CS 352
Video Streaming (Part 2)

Lecture 9
http://www.cs.rutgers.edu/~sn624/352-F22
Srinivas Narayana

RUTGERS

NNNNNNNNNNNNNNNNNNNNNN

http://www.cs.rutgers.edu/~sn624/352-F22

| Multimedia
Quick recap of concepts

Spatial coding

Video Bitrate Bits played out

per second
(can vary over
video’s lifetime)

Temporal coding

variable
network

g o Buffer at the client to hold
frames initially until playout
delay t,

Cumulative data

Client-side buffering, playout

buffer fill level,

<« B(t) >
variable fill playout rate,
>
video server «_ Client's

buffer, size B,

playout buffering: average fill rate (x), playout rate (r):
* is X <ror x>r for a given network connection?
* It is hard to predict this in general!

 Best effort network suffers long queues, paths with low bandwidth, ...

* How to set playout rate r?
* Too low a bit-rate r: video has poorer quality than needed
 Too high a bit-rate r: buffer might empty out. Stall/rebuffering!

Adaptive bit—rate video

* Motivation: Want to provide high quality video experience, without
stalls »

 Observations:

* Videos come in different qualities (average bit rates)
* Versions of the video for different quality levels readily available
* Different segments of video can be downloaded separately

» Adapt bit rate per segment through collaboration between the
video client (e.g., your browser) and the server (e.g., @ Netflix)

« Adaptive bit-rate (ABR) video: change the bit-rate (quality) of next
video segment based on network and client conditions

A typical strategy: Buffer-based rate adaptation

Buffer-based bit-rate adaptation

» Key idea: If there is a large stored buffer of video, optimize
aggressively for video quality, i.e., high bit rates

» Else (i.e., buffer has low occupancy), avoid stalls by being
conservative and ask for a lower quality (bit-rate)

* Hope: lower bandwidth requirement of a lower quality stream is satisfiable
more easily

Buffer-based bit-rate adaptation

Next Chunk’s Video Rate

Playout Buffer Occupancy

B"

max

A highly effective method
to provide high video
guality despite variable and
intermittently poor

network conditions.

Used by Netflix.

http://yuba.stanford.edu/~nickm/papers/sigcomm2014-video.pdf

A Buffer-Based Approach to Rate Adaptation

Dynamic Adaptive Streaming
over HTTP (DASH)

Streaming multimedia with DASH

« Dynamic Adaptive Streaming over HTTP
» Used by Netflix and most popular video streaming services

« Adaptive: Perform video bit rate adaptation
* |t can be done on the client, or the server (with client feedback)

* Dynamic: Retrieve a single video from multiple sources

 The DASH video server is just a standard HTTP server
* Provides video/audio content in multiple formats and encodings

* Leverage existing web-based infrastructure
* DNS
- CDNs!

DASH: Key ideas
Web Browser

- Content (video, audio, Or Video Client
transcript, etc.) qhwded —
into segments (time) client

* Algorithms to determine

and requeSt Varying Issue requests on time

: . u u ime.
attributes (e-g-’ bltrate! Pick attributes for each
language) for each segment of content
segment

Video Server Audio
» Goal: ensure good

qguality of service, match I:":":":":l Transcripts I:”:":":":l
user prefs, etc SS 00000 00 00 ooooo

Media Presentation
Description (manifest)

What does the manifest contain?

Periods:
Durations
of content

N\

Adaptation set:

etc.

Representations:
codecs, bit rates,

Adaptation Set |

Representation |
5MB

Representation 2
2MB

Representation 3
S00KB

Representation 4
™

functionally
equivalent
content
MPD ,l Period id=2
Period id=| / start=60sec 4
start=0sec AS 0 /
Period id=2
start=60sec AS |
\
Period id=3 AS 2 \
start=|20sec
\ \
|

Source: Stockhammer, MMSys.

https://www.w3.0rg/2010/11/web-and-tv/papers/webtv2_submission_64.pdf

Representation 2
2MB

Segment Info

ﬂ Segment Info

Duration=60 sec

Initialization
Segment
http://ex.com/il.mp4

Media Segment |
start= 0 sec
http://ex.com/v |.mp4

Media Segment 2
start=15 sec
http://ex.com/v2.mp4

Media Segment 3
start=30 sec
http:/ex.com/v3.mp4

Media Segment 4
start=45sec

http://ex.com/v4.mp4

Functionally equivalent: RSes of
given AS

Functionally different: different ASes

Multiple
segments per
representation

URL available
for each
segment

Byte ranges
per segment
(HTTP header
for a range
request)

