CS 352
Demultiplexing; UDP

Lecture 10
http://www.cs.rutgers.edu/~sn624/352-F22

Srinivas Narayana

RUTGERS

NNNNNNNNNNNNNNNNNNNNNN

http://www.cs.rutgers.edu/~sn624/352-F22

Recap of Concepts

Multiplex & Demultiplex

Gather messages Distribute
from processes to messages from
send into the the network to
network. the processes.

Simple wrapper
UDP around packet
delivery

Delivery guarantees:

- TCP reliability, ordering,
Network pCT efficient & fair

layer ~~ bandwidth use

Demultiplexing Packets

Demultiplexing

IP addr 1

Applications

Denotes an

attachment point
with the network. Transport

Network

socket() Ports Each IP address Link Iayer
comes with a full

. copy of its own
Machine ports.

Demultiplexing

IP addr 1

Denotes an
attachment point
with the network.

socket() Ports Each IP address
comes with a full
copy of its own

Machine ports.

Transport

Network

Demultiplexing

IP addr 1

Denotes an

attachment point
with the network. Src port, Dst port

Src IP, Dst IP,
Tp Protocol

socket() Ports Each IP address
comes with a full

copy of its own

Machine ports.

Connection lookup: The

Dem U It' pleX| ng operating system does

a lookup using these
IP addr 1

data to determine the
right socket and app.

Denotes an

attachment point

with the network. Src port, Dst port

Src IP, Dst IP,
Tp Protocol

socket() Ports Each IP address
comes with a full
copy of its own

Machine ports.

Demultiplexing

attachment point
with the network.

socket() Ports Each IP address
comes with a full
copy of its own

Machine ports.

Connection lookup: The
operating system does
a lookup using these
data to determine the
right socket and app.

TCP sockets:

(src IP, dst IP, src port, dst
port)

>

Socket ID

Demultiplexing

Port 44262
Port 65535

socket() Ports

Machine

attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

Connection lookup: The
operating system does
a lookup using these
data to determine the
right socket and app.

TCP sockets:

(src IP, dst IP, src port, dst
port)

> (Our familiar

Socket ID P

Demultiplexing

socket() Ports

Machine

attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

Connection lookup: The
operating system does
a lookup using these
data to determine the
right socket and app.

TCP sockets:
(src IP, dst IP, src port, dst
port)
> (Our familiar

-tupl
Socket ID 4-uple)
UDP sockets: Connectionless:
(dst IP, dst port)| the socket is
> shared across
Socket ID all sources!

Demultiplexing

socket() Ports

Machine

attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

Connection lookup: The
operating system does
a lookup using these
data to determine the
right socket and app.

TCP sockets* some caveats!
(src IP, dst IP, src port, dst

port)
-> (Our familiar

-tupl
Socket [D uPle)
UDP sockets: Connectionless:
(dst IP, dst port)|_ the socket is
> shared across
Socket ID all sources!

TCP sockets of different types

Listening (bound but Connected (Established)
unconnected)

On server side

. csockid, addr = ss.accept()
On server side

ss = socket(AF_INET, SOCK STREAM)

ss.bind(serv_ip, serv_port)

On client side

. cs.connect(serv_ip, serv_port)
ss.listen() # no accept() yet

(src IP, dst IP, src port, dst port)
>

Socket (csockid NOT ss)

TCP sockets of different types

Listening (bound but Connected (Established)
unconnected)
. accept()
On server side creates a new

. csockid, addr =] ss.accept() socket with the
On server side 4-tuple

ss = socket(AF_INET, SOCK_STREAM) (established)

_ . # On client side mapping
ss.bind(serv_ip, serv_port)

. cs.connect(serv_ip, serv_port)
ss.listen() # no accept() yet

(dst IP, dst port) (src IP, dst IP, src port, dst port)
> ->
Socket (ss) Socket (csockid NOT ss)

Enables new connections to be - . .
demultiplexed correctly Enables existing connections to be demultiplexed correctly

TCP demultiplexing
 When a TCP packet comes in, the operating system:

 Looks up table of existing connections using 4-tuple
* |f success, send to corresponding (established) socket

« If fail (no table entry), look up table of listening connections using
just (dst IP, dst port)

* |f success, send to corresponding (listening) socket

- If fail again (no table entry), send error to client
» Connection refused

UDP demultiplexing

* When a UDP packet comes in, the operating system:

 Looks up table of listening UDP sockets using (dst IP, dst port)
* |f success, send packet to corresponding socket
* There are no established UDP sockets; they’re all “unconnected”

- If fail (no table entry), send error to client
* Port unreachable

Listing sockets and connections

 iperf -s and iperf -s -u

Why does it matter?

« Connection lookup and multiplexing determines which process
the message goes to

* |f you restart server, port to socket mapping changes

* Help understand when lookup tables can be full or lookup can
be slow (e.g., attacks, CDN servers, etc.)

