
CS 352
Demultiplexing; UDP

Lecture 10
http://www.cs.rutgers.edu/~sn624/352-F22

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-F22

Recap of Concepts Tp layer

Process
Process

Endpoint

Process
Process

Endpoint
Transport

layer
Network

layer
TCP

UDP

Alice Bob

Multiplex
Gather messages
from processes to
send into the
network.

& Demultiplex
Distribute

messages from
the network to
the processes.

Simple wrapper
around packet
delivery

Delivery guarantees:
reliability, ordering,
efficient & fair
bandwidth use

Demultiplexing Packets

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…

…

…
…

…

Port 65535

socket() Ports

Denotes an
attachment point
with the network.

Link layer

Network

Transport

Applications

Each IP address
comes with a full
copy of its own
ports.

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…

…

…
…

…

Port 65535

socket() Ports

Network

Transport
Denotes an
attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…

…

…
…

…

Port 65535

socket() Ports

Src IP, Dst IP,
Tp Protocol

Src port, Dst port
Denotes an
attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…

…

…
…

…

Port 65535

socket() Ports

Src IP, Dst IP,
Tp Protocol

Src port, Dst port

Connection lookup: The
operating system does
a lookup using these
data to determine the
right socket and app.

Denotes an
attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…

…

…
…

…

Port 65535

socket() Ports

Connection lookup: The
operating system does
a lookup using these
data to determine the
right socket and app.

TCP sockets:
(src IP, dst IP, src port, dst
port)
è
Socket ID

Denotes an
attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…

…

…
Port 44262

…

Port 65535

socket() Ports

Connection lookup: The
operating system does
a lookup using these
data to determine the
right socket and app.

TCP sockets:
(src IP, dst IP, src port, dst
port)
è
Socket ID

Denotes an
attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

(Our familiar
4-tuple)

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…

…

…
…

…

Port 65535

socket() Ports

Connection lookup: The
operating system does
a lookup using these
data to determine the
right socket and app.

TCP sockets:
(src IP, dst IP, src port, dst
port)
è
Socket ID

UDP sockets:
(dst IP, dst port)
è
Socket ID

Denotes an
attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

Connectionless:
the socket is
shared across
all sources!

(Our familiar
4-tuple)

Demultiplexing

Machine 1

Machine

Machine 1

Machine 1

IP addr 1

IP addr 2

Port 1
Port 2

…

…

…
…

…

Port 65535

socket() Ports

Connection lookup: The
operating system does
a lookup using these
data to determine the
right socket and app.

TCP sockets** Some caveats!

(src IP, dst IP, src port, dst
port)
è
Socket ID

UDP sockets:
(dst IP, dst port)
è
Socket ID

Denotes an
attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

Connectionless:
the socket is
shared across
all sources!

(Our familiar
4-tuple)

TCP sockets of different types
Listening (bound but
unconnected)

On server side

ss = socket(AF_INET, SOCK_STREAM)
ss.bind(serv_ip, serv_port)

ss.listen() # no accept() yet

Connected (Established)

On server side

csockid, addr = ss.accept()

On client side

cs.connect(serv_ip, serv_port)

(src IP, dst IP, src port, dst port)
è

Socket (csockid NOT ss)

TCP sockets of different types
Listening (bound but
unconnected)

On server side

ss = socket(AF_INET, SOCK_STREAM)
ss.bind(serv_ip, serv_port)

ss.listen() # no accept() yet

Connected (Established)

On server side

csockid, addr = ss.accept()

On client side

cs.connect(serv_ip, serv_port)

(src IP, dst IP, src port, dst port)
è

Socket (csockid NOT ss)

(dst IP, dst port)
è

Socket (ss)

accept()
creates a new
socket with the
4-tuple
(established)
mapping

Enables new connections to be
demultiplexed correctly Enables existing connections to be demultiplexed correctly

TCP demultiplexing
• When a TCP packet comes in, the operating system:

• Looks up table of existing connections using 4-tuple
• If success, send to corresponding (established) socket

• If fail (no table entry), look up table of listening connections using
just (dst IP, dst port)

• If success, send to corresponding (listening) socket

• If fail again (no table entry), send error to client
• Connection refused

UDP demultiplexing
• When a UDP packet comes in, the operating system:

• Looks up table of listening UDP sockets using (dst IP, dst port)
• If success, send packet to corresponding socket
• There are no established UDP sockets; they’re all “unconnected”

• If fail (no table entry), send error to client
• Port unreachable

Listing sockets and connections
• ss

• iperf –s and iperf –s -u

Why does it matter?
• Connection lookup and multiplexing determines which process

the message goes to
• If you restart server, port to socket mapping changes

• Help understand when lookup tables can be full or lookup can
be slow (e.g., attacks, CDN servers, etc.)

