Internet Technology
Introduction

Lecture 1
Srinivas Narayana

http://www.cs.rutgers.edu/~sn624/352-F22
The Internet is an exciting place
The Internet has transformed everything

• How we communicate with other humans
• How we learn what’s going on in the world
• How we learn and acquire knowledge
• How we transact and do business
• How we entertain ourselves
• How espionage and war is conducted

• In short, how we live
Internet growth

1995
35MM+ Internet Users
0.6% Population Penetration

2014
2.8B Internet Users
39% Population Penetration

2020
4.8B users
(61% of the world’s population)

https://www.broadbandsearch.net/blog/internet-statistics
Evolution of Internet applications

<table>
<thead>
<tr>
<th>Year</th>
<th>Application(s)</th>
<th>Application(s)</th>
<th>Application(s)</th>
<th>Application(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>ftp, Web, Email</td>
<td>chat, Games, IM</td>
<td>2000</td>
<td>2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>news, Blog</td>
<td>Music, itunes</td>
<td>Games search</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2008</td>
<td>Wikipedia, Craigslist, Youtube</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Text-heavy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Multimodal media</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Augment physical world</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Replace phy world</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
We relied on the Internet to work

Data shows number of daily sessions in the US over a period in 2020. Source: nytimes
We relied on the Internet to “play”!

Data shows number of daily sessions in the US over a period in 2020. Source: nytimes
Threats on the Internet are growing, too

Source: CloudFlare blog
Internet Technology: This course

• The study of how the Internet is designed

• The Internet is an example of a computer network
Learn fundamental principles and artifacts that underlie the Internet.

So that you can use and build technology for fun, profit, or altruism.
What is a network?

- Carrier of information between two or more entities
- Entities may be hosts/ endpoints (used interchangeably)
 - your laptop, cell phone, etc.
- Entities may also be devices in the middle of the network
 - For example, your WiFi router
- The interconnection between entities is any physical medium capable of carrying information: we call physical media links
 - Wireless links: cellular 4G/5G, wifi 802.11, bluetooth, satellite
 - Wired links: copper wire, lasers over optic fiber, coax cables
A single link multiple access network

- Send bits of data in packets or frames
- How do we differentiate among many receivers?
- Every endpoint as a link level address: also called a MAC address
- Packets have a destination address on them
- However, can’t have every computer in the world on the same link!
 - Physical limits on power / distance over which info travels over a single link
A single link multiple access network

• Even on a single link, you need to worry about a few things:
 • Converting digital data to physical signals over the medium (encode/decode)
 • How do we decide who speaks? (medium access control problem)
 • Detecting and correcting errors
A multi-link network

- Connect multiple links via routers
- Need to figure out how to move packets from one host to another host, e.g., how to reach google.com from your laptop
- Known as the routing problem
- Key Q: How should packets be moved from A to reach B?
In general, networks give no guarantees

• Packets may be lost, corrupted, reordered, on the way to the destination
 • Best effort delivery

• Advantage: The network becomes very simple to build
 • Don’t have to make it reliable
 • Don’t need to implement any performance guarantees
 • Don’t need to maintain packet ordering
 • Almost any medium can deliver individual packets
 • Example: RFC 1149: “IP Datagrams over Avian Carriers”

• Early Internet thrived: easy to engineer, no guarantees to worry about
Guarantees for applications

- How should endpoints provide guarantees to applications?

- **Transport** software on the endpoint oversees implementing guarantees on top of an unreliable network

- Need to solve the **reliable data delivery** problem

- For some applications, also need **ordered delivery**
Sending data into a multi-link network

• How quickly should endpoints send data?

• Known as the congestion control problem

• Congestion control algorithms at source endpoints react to remote network congestion. Part of the transport sw/hw stack.

• Key question: How to vary the sending rate based on network signals?
Sending data into a multi-link network

• How should a router transmit packets when network resources are scarce?

• Known as the packet scheduling problem

• Key question: which packet to transmit over a constrained network link, and when?
 • Related: the buffer management problem
Components of a network: Summary

• **Link**
 • Communication links for transmission

• **Host/Endpoint**
 • Computer running applications of end user

• **Router**
 • Computer for routing packets from input link to another output link

• **Network**
 • A group of hosts, links, routers capable of sending packets among its members
Course Logistics
About us

• Faculty Instructor: Srinivas Narayana
 • http://www.cs.rutgers.edu/~sn624
 • sn624@rutgers.edu
 • Office hours on Zoom (link on Canvas). Tue 10 – 11 am ET and Wed 9 – 10 am ET
 • Lectures on Tue and Fri 8:30 – 9:50 am ET

• TAs and Recitations: Three sections
 • Chang, Parvathi, and Negin

• Post q’s to Piazza (see Canvas announcement to sign up)
• Class info: http://www.cs.rutgers.edu/~sn624/352-F22/
Class philosophy

