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From Compiler Verification to Elementary Functions
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From Compiler Verification to Elementary Functions

Alive Alive SMT z g ] .

DSL - 4 = Queries Floating point SAS 2016
—_— _ —_— Optimizations are wrong!

\L-—— Analysis —J
N——
_ Fast math
Compller/LLVM | C++ Instcombine Pass | . optlmlzatlons
Verification v

POPL 2012, PLDI 2013, PLDI 2015,
SAS 2016, PLDI 2017, CACM-RH 2018

Shadow execution with a PLDI 2020,
high-precision oracle FSE 2021

produce wrong results

RUTGERS 6 RAPL - Rutgers Architecture and Programming Languages Lab



What is a Correctly Rounded Result?

real number line
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What is a Correctly Rounded Result?

real number line
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What is a Correctly Rounded Result?

real number line _
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What is a Correctly Rounded Result?

real number line
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How do Prior Techniques Approximate Elementary Functions?

RUTGERS

Polynomial Approximation
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1. Approximate the REAL value of In(x)

2. Feasible with small domains:

Range reduction to transform the input to a
small domain

3. Mini-Max Approximation:

Polynomial Approximation that minimizes the
maximum error for all points
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What’s the issue with Mini-Max Approximations?

real number line
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The real value of [n(x;) can be extremely close
to the decision boundary

Need to approximate f(x) extremely accurately
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What’s the issue with Mini-Max Approximations?

real number line
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The real value of [n(x;) can be extremely close
to the decision boundary

Need to approximate f(x) extremely accurately

Any approximation error or a numerical error
can change the rounding decision
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What’s the issue with Mini-Max Approximations?

real number line Rounds to
~ . 04/\0 ° |
vl V2 V3

The real value of [n(x;) can be extremely close
to the decision boundary

Need to approximate f(x) extremely accurately

Any approximation error or a numerical error
can change the rounding decision

Wrong result due to Incorrect rounding!
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Our RLiBM PrOjeCt [POPL 2021, PLDI 2021, POPL 2022, PLDI 2022]
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Our RLIBM project makes a case for
approximating the correctly rounded
result
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0ur RLIBM PrOjeCt [POPL 2021, PLDI 2021, POPL 2022, PLDI 2022]

real number line

& round-to-nearest-tie-goes-even
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N
log umber correctly rounded result

Our RLIBM project makes a case for
approximating the correctly rounded
result

What is the oracle correctly rounded result?

How to build an efficient implementation that produces the oracle correctly rounded result?
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Our RLIBM PrOjeCt [POPL 2021, PLDI 2021, POPL 2022, PLDI 2022]
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correctly rounded result

Rounding interval

Our RLIBM project makes a case for
approximating the correctly rounded result
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Our RLIBM Project ror 2001, pioi 2021, ot 2022, pLoi 2022)

« Given f(x), a representation, and a rounding mode

® Correct result
B Rounding interval
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Our RLIBM Project ror 2001, pioi 2021, ot 2022, pLoi 2022)

« Given f(x), a representation, and a rounding mode

1.Compute the correctly rounded result of f(x)

® Correct result
B Rounding interval
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Our RLIBM Project ror 2001, pioi 2021, ot 2022, pLoi 2022)

« Given f(x), a representation, and a rounding mode

1.Compute the correctly rounded result of f(x)

2.ldentify rounding interval for each input

® Correct result
B Rounding interval
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Our RLIBM Project ror 2001, pioi 2021, ot 2022, pLoi 2022)

« Given f(x), a representation, and a rounding mode
[]

1.Compute the correctly rounded result of f(x)

2.ldentify rounding interval for each input L

* A linear constraint on the output of the polynomial 3 N
[]
|:| |:| ® Correct result
ll < P(Xl) < hl |:| |:| 3 Rounding interval

L, < P(x,) < h,
I, < P(xy) < Iy
I, < P(x,) < hy
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Our RLIBM Project ror 2001, pioi 2021, ot 2022, pLoi 2022)

