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Recap of Concepts

Multiplex & Demultiplex

Gather messages Distribute
from processes to messages from
send into the the network to
network. the processes.

Simple wrapper
UDP around packet
delivery

Delivery guarantees:

- TCP reliability, ordering,
Network pCT efficient & fair

layer ~~ bandwidth use



Demultiplexing Packets
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Demultiplexing

IP addr 1

Denotes an

attachment point
with the network. Src port, Dst port

Src IP, Dst IP,
Tp Protocol

socket() Ports Each IP address
comes with a full

copy of its own

Machine ports.
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Demultiplexing

attachment point
with the network.

socket() Ports Each IP address
comes with a full
copy of its own

Machine ports.

Connection lookup: The
operating system does
a lookup using these
data to determine the
right socket and app.

TCP sockets:

(src IP, dst IP, src port, dst
port)

>

Socket ID



Demultiplexing

Port 44262
Port 65535

socket() Ports

Machine

attachment point
with the network.

Each IP address
comes with a full
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Connection lookup: The
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data to determine the
right socket and app.

TCP sockets:

(src IP, dst IP, src port, dst
port)

> (Our familiar

Socket ID P
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socket() Ports

Machine

attachment point
with the network.

Each IP address
comes with a full
copy of its own
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Connection lookup: The
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a lookup using these
data to determine the
right socket and app.

TCP sockets:
(src IP, dst IP, src port, dst
port)
> (Our familiar
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Socket ID 4-uple)
UDP sockets: Connectionless:
(dst IP, dst port)| the socket is
> shared across
Socket ID all sources!



Demultiplexing

socket() Ports

Machine

attachment point
with the network.

Each IP address
comes with a full
copy of its own
ports.

Connection lookup: The
operating system does
a lookup using these
data to determine the
right socket and app.

TCP sockets* some caveats!
(src IP, dst IP, src port, dst

port)
-> (Our familiar

-tupl
Socket [D  uPle)
UDP sockets: Connectionless:
(dst IP, dst port)|_ the socket is
> shared across
Socket ID all sources!



TCP sockets of different types

Listening (bound but Connected (Established)
unconnected)

## On server side

. csockid, addr = ss.accept()
# On server side

ss = socket(AF_INET, SOCK STREAM)

ss.bind(serv_ip, serv_port)

# On client side

. cs.connect(serv_ip, serv_port)
ss.listen() # no accept() yet

(src IP, dst IP, src port, dst port)
>

Socket (csockid NOT ss)



TCP sockets of different types

Listening (bound but Connected (Established)
unconnected)
. accept()
# On server side creates a new

. csockid, addr =] ss.accept() socket with the
# On server side 4-tuple

ss = socket(AF_INET, SOCK_STREAM) (established)

_ . # On client side mapping
ss.bind(serv_ip, serv_port)

. cs.connect(serv_ip, serv_port)
ss.listen() # no accept() yet

(dst IP, dst port) (src IP, dst IP, src port, dst port)
> ->
Socket (ss) Socket (csockid NOT ss)

Enables new connections to be - . .
demultiplexed correctly Enables existing connections to be demultiplexed correctly



TCP demultiplexing
 When a TCP packet comes in, the operating system:

 Looks up table of existing connections using 4-tuple
* |f success, send to corresponding (established) socket

« If fail (no table entry), look up table of listening connections using
just (dst IP, dst port)

* |f success, send to corresponding (listening) socket

- If fail again (no table entry), send error to client
» Connection refused



UDP demultiplexing

* When a UDP packet comes in, the operating system:

 Looks up table of listening UDP sockets using (dst IP, dst port)
* |f success, send packet to corresponding socket
* There are no established UDP sockets; they’re all “unconnected”

- If fail (no table entry), send error to client
* Port unreachable



Listing sockets and connections

 iperf -s and iperf -s -u



Why does it matter?

« Connection lookup and multiplexing determines which process
the message goes to

* |f you restart server, port to socket mapping changes

* Help understand when lookup tables can be full or lookup can
be slow (e.g., attacks, CDN servers, etc.)



