
CS 352
Sockets, App Layer, DNS

Lecture 3
http://www.cs.rutgers.edu/~sn624/352-F22

Srinivas Narayana

1

http://www.cs.rutgers.edu/~sn624/352-F22


Review of concepts

• Switching: Circuit, Message, Packet

• Layering: Modularity

Link: best-effort local pkt delivery

Network: best-effort global pkt delivery

Transport: provide guarantees to apps

Application: useful user-level functions User space

Kernel space

Protocol: Message format and 
actions

Protocols can be public 
domain (RFCs) or proprietary.



Today’s lecture
• Understand how to measure the Internet

• Learn how application software accesses the Internet

• Dive into our first app-layer protocol



Measuring Networks
(including the Internet)

4



Some definitions
• Packet size: length of a packet (bits or bytes), incl. header and data
• Bandwidth: For a single link, amount of data it can transmit per unit time 

(bits/second or Bytes/second or packets/second)
• Propagation delay: Time needed to move one bit across (second)

• Imposed by the communication medium; depends on the link “length”

• Transmission delay: Time from first bit@sender to last bit@sender
• Determined by link bandwidth and packet size

• Queueing delay: Time that a packet waits for transmission
• Determined by contention for the link

• Total packet delay: time from first bit@sender to last bit@receiver
• propagation delay + queueing delay + transmission delay for a single packet



• Propagation delay = time for first box to travel the length of the belt
• Bandwidth = the number of boxes put on the belt per minute (“rate”)
• Suppose we have N boxes in one shipment
• Shipment transmission time = N / rate

• The next box is put on the belt (1/rate) minutes after the last
• Total transfer time = transmission time + propagation delay

6

An analogy: Conveyor belt

Bandwidth Propagation delay



Visualizing the components of delay

Increasing time

Transmission 
delay at the 

first link
Propagation 
delay of first 
link

Queueing at 
the router

Propagation  
delay of 
second link

Transmission 
delay at the 
second link



Bandwidth and delay demo
• Throughput (related to bandwidth)

• iperf –s # at the destination
• iperf –c <destination> # at the source, 
• e.g.,   iperf –c localhost

• (total) delay
• ping <destination>
• e.g.,   ping google.com

• (Don’t just watch; you can try it!)



Application Layer



App-layer communication
• Internet applications reside on multiple endpoints

• Need addresses to identify the communicating endpoints
• E.g., Telephone network: xxx-yyy-zzzz

• Internet: Internet Protocol (IP) addresses
• IPv4  (32 bits) 128.6.24.78
• IPv6 (128 bits)  2001:4000:A000:C000:6000:B001:412A:8000

• Which app on each endpoint? Port number

Internet

IP addrIP addr

port

port



How are addresses used?
• Socket: abstraction (API) of the Internet for applications

Internet

App process
User space

Kernel space
Socket

Operating 
system’s network 

stack

App process
User space

Kernel space
Socket

Operating 
system’s network 

stackInternet

IPA

portA

IPB

portB

App-layer connection is a 4-tuple: (IPA, portA, IPB, portB)



Socket system calls
Process A

(client)

connect(   

IPB, portB)

send()

Process B
(server)

bind(IPaddrB, portB)

listen()

accept()

recv()

process

socket

process

socketIPA + portA
IPB + portB



Seeing app-layer connections
• netstat
• ss



Common Architectures of 
Applications



15

Client-server architecture
Server: 

• Always-on endpoint
• Provides a “service” to the world
• Typically, a permanent IP address
• Compute clusters to scale to many users

Clients:
• A “customer” of the server
• May be intermittently connected
• May have dynamic IP addresses
• Typically, do not communicate directly 

with other clients

• The web and most mobile apps use a 
client-server architecture

server

client

client



16

Peer-to-peer (P2P) architecture

• Peers:
• Intermittently connected hosts
• Directly talking to each other

• Little to no reliance on always-up 
servers
• Examples: BitTorrent

• Today, many applications use a 
hybrid model
• Example: (webRTC) Google meet, FB 

messenger, …

peer

peer



Going forward: A few app-layer protocols
• Domain Name System

• The web

• Mail

• Streaming video 



Domain Name System



You have my name. Can you 
lookup my address?



20

Domain Name System (DNS)
• Problem statement:

• Average brain can easily remember 7 digits for a few names
• On average, IP addresses have 12 digits
• We need an easier way to remember IP addresses

• Solution:
• Use alphanumeric names to refer to hosts. 
• Called host names or domain names (e.g.: cs.rutgers.edu)
• We need a directory (address book)
• A service to map alphanumeric host names to binary IP addresses
• We call this process Address Resolution



Types of Directories
• Directories map a name to an address
• Simplistic designs

• Central directory
• Ask everyone (e.g., flooding)
• Tell everyone (e.g., push to a file like /etc/hosts)

• Scalable distributed designs
• Hierarchical namespace (e.g., Domain Name System (DNS))
• Flat name space (e.g., Distributed Hash Table)



Simple DNS
• What if every endpoint has a local directory?
• /etc/hosts.txt

• How things worked in the early days of the Internet!

• What if endpoints changed addresses? How do you keep this 
up to date?



• Key idea: Implement a server that looks up a table.
• Will this scale?

• Every new (changed) host needs to be entered in this table
• Performance: can the server serve billions of Internet users
• Failure: what if the server or the database crashes?
• How to secure this server?

23

DOMAIN NAME IP ADDRESS
spotify.com 98.138.253.109

cs.rutgers.edu 128.6.4.2

www.google.com 74.125.225.243

www.princeton.edu 128.112.132.86

QUERY cs.rutgers.edu

RESPONSE 128.6.4.2

<Client IP, CPort, DNS server IP, 53> 

<DNS server, 53, Client IP, Cport> 

Simple DNS



24

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

rutgers.edu
DNS servers

umass.edu
DNS serversgoogle.com

DNS servers
amazon.com
DNS servers

wnyc.org
DNS servers

cs.rutgers.edu 
DNS server

RFC 1034: Distribution through hierarchy enables scaling

Distributed and hierarchical database
Top-level domain 
(TLD) servers

Authoritative name 
server



DNS Protocol
• Client-server application
• Client connects to (known) port 53 on server 
• Assume DNS server IP known
• Two types of messages

• Queries
• Responses

• Type of Query (OPCODE)
• Standard query (0x0)

• e.g., Request IP address for a given domain name
• Updates (0x5)

• Provide a binding of IP address to domain name
• Each type has a common message format that follows the header

25