« Given f(x), a representation, and a rounding mode

[]
1.Compute the correctly rounded result of f(x)
2.ldentify rounding interval for each input L
* A linear constraint on the output of the polynomial 3 N
3. Encode constraint into system of linear inequalities []
|:| ® Correct result
[]
i i |:| |:| 3 Rounding interval
(7] 1 ox xf a1 [
[, 1 x, x3 S | e h,
Iy =1 X3 X3 x§ C2 = hy
.1.4. 1 x, x2 [ € @4
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Our RLIBM Project ror 2001, pioi 2021, ot 2022, pLoi 2022)

« Given f(x), a representation, and a rounding mode

1.Compute the correctly rounded result of f(x)
2.ldentify rounding interval for each input
* A linear constraint on the output of the polynomial

3. Encode constraint into system of linear inequalities

— P(x)

4.Use a Linear Programming solver to solve for P(x) = Rewgi
ounaing interva

] 2 d ] .
l 1 1 X 1 xl oo .xl B CO T hl
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Our RLIBM Project ror 2001, pioi 2021, ot 2022, pLoi 2022)

« Given f(x), a representation, and a rounding mode

1.Compute the correctly rounded result of f(x)
2.ldentify rounding interval for each input
* A linear constraint on the output of the polynomial

3. Encode constraint into system of linear inequalities

— P(x)

4.Use Linear Programming solver to solve for P(x) = Rounding inferval
ounaing interva

* Resulting polynomial produces correct results for the ~
chosen representation and rounding mode

KUTGERS 24 RAPL - Rutgers Architecture and Programming Languages Lab



Our RLIBM Project -ori 2021, pioizoo1, por 2022, pLoi 2022

« Given f(x), a representation, and a rounding mode

1.Compute the correctly rounded result of f(x)

2.ldentify rounding interval for each input

* Resulting polynomial produces correct results for the
chosen representation and rounding mode
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How do we produce a single polynomial approximation
that produces correctly rounded results for
multiple representations and rounding modes?
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A Naive Solution

Let’s say we want to produce correctly rounded result of log,(x) for a 32-bit float

N\
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A Naive Solution

Let’s say we want to produce correctly rounded result of log,(x) for a 32-bit float

log,(x) for
64-bit double type
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A Naive Solution

Let’s say we want to produce correctly rounded result of log,(x) for a 32-bit float

input
Z log,(x) for
in float 64-bit double type
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A Naive Solution

Let’s say we want to produce correctly rounded result of log,(x) for a 32-bit float

input input

. | ; log,(x) for

in float in double 64-bit double type
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A Naive Solution

Let’s say we want to produce correctly rounded result of log,(x) for a 32-bit float

input input output
y — oy — l.ogz(x) for s
in float in double 64-bit double type in double
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A Naive Solution

Let’s say we want to produce correctly rounded result of log,(x) for a 32-bit float

input input output
. ; l.ogz(x) for y | round y
in float in double 64-bit double type in double to float
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A Naive Solution

Let’s say we want to produce correctly rounded result of log,(x) for a 32-bit float

input 18154515 ; _output—
x ; 0g,(x) for SN | round y
: : = ouble type to float
in float in le - Indouble—_

—
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A Naive Solution

Let’s say we want to produce correctly rounded result of log,(x) for a 32-bit float

input 18154515 ; _output—
x — @y — 02,(x) for SN | round y
: : = ouble type to float
in float in le - Indouble—_

—

Double rounding error!
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Double Rounding Is The Enemy

Let’s say we want to produce correctly rounded result of log,(x) for a 32-bit float

input 18154515 ; _output—

X | x 0g-(x) for SN | round y
in float in - ouble type — o] to float
Double rounding error!

e FO——0—%0 O O O O O O—
double A\ \J U U \J N\ I
32-Dbit

float m L] L] |
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Double Rounding Is The Enemy

Let’s say we want to produce correctly rounded result of log,(x) for a 32-bit float

input 18154515 ; _output—

x ; 0g,(x) for SN | round y
in float in - ouble type — o] to float
Double rounding error!

correctly rounded in double
o m—O—*QQ O O O O O o
double U \J \\ \\ U \\ |
32-bit
float m L] L] |
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Double Rounding Is The Enemy

Let’s say we want to produce correctly rounded result of log,(x) for a 32-bit float

input 18154515 ; _output—
X | x 0g-(x) for SN | round y
: : : = ouble type to float
in float in e - Indouble—_
Double rounding error!
correctly rounded in double
64-bit /) A\ ) A\ A\ A\ A
double U \J \\ \\ U N\ I

rounded to float
32-bit ./\
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Double Rounding Is The Enemy