User Datagram Protocol

• Best effort service
• UDP segments may be lost,

corrupted, reordered
• UDP is connectionless

• Each UDP segment handled
independently of others (i.e. no
“memory” across packets)

• Suitable for one-off req/resp
• E.g., DNS uses UDP

• Loss-tolerant delay-sensitive
apps. (e.g., VoIP & conf video)

Why are UDP’s guarantees even okay?
Simple & low overhead compared to
TCP:
• No delays due to “connection

establishment” (which TCP does)
• UDP can send a packet immediately

• Small segment header (TCP’s is
larger)
• UDP can blast data without control

• TCP is more balanced and measured
• Less memory for connection “state”

at sender & receiver relative to TCP

UDP: User Datagram Protocol [RFC 768]

UDP segment structure Length of
segment

(UDP header + data)

application
data

(message)

source port # dest port #

length checksum

16 bits 16 bits

Link layer

Network

Transport

Applications Error
detection

info
(more to
come)

UDP segment structure

application
data

(message)

source port # dest port #

length checksum

Link layer

Network

Transport

Applications

…
Source IP address
Destination IP address
…

Review: UDP demultiplexing

application
data

(message)

source port # dest port #

length checksum

…
Source IP address
Destination IP address
…

Machine 1

Machine 1

Machine 1

IP 1

IP 2

Port 1
Port 2

…

…

…
Port 44262

…

Port 65535

socket() Ports

Seeing UDP packets in action
• How to craft and send (UDP) packets?

• It’s simpler than you think!

• sudo tcpdump -i lo udp –XAvvv # observe packets
• sudo scapy # tool used to send crafted packets

• Example: send(IP(dst="127.0.0.1")/UDP(sport=1024,
dport=2048)/"hello world”, iface="lo")

• See other fields of UDP using UDP().fields_desc
• Scapy can send and receive crafted packets!

• However, it requires sudo (superuser privileges)

Error Detection

Why error detection?
• Network provides best effort service
• UDP is a simple and low overhead transport

• Data may be lost
• Data may be corrupted along the way (e.g., 1 -> 0)
• Data may be reordered

• However, simple error detection is possible!
• Was the data I received the same data the remote machine sent?

• Error detection is a useful feature for all transport protocols
including TCP

Error Detection in UDP and TCP
• Key idea: have sender compute a function over the data

• Store the result in the packet
• Receiver can check the function’s value in received packet

• An analogy: you’re sending a package of goodies and want
your recipient to know if goodies were leaked along the way

• Your idea: weigh the package; stamp the weight on the package
• Have the recipient weigh the package and cross-check the weight with

the stamped value

Requirements on error detection function
• Function must be easy to compute
• Function must capture the likely changes to the packet

• If the packet was corrupted through these likely changes, the function
value must change

• Function must be easy to verify

• UDP and TCP use a class of function called a checksum
• Very common idea: used in multiple parts of networks and computer

systems

Sender:
• treat segment contents as

sequence of 16-bit integers
• checksum: addition (1’s

complement sum) of segment
contents
• sender puts checksum value

into UDP checksum field

Receiver:
• compute a checksum of the

received segment, including
the checksum in packet itself
• check if the resulting

(computed) checksum is 0
• NO – an error is detected
• YES – assume no error

UDP & TCP’s Checksum function

• Very similar to regular (unsigned) binary addition.
• However, when adding numbers, a carryout from the most

significant bit needs to be added to the result
• Example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum

30

Computing 1’s complement sum

From the UDP specification (RFC 768)
• Checksum is the 16-bit one's complement of the one's

complement sum of a pseudo header of information from the IP
header, the UDP header, and the data, padded with zero octets
at the end (if necessary) to make a multiple of two octets.

• The pseudo header conceptually prefixed to the UDP header
contains the source address, the destination address, the
protocol, and the UDP length.

Some observations on checksums
• Checksums don’t detect all bit errors

• Consider (x, y) vs. (x – 1, y + 1) as adjacent 16-bit values in packet
• Analogy: you can’t assume the package hasn’t been meddled with if its

weight matches the one on the stamp. More smarts needed for that. J
• But it’s a lightweight method that works well in many cases

• Checksums are part of the packet; they can get corrupted too
• The receiver will just declare an error if it finds an error
• However, checksums don’t enable the receiver to detect where the error lies

or correct the error(s)
• Checksum is an error detection mechanism; not a correction mechanism.

Some observations on checksums
• Checksums are insufficient for reliable data delivery

• If a packet is lost, so is its checksum

• UDP and TCP use the same checksum function
• TCP also uses the lightweight error detection capability
• However, TCP has more mature mechanisms for reliable data delivery

(more to come on this)

Playing with checksums
• Can you create two UDP packets with the same checksum?

Summary of UDP
• UDP is a thin shim around network layer’s best-effort delivery

• One-off request/response messages
• Lightweight transport for loss-tolerant delay-sensitive applications

• Provides basic multiplexing/demultiplexing for application
• No reliability, performance, or ordering guarantees
• Can do basic error detection (bit flips) using checksums

• Error detection is necessary to deliver data reliably, but it is insufficient

