCP checksum field

Receiver:
• compute a checksum of the

received segment, including
the checksum in packet itself
• check if the resulting

(computed) checksum is 0
• NO – an error is detected
• YES – assume no error

UDP & TCP’s Checksum function

• Very similar to regular (unsigned) binary addition.
• However, when adding numbers, a carryout from the most

significant bit needs to be added to the result
• Example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum

9

Computing 1’s complement sum

From the UDP specification (RFC 768)
• Checksum is the 16-bit one's complement of the one's

complement sum of a pseudo header of information from the IP
header, the UDP header, and the data, padded with zero octets
at the end (if necessary) to make a multiple of two octets.

• The pseudo header conceptually prefixed to the UDP header
contains the source address, the destination address, the
protocol, and the UDP length.

Warning: Technical
language ahead

Some observations on checksums
• Checksums don’t detect all bit errors
• Consider (x, y) vs. (x – 1, y + 1) as adjacent 16-bit values in packet
• Analogy: you can’t assume the package hasn’t been meddled with if its

weight matches the one on the stamp. More smarts needed for that. J
• But it’s a lightweight method that works well in many cases

• Checksums are part of the packet; they can get corrupted too
• The receiver will just declare an error if it finds an error
• However, checksums don’t enable the receiver to detect where the error lies

or correct the error(s)
• Checksum is an error detection mechanism; not a correction mechanism.

Some observations on checksums
• Checksums are insufficient for reliable data delivery
• If a packet is lost, so is its checksum

• UDP and TCP use the same checksum function
• TCP also uses the lightweight error detection capability
• However, TCP has more mature mechanisms for reliable data delivery

(up next!)

Playing with checksums
• Let’s craft some UDP packets (again)!

• sudo tcpdump -i lo udp –XAvvv # observe packets

• sudo scapy # tool used to send crafted packets
• send(IP(dst="127.0.0.1")/UDP(sport=1024,
dport=2048)/"hello world”, iface="lo")

• Now can you craft two UDP packets with an identical
checksum?

Summary of UDP
• A simple transport: Send or receive a single packet from/to the

correct application process. That’s it
• Just a thin shim around network layer’s best-effort delivery
• No connection building, no latency
• Suitable for one-off request/response messages
• Suitable for loss-tolerant but delay-sensitive applications

• No reliability, performance, or ordering guarantees
• Can do basic error detection (bit flips) using checksums
• Error detection is necessary to deliver data reliably, but it is insufficient

Reliable data delivery

Packet loss
Sender Receiver

• How might a sender and
receiver ensure that data is
delivered reliably (despite
some packets being lost)?

• TCP uses three mechanisms

Coping with packet loss: (1) ACK
• Key idea: Receiver returns an

acknowledgment (ACK) per packet
sent

• If sender receives an ACK, it knows
that the receiver got the packet.

Sender Receiver

ACK
packet

ACK
packet

Coping with packet corruption: (1) ACK
• ACKs also work to detect packet

corruption on the way to the receiver
• One possibility: A receiver could send a

negative acknowledgment, or a NAK, if it
receives a corrupted packet
• Q: How to detect corrupted packet?

• One method: Checksum!

• TCP only uses positive ACKs.

Sender Receiver

NAK
packet

ACK
packet

Coping with packet loss: (2) RTO
• What if a packet is dropped?
• Key idea: Wait for a duration of time

(called retransmission timeout or
RTO) before re-sending the packet

• In TCP, the onus is on the sender to
retransmit lost data when ACKs are
not received

• Note that retransmission works also if
ACKs are lost or delayed

Sender Receiver

ACK

RTO

Retransmission

How should the RTO be set?
• A good RTO must predict the round-trip time

(RTT) between the sender and receiver
• RTT: the time to send a single packet and receive

a (corresponding) single ACK at the sender

• Intuition: If an ACK hasn’t returned, and our
(best estimate of) RTT has elapsed, the
packet was likely dropped.

• RTT can be measured directly at the sender.
No receiver involvement needed.

Sender Receiver

ACK

RTO

Coping with packet duplication
Sender Receiver

ACK

RTO

• If ACKs delayed beyond the RTO,
sender may retransmit the same data
• Receiver wouldn’t know that it just

received duplicate data from this
retransmitted packet

• Add some identification to each
packet to help distinguish between
adjacent transmissions
• This is known as the sequence number

Duplicate
packet
received!
(Receiver
doesn’t
know…)

Coping with packet loss: (3) Sequence #s
Sender Receiver

ACK

RTO

• A bad scenario: Suppose an ACK was
delayed beyond the RTO; sender
ended up retransmitting the packet.

• At the receiver: sequence number
helps disambiguate a fresh
transmission from a retransmission
• Sequence number same as earlier:

retransmission
• Fresh sequence number: fresh data

0

0

Coping with packet loss: (3) Sequence #s
Sender Receiver

RTO

• A good scenario: packet successfully
received and ACK returned within
RTO

• Sequence numbers of successively
transmitted packets are different

Receiver
knows
these are
not
duplicate,
because
sequence
numbers
are
different

SEQ 0

SEQ 1

ACK

RTO

Coping with packet loss: (3) Sequence #s
Sender Receiver

RTO

• A good scenario: packet successfully
received and ACK returned within
RTO

• Sequence numbers of successively
transmitted packets are different

• Further, the receiver informs the
sender which packet was ACK’ed
using an ACK sequence number

RTO

Receiver
knows
these are
not
duplicate,
because
sequence
numbers
are
different

ACKACK 0

ACK 1

SEQ 0

SEQ 1

Q: What is the seq# of third packet?
Sender Receiver

ACK 1

RTO

• Goal: Avoid ambiguity on which
packet was received/ACK’ed from
both the sender and receiver’s
perspective

• One possibility: keep incrementing the
seq #: 2, 3, …

• Alternative: since seq # 0 was
successfully ACK’ed earlier, it is OK to
reuse seq #0 for next transmission.
• Seq #s reused if enough time elapsed

SEQ 0

SEQ 1

ACK 0

???

RTO

Summary: Stop-and-Wait Reliability
• Sender sends a single packet, then

waits for an ACK to know the packet
was successfully received. Then the
sender transmits the next packet.

• If ACK is not received until a timeout
(RTO), sender retransmits the packet

• Disambiguate duplicate vs. fresh
packets using sequence numbers
that change on “adjacent” packets

Sender Receiver

RTT

RTO

SEQ 0

ACK 0

SEQ 1

Retransmit

