CS 352 Web

Lecture 5

http://www.cs.rutgers.edu/~sn624/352-F22

Srinivas Narayana

Review of concepts

Domain Name System

Human readable names → IP addresses

Hierarchical, distributed database

Root server

TLD server

Authoritative name server

identification	flags	
number of questions	number of answer RRs	
number of authority RRs	number of additional RRs	
questions (variable number of questions)		
answers variable number of resource records)		
authority (variable number of resource records)		
additional information (variable number of resource records)		

12 bytes

DNS Resource Records

DNS is a distributed database

- DNS stores resource records (RRs)
- (Incomplete) message format for each resource record (RR):
 - Class, type, name, value, TTL
- You can read all the gory details of the message format at https://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml

DNS records

Type=A

- name is hostname
- value is IPv4 address

Type=AAAA

- name is hostname
- value is IPv6 address
- Type=NS
 - name is domain (e.g. foo.com)
 - value is hostname of authoritative name server for this domain
 - Sometimes, you'll see SOA record

Type=CNAME

- * name is alias name for some "canonical" (the real) name e.g., www.ibm.com is really www.ibm.com.cs186.net
- value is canonical name

Type=MX

value is name of mailserver associated with name

DNS record types

• dig —t <type> <domain-name>

DNS record example

RRs in response to query

NAME	Design.cs.rutgers.edu
TYPE	A
CLASS	IN
TTL	1 day(86400)
ADDRESS	192.26.92.30

records for authoritative servers Information about nameserver

NAME	Cs.rutgers.edu
TYPE	NS
CLASS	IN
TTL	1 day(86400)
NSDNAME	Ns-lcsr.rutgers.edu

DNS serves as a general repository of information for the Internet

Summary of DNS

- Hostname to IP address translation via a global network of servers
- Embodies several scaling principles
 - Partition through a hierarchy to silo query load
 - Replication to scale out at each level of hierarchy
 - Caching to reduce query load
- Once you have a reliable DB, can implement many useful things on top!
- Example 1: Scaling large web services, e.g., google search, by redirecting different clients to different servers (IP addresses)
 - Reliability, load balancing, performance optimization
- Example 2: Associating certificates, keys (security info) with domain names
 - https://www.rfc-editor.org/rfc/rfc8162.html
 - https://datatracker.ietf.org/doc/draft-ietf-dnsop-svcb-https/00/

The Web

The Web: Humble origins

Tim Berners-Lee: a way to manage and access documents at CERN research lab

Info containing links to other info, accessible remotely, through a standardized mechanism.

"Hypertext"

Web and HTTP: Terms

- HTTP stands for "HyperText Transfer Protocol
- A web page consists of many objects
- Object can be HTML file, JPEG image, video stream chunk, audio file,...
- Web page consists of base HTML-file which includes several referenced objects.
- Each object is addressable by a uniform resource locator (URL)
 - sometimes also referred to as uniform resource identifier (URI)
- Example URL:

www.cs.rutgers.edu/~sn624/index.html

domain/host name

path name

Hypertext

5 Academic conference

HTTP Protocol

Client server protocol

HTTP Request: Message Format

HTTP messages: request message

ASCII (human-readable format)

```
request line
                      GET /352/syllabus.html HTTP/1.1
  (GET, POST,
                      Host: www.cs.rutgers.edu
HEAD commands)
                      User-agent: Mozilla/4.0
                      Connection: close
        Header lines
                      Accept-language: en
 Carriage return,
                      (extra carriage return, line feed)
    line feed
  indicates end
                                                          15
    of header
```

The URL

- Universal Resource Locator: a way to name objects on server
- But can also name an application process on the server!
- Examples:
 - Data storage from data entered in web forms
 - Login pages
 - Web carts
- Providing almost any service requires data handling by running code at the server
 - Not just rendering "static" resources

HTTP method types

GET

 Get the resource specified in the requested URL (could be a process)

POST

 Send entities (specified in the entity body) to a data-handling process at the requested URL

HEAD

- Asks server to leave requested object out of response, but send the rest of the response
- Useful for debugging

PUT

 Update a resource at the requested URL with the new entity specified in the entity body

DELETE

Deletes file specified in the URL

and other methods

Uploading form input: GET and POST

POST method:

- Web page often includes form input
- Input is uploaded to server in entity body
- Posted content not visible in the URL
 - Free form content (ex: images)
 can be posted since entity body
 interpreted as data bytes

GET method:

- Entity body is empty
- Input is uploaded in URL field of request line
- URL must contain a restricted set of characters
- Example:
 - http://site.com/form?first=jane&last=austen

Difference between POST and PUT

- POST: the URL of the request identifies the resource that processes the entity body
- PUT: the URL of the request identifies the resource that is contained in the entity body

https://tools.ietf.org/html/rfc2616

Difference between HEAD and GET

- GET: return the requested resource in the entity body of the response along with response headers (we'll see these shortly)
- HEAD: return all the response headers in the GET response, but without the resource in the entity body

https://tools.ietf.org/html/rfc2616

HTTP Response: General format

HIIP message: response message

HTTP response status codes

In first line in server->client response message. A few sample codes:

200 OK

request succeeded, requested object later in this message

301 Moved Permanently

 requested object moved, new location specified later in this message (Location:)

403 Forbidden

Insufficient permissions to access the resource

404 Not Found

requested document not found on this server

505 HTTP Version Not Supported

Observing HTTP behaviors

• wget google.com (or) curl google.com

- telnet example.com 80
 - GET / HTTP/1.1
 - Host: example.com

(followed by two enter's)

- Exercise: try
 - telnet google.com 80
 - telnet web.mit.edu 80