Let’s say we want to produce correctly rounded result of log,(x) for a 32-bit float

input 18154515 ; _output—
x x 02,(x) for SN | round y
: : : = ouble type to float
in float in e - Indouble—_
Double rounding error!
correctly rounded in double
64-bit /\ I O O I O O)—|
double \\ \J \ \\ \\ \ |
correctly rounded in float rounded to float
32-bit /\_./\A —
foat “I [
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Our RLiBM Approach for Multiple Representations

® Insight: Retain enough information about the real value even when double rounding
® How to generate 1 polynomial for 10 to 32-bit FP representations
e Generate a polynomial for the 34-bit FP Generalize: (n + 2) bit floating point representation

® Using the round-to-odd rounding mode
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Round-to-Odd Rounding Mode

® Insight: Retain enough information about the real value even when double rounding

® How to generate 1 polynomial for 10 to 32-bit FP representation:
e Generate a polynomial for the 34-bit FP Generalize: (n + 2) bit floating point representation
® Using the round-to-odd rounding mode

¢ Round-to-odd:
e Used for rounding from a decimal to a binary fraction

e Used for primitive operations in extended precision
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Round-to-Odd Rounding Mode

® Insight: Retain enough information about the real value even when double rounding
® How to generate 1 polynomial for 10 to 32-bit FP representation:
e Generate a polynomial for the 34-bit FP Generalize: (n + 2) bit floating point representation
® Using the round-to-odd rounding mode
¢ Round-to-odd:
e Used for rounding from a decimal to a binary fraction
e Used for primitive operations in extended precision
® How do we make it work for elementary functions?
e Extremely challenging using prior approaches (e.g., Remez Algorithm)
e How to perform error analysis when round-to-odd mode is involved?

e Our RLiBM approach allows straight-forward integration with round-to-odd!
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How Does Round-to-Odd Work?

® Insight: Retain enough information about the real value even when double rounding

® How to generate 1 polynomial for 10 to 32-bit FP representation:
e Generate a polynomial for the 34-bit FP Generalize: (n + 2) bit floating point representation
® Using the round-to-odd rounding mode

¢ Round-to-odd:

34-bit PaN A\
FP }_O N NV

<&
&
<&
<&
<&
T

I{UTGERS 42 RAPL - Rutgers Architecture and Programming Languages Lab



How Does Round-to-Odd Work?

® Insight: Retain enough information about the real value even when double rounding

® How to generate 1 polynomial for 10 to 32-bit FP representation:
e Generate a polynomial for the 34-bit FP Generalize: (n + 2) bit floating point representation
® Using the round-to-odd rounding mode

¢ Round-to-odd:

e |f exactly representable, then it is represented with the value

Q0 9QQQQQQ

FP
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How Does Round-to-Odd Work?

® Insight: Retain enough information about the real value even when double rounding

® How to generate 1 polynomial for 10 to 32-bit FP representation:
e Generate a polynomial for the 34-bit FP Generalize: (n + 2) bit floating point representation
® Using the round-to-odd rounding mode

¢ Round-to-odd:
e |f exactly representable, then it is represented with the value

e Otherwise, rounds to the adjacent odd value

SNSRI Ve M-V olb=No}

" (odd) (odd) (odd) (odd)
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Correctly Rounded Results with Round-to-Odd

® Insight: Retain enough information about the real value even when double rounding

® How to generate 1 polynomial for 10 to 32-bit FP representation:
e Generate a polynomial for the 34-bit FP Generalize: (n + 2) bit floating point representation
® Using the round-to-odd rounding mode

® Producing correctly rounded results for a FP type with n-bits or less than n-bit:

34-bit

SO O— O O O O O O—
32-bit — —
float L] - =
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Correctly Rounded Results with Round-to-Odd

® Insight: Retain enough information about the real value even when double rounding

® How to generate 1 polynomial for 10 to 32-bit FP representation:
e Generate a polynomial for the 34-bit FP Generalize: (n + 2) bit floating point representation
® Using the round-to-odd rounding mode

