CS 352
Sockets, App Layer, DNS

Lecture 3
http://www.cs.rutgers.edu/~sn624/352-F22
Srinivas Narayana

RUTGERS

NNNNNNNNNNNNNNNNNNNNNN

http://www.cs.rutgers.edu/~sn624/352-F22

Review of concepts

« Switching: Circuit, Message, Packet
 Layering: Modularity

Application: useful user-level functions User space

Transport: provide guarantees to apps Kernel space

Protocol: Message format and
actions

Network: best-effort global pkt delivery

Link: best-effort local pkt delivery Protocols can be public

domain (RFCs) or proprietary.

Today’s lecture

» Understand how to measure the Internet
* Learn how application software accesses the Internet

* Dive into our first app-layer protocol

Measuring Networks
(including the Internet)

Some definitions

« Packet size: length of a packet (bits or bytes), incl. header and data

« Bandwidth: For a single link, amount of data it can transmit per unit time
(bits/second or Bytes/second or packets/second)

* Propagation delay: Time needed to move one bit across (second)
* Imposed by the communication medium; depends on the link “length”

» Transmission delay: Time from first bit@sender to last bit@sender
» Determined by link bandwidth and packet size

* Queueing delay: Time that a packet waits for transmission
« Determined by contention for the link

* Total packet delay: time from first bit@sender to last bit@receiver
« propagation delay + queueing delay + transmission delay for a single packet

An analogy: Conveyor belt

——

)
¥,

* Propagation delay = time for first box to travel the length of the belt
« Bandwidth = the number of boxes put on the belt per minute (“rate”)
« Suppose we have N boxes in one shipment

« Shipment transmission time = N / rate
* The next box is put on the belt (1/rate) minutes after the last

* Total transfer time = transmission time + propagation delay

Visualizing the components of delay

Transmission

delay at the Propagation
first link delay of first
link

Queueing at
the router

Y Al—

Increasing time

Transmission
delay at the
second link

Propagation
delay of
second link

Bandwidth and delay demo

 Throughput (related to bandwidth)
« iperf -s # at the destination
 1perf -c <destination> # at the source,
« e.g., 1perf —-c localhost

* (total) delay
 ping <destination>
* e.g., ping google.com

« (Don’t just watch; you can try it!)

Application Layer

App-layer communication

* Internet appliﬁons reside on multiple endpoints

IP addr |

* Need addresses to identify the communicating endpoints
* E.g., Telephone network: xxx-yyy-zzzz

* Internet: Internet Protocol (IP) addresses

- IPv4 (32 bits) 128.6.24.78
- IPv6 (128 bits) 2001:4000:A000:C000:6000:B001:412A:8000

* Which app on each endpoint? Port number

How are addresses used?

« Socket: abstraction (API) of the Internet for applications

Kernel space Kernel space

Operating Operating
system’s network system’s network
stack stack

App-layer connection is a 4-tuple: (IP4, porta, IPg, portg)

Socket system calls

Process A L% E Process B
‘ (server)

(client) — |
@ @ IPg + portg

|PA + porta socket socket

connect (

IP;, portg)

_ = ng listen()

X accept ()

recv()

=== bind(IPaddr;, porty)

Seeing app-layer connections

* hetstat
* SS

Common Architectures of
Applications

Client-server architecture

Server:
« Always-on endpoint
» Provides a “service” to the world
» Typically, a permanent IP address
« Compute clusters to scale to many users

Clients:
« A “customer” of the server
* May be intermittently connected
« May have dynamic IP addresses

_ Typically, do not communicate directly
client with other clients

* The web and most mobile apps use a
client-server architecture 15

Peer-to-peer (P2P) architecture

* Peers:
* Intermittently connected hosts
 Directly talking to each other

» Little to no reliance on always-up
servers

« Examples: BitTorrent

» Today, many applications use a
hybrid model

« Example: (webRTC) Google meet, FB
messenger, ...

16

Going forward: A few app-layer protocols

* Domain Name System
* The web
« Mail

« Streaming video

Domain Name System

You have my name. Can you
lookup my address?

Domain Name System (DNS)

* Problem statement:
* Average brain can easily remember 7 digits for a few names
« On average, IP addresses have 12 digits
 We need an easier way to remember |IP addresses

 Solution:
* Use alphanumeric names to refer to hosts.

« Called host names or domain names (e.g.: cs.rutgers.edu)

* We need a directory (address book)
« A service to map alphanumeric host names to binary IP addresses

» We call this process Address Resolution

20

Types of Directories

* Directories map a nhame to an address

« Simplistic designs
 Central directory
» Ask everyone (e.g., flooding)
 Tell everyone (e.g., push to a file like /etc/hosts)

 Scalable distributed designs

 Hierarchical namespace (e.g., Domain Name System (DNS))
 Flat name space (e.g., Distributed Hash Table)

Simple DNS

* What if every endpoint has a local directory?

« /etc/hosts.txt
« How things worked in the early days of the Internet!

» What if endpoints changed addresses? How do you keep this
up to date?

DOMAIN NAME IP ADDRESS

spotify.com

Simple DNS

www.google.com

www.princeton.edu

<Client IP, CPort, DNS server IP, 53>
@ QUERY cs.rutgers.edu
<DNS server, 53, Client IP, Cport>

RESPONSE 128.6.4.2

98.138.253.109
128.6.4.2

74.125.225.243
128.112.132.86

» Key idea: Implement a server that looks up a table.

* Will this scale?

* Every new (changed) host needs to be entered in this table
 Performance: can the server serve billions of Internet users
* Failure: what if the server or the database crashes?

« How to secure this server?

23

" uted and hierarchical database

Massachuskits

. Root DNS Servers Top-level domain

com DNS servers org DNS servers e@\ls sesrs
google.com amazon.com wnyc.org rutgers.edu umass.edu

DNS servers DNS servers DNS servers DNS servers DNS servers

/

cs.rutgers.edu Authoritative name
DNS server server

RFC 1034: Distribution through hierarchy enables scaling

24

DNS Protocol

* Client-server application
 Client connects to (known) port 53 on server

« Assume DNS server IP known

« Two types of messages
* Queries
» Responses

* Type of Query (OPCODE)

« Standard query (0x0)
* e.g., Request IP address for a given domain name

« Updates (0x5)
* Provide a binding of IP address to domain name

» Each type has a common message format that follows the header

25