• We want you to learn and to be successful

• Attend recitations and office hours regularly to discuss material

• Be proactive: interact, ask, support.
 • Use Piazza

• Full video lectures from 3 offerings (spr21, 22, fall22) available
Grading

• 40% programming projects
• 15% problem sets
• 18% mid-terms (2 * 9% each)
• 12% final exam
• 15% lecture questions

• Schedule of projects, problem sets, exams, etc. available at https://www.cs.rutgers.edu/~sn624/352-F22/syllabus.html

• This course uses absolute grading. There is no curve
Programming projects (40%)

- Five programming projects
- P1: Warmup/Socket programming intro
- P2: HTTP programming
- P3: Asynchronous sockets and load balancing
- P4: Reliable data delivery
- P5: IP network configuration

- Tentative due dates 9/23, 10/14, 10/28, 11/18, and 12/02
 - Submit by 8 pm Eastern Time
Programming projects (40%)

- Work in the same group of two students throughout semester
 - Only change groups or work solo under extenuating circumstances
 - Discretion of the instructor. Talk to us.
- Program and short write-up with responses required
- Background needed to get started
 - Python (211/214 level)
 - Get comfortable using data structures (tuples, arrays, dictionaries)
 - Unix (login, navigating folders, permissions, etc.)
- Use ilab machines or VMs (links provided) to run and test
- Hand projects in on Canvas
Programming projects (40%)

• Please follow all instructions carefully and exactly

• You will lose significant points if:
 • We are unable to run your code
 • Your information (e.g., team member names and netids) is incorrect or incomplete
 • We do not receive your submission in a timely fashion
Problem sets (15%)

• 3 problem sets
• Work individually
• Hand in a PDF file with solutions on Canvas
• Due dates: 9/30, 11/04, and 12/09
 • Submit at 8 pm Eastern Time
Collaboration and Integrity policies

• Intellectual collaboration is welcome and encouraged
• Do
 • Ask questions on Piazza
 • Discuss projects and problem sets with us and each other
 • Read references (textbooks, Internet tutorials) widely
 • Acknowledge each other and all the references in psets & project reports
• Each problem set & project has a prompt on collaboration
 • Include who you talked to, references (including on the web) you consulted
 • Be as accurate and complete as possible
Collaboration and Integrity policies

• All your written (coded) work must be your (team’s) own
 • Understand the problem deeply and produce your own solutions

• Do not
 • blindly lift or incorporate other solutions
 • look at other people’s code or solutions
 • copy code from the web (e.g., other people’s GitHub projects)
 • post problem sets or projects (questions or solutions) on GitHub, Chegg, CourseHero, etc.

• Ask us for permission if you are ever in doubt
Written exams (30%)

• Two mid-terms (9 + 9 = 18%) and a final exam (12%)
• Cheat sheet (1 page letter paper, both sides) allowed
 • It must be handwritten or typed up by you
• Calculators are allowed
• (Stating the obvious) you cannot collaborate or google solutions during exams

• Mid-terms tentatively scheduled on 10/07 and 11/11 in class
• Notify us ASAP if you must miss scheduled exams
Writing answers

• In your answers to exams, problem sets, and project reports:

• Be as clear and concise as possible

• Vague and rambling answers will get zero credit
 • We must be able to understand your answer quickly

• 25% credit for questions if you leave the answer blank or clearly write “I don’t know”
Lecture questions (15%)

• Each day of lecture, hand in responses on Canvas
 • Includes today!

• You can consult the lecture (and your notes)

• No collaboration or searching for answers on the Internet

• Submit by 8 pm Eastern Time

• We will consider your 20 highest scores (out of 26)
Late policy

• Don’t be late

• If you must be late, inform us in advance

• If you cannot inform us in advance (e.g., medical), provide official medical note of absence through the University

• Unexcused late submissions will result in losing significant fraction of points
24/7 Grading Policy

• You may not dispute a grade or request a regrade before 24 hours or after 7 days of receiving it

• Please contact us if you have a legitimate regrading request:

 • After 24 hours of receiving the grade: Please take the time to review your case before contacting the instructors

 • Before 7 days have elapsed: we don’t want to forget what the test/project was all about.
Help, Accommodations, etc.

• We’ll make every effort to accommodate reasonable requests that support your learning better

• sn624@cs.rutgers.edu

• Course staff is committed to help you succeed
Next steps

• Finish today’s lecture questions (up on Canvas)

• Look out for project 1 released later this week
 • Starting early significantly helps your project grade (40% of total)

• Sign up for class Piazza (link on canvas announcement)

• Contact me if interested: independent study & research opp’s

• See you at Friday’s lecture