User Datagram Protocol

UDP: User Datagram Protocol [rrc 768

» Best effort service Why are UDP’s guarantees even okay?
« UDP segments may be lost, Simple & low overhead compared to
corrupted, reordered TCP:
e UDP is connectionless * No de!ays due to “C_onnection
. Each UDP segment handled establishment” (which TCP does)
independently of others (i.e. no « UDP can send a packet immediately
“memory” across packets) « Small segment header (TCP’s is
» Suitable for one-off reg/resp larger) |
. E.g., DNS uses UDP « UDP can blast data without control

. « TCP is more balanced and measured
 Loss-tolerant delay-sensitive

apps. (e.g., VoIP & conf video) Less memory for connection “state

at sender & receiver relative to TCP

Length of

UDP segment structure segment
(UDP header + data)

Applications 16 bits 16 bits

—p<

Transport

Network

Link layer

Error
detection
info
(more to
come)

UDP segment structure

Source IP address
Applications Destination |IP address

Transport

Network

Link layer

Review: UDP demultiplexing
H .

- Sn“rr\a ID AaAArace
« Destination IP address

, Port 44262
Port 65535

Seeing UDP packets in action

* How to craft and send (UDP) packets?
* |[t's simpler than you think!

e sudo tcpdump -i lo udp —XAvvv # observe packets
* sudo scapy # tool used to send crafted packets

Example: send (IP(dst="127.0.0.1")/UDP(sport=1024,
dport=2048)/"hello world”, iface="1lo")

See other fields of UDP using upp().fields desc

« Scapy can send and receive crafted packets!
* However, it requires sudo (superuser privileges)

Error Detection

Why error detection?

* Network provides best effort service

« UDP is a simple and low overhead transport
« Data may be lost
« Data may be corrupted along the way (e.g., 1 -> 0)
« Data may be reordered

* However, simple error detection is possible!
 Was the data | received the same data the remote machine sent?

 Error detection is a useful feature for all transport protocols
including TCP

Error Detection in UDP and TCP

« Key idea: have sender compute a function over the data
 Store the result in the packet
* Receiver can check the function’s value in received packet

* An analogy: you’re sending a package of goodies and want
your recipient to know if goodies were leaked along the way

* Your idea: weigh the package; stamp the weight on the package

» Have the recipient weigh the package and cross-check the weight with
the stamped value

Requirements on error detection function

* Function must be easy to compute

* Function must capture the likely changes to the packet

* |f the packet was corrupted through these likely changes, the function
value must change

» Function must be easy to verify

« UDP and TCP use a class of function called a checksum

* Very common idea: used in multiple parts of networks and computer
systems

UDP & TCP’s Checksum function

Sender:

* freat segment contents as
sequence of 16-bit integers

» checksum: addition (1’s
complement sum) of segment
contents

» sender puts checksum value
into UDP checksum field

Receiver:

« compute a checksum of the
received segment, including
the checksum in packet itself

* check if the resulting
(computed) checksum is O

« NO — an error is detected
* YES — assume no error

Computing 1’s complement sum

* Very similar to regular (unsigned) binary addition.

* However, when adding numbers, a carryout from the most
significant bit needs to be added to the result

N

« Example: add two 16-bit integers

1110011001

10 0
110101010101 1

011
010

wraparound @101110111011101}1

Sum

101110111011 1100
checksum 0100010001000011

30

From the UDP specification (RFC 768)

* Checksum is the 16-bit one's complement of the one's

complement sum of a pseudo
header, the UDP header, and t
at the end (if necessary) to ma

neader of information from the IP
ne data, padded with zero octets

Ke a multiple of two octets.

* The pseudo header conceptually prefixed to the UDP header
contains the source address, the destination address, the

protocol, and the UDP length.

Some observations on checksums

» Checksums don’t detect all bit errors
« Consider (x, y) vs. (x— 1,y + 1) as adjacent 16-bit values in packet

« Analogy: you can’t assume the package hasn’t been meddled with if its
weight matches the one on the stamp. More smarts needed for that. ©

 But it’s a lightweight method that works well in many cases

« Checksums are part of the packet; they can get corrupted too

* The receiver will just declare an error if it finds an error

« However, checksums don’t enable the receiver to detect where the error lies
or correct the error(s)

 Checksum is an error detection mechanism; not a correction mechanism.

Some observations on checksums

« Checksums are insufficient for reliable data delivery
* |If a packet is lost, so is its checksum

« UDP and TCP use the same checksum function
« TCP also uses the lightweight error detection capability

« However, TCP has more mature mechanisms for reliable data delivery
(more to come on this)

Playing with checksums

« Can you create two UDP packets with the same checksum?

Summary of UDP

* UDP is a thin shim around network layer’s best-effort delivery

* One-off request/response messages
* Lightweight transport for loss-tolerant delay-sensitive applications

* Provides basic multiplexing/demultiplexing for application
 No reliability, performance, or ordering guarantees

« Can do basic error detection (bit flips) using checksums
 Error detection is necessary to deliver data reliably, but it is insufficient