User Datagram Protocol



UDP: User Datagram Protocol [rrc 768

» Best effort service Why are UDP’s guarantees even okay?
« UDP segments may be lost, Simple & low overhead compared to
corrupted, reordered TCP:
e UDP is connectionless * No de!ays due to “C_onnection
. Each UDP segment handled establishment” (which TCP does)
independently of others (i.e. no « UDP can send a packet immediately
“memory” across packets) « Small segment header (TCP’s is
» Suitable for one-off reg/resp larger) |
. E.g., DNS uses UDP « UDP can blast data without control

. « TCP is more balanced and measured
 Loss-tolerant delay-sensitive

apps. (e.g., VoIP & conf video) Less memory for connection “state

at sender & receiver relative to TCP



Length of

UDP segment structure segment
(UDP header + data)

Applications 16 bits 16 bits

—p<

Transport

Network

Link layer

Error
detection
info
(more to
come)



UDP segment structure

Source IP address
Applications Destination |IP address

Transport

Network

Link layer




Review: UDP demultiplexing
H .

- Sn“rr\a ID AaAArace
« Destination IP address

, Port 44262
Port 65535




Seeing UDP packets in action

* How to craft and send (UDP) packets?
* |[t's simpler than you think!

e sudo tcpdump -i lo udp —XAvvv # observe packets
* sudo scapy # tool used to send crafted packets

Example: send (IP(dst="127.0.0.1")/UDP(sport=1024,
dport=2048)/"hello world”, iface="1lo")

See other fields of UDP using upp().fields desc

« Scapy can send and receive crafted packets!
* However, it requires sudo (superuser privileges)



Error Detection



Why error detection?

* Network provides best effort service

« UDP is a simple and low overhead transport
« Data may be lost
« Data may be corrupted along the way (e.g., 1 -> 0)
« Data may be reordered

* However, simple error detection is possible!
 Was the data | received the same data the remote machine sent?

 Error detection is a useful feature for all transport protocols
including TCP



Error Detection in UDP and TCP

« Key idea: have sender compute a function over the data
 Store the result in the packet
* Receiver can check the function’s value in received packet

* An analogy: you’re sending a package of goodies and want
your recipient to know if goodies were leaked along the way

* Your idea: weigh the package; stamp the weight on the package

» Have the recipient weigh the package and cross-check the weight with
the stamped value



Requirements on error detection function

* Function must be easy to compute

* Function must capture the likely changes to the packet

* |f the packet was corrupted through these likely changes, the function
value must change

» Function must be easy to verify

« UDP and TCP use a class of function called a checksum

* Very common idea: used in multiple parts of networks and computer
systems



UDP & TCP’s Checksum function

Sender:

* freat segment contents as
sequence of 16-bit integers

» checksum: addition (1’s
complement sum) of segment
contents

» sender puts checksum value
into UDP checksum field

Receiver:

« compute a checksum of the
received segment, including
the checksum in packet itself

* check if the resulting
(computed) checksum is O

« NO — an error is detected
* YES — assume no error



Computing 1’s complement sum

* Very similar to regular (unsigned) binary addition.

* However, when adding numbers, a carryout from the most
significant bit needs to be added to the result

N

« Example: add two 16-bit integers

1110011001

10 0
110101010101 1

011
010

wraparound @101110111011101}1

Sum

101110111011 1100
checksum 0100010001000011

30



From the UDP specification (RFC 768)

* Checksum is the 16-bit one's complement of the one's

complement sum of a pseudo
header, the UDP header, and t
at the end (if necessary) to ma

neader of information from the IP
ne data, padded with zero octets

Ke a multiple of two octets.

* The pseudo header conceptually prefixed to the UDP header
contains the source address, the destination address, the

protocol, and the UDP length.



Some observations on checksums

» Checksums don’t detect all bit errors
« Consider (x, y) vs. (x— 1,y + 1) as adjacent 16-bit values in packet

« Analogy: you can’t assume the package hasn’t been meddled with if its
weight matches the one on the stamp. More smarts needed for that. ©

 But it’s a lightweight method that works well in many cases

« Checksums are part of the packet; they can get corrupted too

* The receiver will just declare an error if it finds an error

« However, checksums don’t enable the receiver to detect where the error lies
or correct the error(s)

 Checksum is an error detection mechanism; not a correction mechanism.



Some observations on checksums

« Checksums are insufficient for reliable data delivery
* |If a packet is lost, so is its checksum

« UDP and TCP use the same checksum function
« TCP also uses the lightweight error detection capability

« However, TCP has more mature mechanisms for reliable data delivery
(more to come on this)



Playing with checksums

« Can you create two UDP packets with the same checksum?



Summary of UDP

* UDP is a thin shim around network layer’s best-effort delivery

* One-off request/response messages
* Lightweight transport for loss-tolerant delay-sensitive applications

* Provides basic multiplexing/demultiplexing for application
 No reliability, performance, or ordering guarantees

« Can do basic error detection (bit flips) using checksums
 Error detection is necessary to deliver data reliably, but it is insufficient



