
CS 352
E-Mail

Lecture 7
http://www.cs.rutgers.edu/~sn624/352-F22

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-F22


2

Summary of HTTP

•Request/response protocol
• ASCII-based human-readable message structures
• Enhanced stateful functionality using cookies
• Improve performance using caching, and CDN
• Simple, highly-customizable protocol
• Just add headers

• Protocol that forms of the basis of the web we enjoy today!



Simple Mail Transfer Protocol

3



We’re all familiar with email. 
How does it work?



5

Electronic Mail
Three major components: 
1. User agents 

• a.k.a. “mail reader”

• e.g., Applemail, Outlook

• Web-based user agents (ex: gmail)

user mailbox

outgoing 
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP



6

2. Mail Servers 
• Mailbox contains incoming messages for 

user
• Message queue of outgoing (to be sent) 

mail messages
• Sender’s mail server makes connection 

to Receiver’s mail server
• IP address, port 25

3. SMTP protocol: client/server protocol
• Used to send messages
• Client: sending user agent or sending 

mail server 
• server: receiving mail server

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

Electronic Mail: Mail servers



7

1) Alice 
(alice@rutgers.edu) uses 
UA to compose message to 
bob@nyu.edu

2) Alice’s UA sends message to 
her mail server; message 
placed in outgoing message 
queue

3) Client side of SMTP opens 
TCP connection with Bob’s 
mail server

4) SMTP client sends Alice’s 
message over the TCP 
connection

5) Bob’s mail server places the 
message in Bob’s incoming 
mailbox

6) Sometime later, Bob invokes 
his user agent to read 
message

user
agent

mail
server

mail
server user

agent

1

2 3 4 5
6

Scenario: Alice sends message to Bob

Alice Bob

Rutgers mail server NYU mail server
A set of durable files 

on the machine. 
Persisted on disk.



Observations on these exchanges
• Mail servers are the “infrastructure” for email functionality
• Receiving the email on behalf of Bob, should Bob’s machine be turned off
• Retrying the delivery of the email to Bob on behalf of Alice, should Bob’s 

mail server be unavailable in the first attempt
• The same machine can act as client or server based on context
• Rutgers’s mail server is the server when Alice sends the mail
• It is the client when it sends mail to Bob’s mail server

• SMTP is push-based: info is pushed from client to server
• Contrast to HTTP or DNS where info is pulled from the server



Sample SMTP interaction
• telnet <mail-server> 25
• HELO <sender-domain>
• MAIL FROM: <name>@<sender-domain>
• RCPT TO: <user>@<mail-server-domain>
• DATA
• Optional: Add headers

• From: <..>
• To: <..>
• Subject: <..>

• Then your message. Then [enter].[enter] Don’t forget the “.”
• Mail headers make your email look good, help avoid junk folder

mailto:name@mydomain.com


MAIL command response codes

10

220: Service ready
250: Request command complete
354: Start mail input
421: Service not available
500: Unrecognized command



11

SMTP text message exchange 
standardized in RFC 822
• Header lines, e.g.,
• To:
• From:
• Subject:
These are different from SMTP 

commands!
(these would still be under 

“DATA”)
• body
• the “message”. 
• ASCII characters only

header

body

blank
line

Mail message format (stored on server)



12

• MIME: multipurpose Internet mail extension, RFC 2045, 2056
• additional headers in DATA header declare MIME content type
• A message can have many parts

From: alice@crepes.fr 
To: bob@hamburger.edu 
Subject: Picture of yummy crepe. 
MIME-Version: 1.0 
Content-Transfer-Encoding: base64 
Content-Type: image/jpeg 

base64 encoded data ..... 
......................... 
......base64 encoded data 

multimedia data
type, subtype, 

parameter declaration

method used
to encode data

MIME version

encoded data

Message format: multimedia extensions















Mail Access Protocols



20

• SMTP: delivery/storage to receiver’s server. Focused on push
• Mail access protocol: pull from server
• POP: Post Office Protocol [RFC 1939]

• Client connects to POP3 server on TCP port 110
• IMAP: Internet Mail Access Protocol [RFC 1730]

• Client connects to TCP port 143. Many desktop mail clients use IMAP.
• HTTP: gmail, outlook, etc.

user
agent

sender’s mail 
server

user
agent

SMTP SMTP access
protocol

receiver’s mail 
server

POP3 or IMAP4
Mail access protocols

Alice Bob



Web-based email
• Connect to mail servers via web browser
• Ex: gmail, scarletmail, etc.

• Browsers speak HTTP
• Email servers speak SMTP
• Need to bridge these two

22



Web based email

23

HTTP server
scarletmail.rut

gers.edu

HTTP server
outlook.com

SMTP
Client/Server
aspmx4.google

mail.com

SMTP server
outlook-
com.olc.protect
ion.outlook.comInternet

HTTP HTTP

A’s mail provider’s 
server(s)

B’s mail provider’s 
server(s)

A
a@scarletmai
l.rutgers.ed
u

B

May run on the 
same or different 
machines
(owned by your
webmail provider)

IMAP B
b@outlook.c
om

Application process 
on the web server 
machine uses SMTP 
to push mail

App process on the web 
server uses access 
protocol to pull email



24

Comparing SMTP with HTTP
• HTTP: pull
• SMTP: push

• Both have ASCII command/response interaction, status codes

• HTTP: each object encapsulated in its own response msg
• SMTP: multiple objects sent in multipart msg

• HTTP: can put non-ASCII data directly in response (dedicated 
entity body for binary data)
• SMTP: need ASCII-based encoding (base64)



25

More themes from app-layer protocols
• Keep it simple until you really need complexity
• Start with ASCII-based design. Stateless servers. Then introduce:
• Cookies for HTTP state
• Multimedia extensions (MIME) in e-mail

• Performance optimizations often after-thought: e.g., caching
• Security extensions too! (e.g., HTTPS, IMAPS, SMTPS, …)
• Use headers to evolve without breaking old functionality
• Partition functions based on what’s best at each place. Examples:
• Content rendering (browser, UA) vs. protocol operations (mail server)
• Mail UAs can be unavailable. Rely on mail server for reliable delivery (an 

“infrastructure” concern). UA will use access protocol later