Dynamic changes in stream quality

Dynamic changes in stream location

« Just an HTTP request for an HTTP object

CDN DNS
3. HTTP GET —— points user

S — request 7]

(111 Tube .‘ 1 HTTP GET for URLs quy/ﬂﬂjﬂ/ . to best CDN
-l request for video server
URL CDN servers
caching the
YouTube video

origin servers

2. HTTP reply
containing html to

Subtle: DNS granularity

IS per (sub)domain.
4. HTTP reply

construct the web page, with cached Content from different
manifest, with URLs for \ resources atthose (Sub)domains can go to
video content URLs different CDN servers
User or origin

DASH reference player

* https://reference.dashif.org/dash.|s/latest/samples/dash-if-

reference-player/index.html

https://reference.dashif.org/dash.js/latest/samples/dash-if-reference-player/index.html

DASH Summary

 Piggyback video on HTTP: widely used

« Enables independent HTTP requests per segment
« Choose dynamic quality & preferences over time
* Independent HTTP byte ranges

» Works well with CDNs
* Fetch segments from locations other than the origin server
 Fetch different segments from possibly different locations

* More resources on DASH

* https://www.w3.0rg/2010/11/web-and-
tv/papers/webtv2 submission 64.pdf

e https://www.youtube.com/watch?v=xgowGnH5kUE

https://www.w3.org/2010/11/web-and-tv/papers/webtv2_submission_64.pdf
https://www.youtube.com/watch?v=xgowGnH5kUE

Application Layer: Wrap-up

 Name resolution, the web, mail, video
* Protocols built over the socket () abstraction

« Simple designs go a long way
 Plain text protocols, header-based evolution, ...

* Infrastructure for functionality, performance, ...
* Mail servers, CDNSs, proxies, ...

* Fit your apps to run on browsers: run almost anywhere (e.g. video)
* Apps are ultimately what users and most engineers care about

« BUT: if you don’t understand what’s under the hood, you risk bad
design and poor performance for your Internet-facing applications

Transport

NNNNNNNNNNNNNNNNNNNNNNN

Transport

Application HTTPS| | FTP | | HTTP| | SMTP DNS
N/ e
Transport TCP UDP
Network /'P
Host-to-Net 802.11 X.25 ATM

Transport services and protocols

application

* Provide a communication retio,
abstraction between application [Jorvsca §
processes

 Transport protocols run @
endpoints

» send side: transport breaks app messages
iInto segments, passes to network layer

* recv side: reassembles segments into
messages, passes to app layer

* Multiple transport protocols
available to apps
* Very popular in the Internet: TCP and UDP

Transport vs. network layer

» Network layer: abstraction
to communicate between
endpoints. Network layer
provides best effort packet
delivery to a remote
endpoint.

 Transport layer:
communication abstraction
between processes.
Delivers packets to the
process.

Household analogy:

3 kids sending letters to 3
Kkids

« endpoints = houses
* processes = kids

* app messages = letters in
envelopes

* transport protocol = Alice
and Bob who de/mux to
In-nhouse siblings

* network-layer protocol =
postal service

ldentifying a single conversation

* Application connections are * In this analogy,
identified by 4-tuple:

e Source address: the address of

« Source IP address the first house

« Source port » Source port: name of a kid in the
» Destination IP address first house

- Destination port * Destination address: the address

of the second house

 Destination port: name of a kid in
the second house

Demultiplexing Packets

Two popular transports

Transmission Control
Protocol (TCP)

» Connection-based: the
application remembers the
other process talking to it.

 Suitable for longer-term,
contextual data transfers, like
HTTP, file transfers, etc.

» Guarantees: reliability,
ordering, congestion control

User Datagram Protocol
(UDP)

« Connectionless: app doesn'’t
remember the last process or
source that talked to it.

 Suitable for single reg/resp
flows, like DNS.

 Guarantees: basic error
detection