® Producing correctly rounded results for a FP type with n-bits or less than n-bit:

® Produce correctly rounded results for (n+2)-bit FP in the round-to-odd mode

round-to-odd result in 34-bit FP

34-bit K\ALO
SO < O O & O & O—
32-bit }_D D D I
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Correctly Rounded Results with Round-to-Odd

® Insight: Retain enough information about the real value even when double rounding

® How to generate 1 polynomial for 10 to 32-bit FP representation:
e Generate a polynomial for the 34-bit FP Generalize: (n + 2) bit floating point representation
® Using the round-to-odd rounding mode

® Producing correctly rounded results for a FP type with n-bits or less than n-bit:
® Produce correctly rounded results for (n+2)-bit FP in the round-to-odd mode

® Round the result to FP type with n-bits or less than n-bits using any IEEE-754 rounding mode

round-to-odd result in 34-bit FP

34-bi
DS KO OO OO OO

o
4
[l

|
L1
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Correctly Rounded Results with Round-to-Odd

® Insight: Retain enough information about the real value even when double rounding
® How to generate 1 polynomial for 10 to 32-bit FP representation:
e Generate a polynomial for the 34-bit FP Generalize: (n + 2) bit floating point representation
® Using the round-to-odd rounding mode
® Producing correctly rounded results for a FP type with n-bits or less than n-bit:
® Produce correctly rounded results for (n+2)-bit FP in the round-to-odd mode
® Round the result to FP type with n-bits or less than n-bits using any IEEE-754 rounding mode

e Guaranteed to produce correctly rounded results!

round-to-odd result in 34-bit FP
34-pit K\ALO A A A A A
0 O 2 <O % <O <O \% O—
oot @ [ 0—
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Correctly Rounded Results with Round-to-Odd

® Insight: Retain enough information about the real value even when double rounding
® How to generate 1 polynomial for 10 to 32-bit FP representation:
e Generate a polynomial for the 34-bit FP Generalize: (n + 2) bit floating point representation
® Using the round-to-odd rounding mode
® Producing correctly rounded results for a FP type with n-bits or less than n-bit:
® Produce correctly rounded results for (n+2)-bit FP in the round-to-odd mode
® Round the result to FP type with n-bits or less than n-bits using any IEEE-754 rounding mode

e Guaranteed to produce correctly rounded results!

round-to-odd result in 34-bit FP
34-pit K\ALO A A A A A
0 O 2 <O % <O <O \% O—
P

32-bit — —
ot I ® K . =
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Our RLiBM Approach for Multiple Representations

® For each float input, compute 1.5 -

1.0

0.5

0.0

0.5

10 = Odd interval

. ® round-to-odd resultin T, )
- lng(x)
-1.5 T T T T w w
0.0 1.0 2.0 3.0
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Our RLiBM Approach for Multiple Representations

® For each float input, compute 1.5
e the round-to-odd result of log,(x) in FP34 g
0.5
0.0
0.5
10 B Odd interval
' ® round-to-odd resultin T, ,
— log,(x)
-1.5 T T T 7 — | |
0.0 1.0 2.0 3.0
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Our RLiBM Approach for Multiple Representations

® For each float input, compute 1.5
e the round-to-odd result of log,(x) in FP34 g
® Rounding interval with round-to-odd mode
0.5 1
0.0
0.5
104 = Odd interval
' ® round-to-odd resultin T, ,
— log,(x)
-1.5 T T T 7 — | |
0.0 1.0 2.0 3.0
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Handling Singleton Intervals

® For each float input, compute 1.5
e the round-to-odd result of log,(x) in FP34 o /E/E/E’
® Rounding interval with round-to-odd mode | s
e Singleton intervals (special case): 0.5 -
e When [og,(x) is exactly representable in FP34 o
¢ And value is even 0-07
¢ How to quickly identify them? 05
104 = Odd interval
' ® round-to-odd resultin T, ,
— logy(x)
-1.5 T T T 1 — | |
0.0 1.0 2.0 3.0

I{UTGERS 53 RAPL - Rutgers Architecture and Programming Languages Lab



Handling Singleton Intervals

® For each float input, compute 1.5
e the round-to-odd result of log,(x) in FP34 o /E/E/E’
® Rounding interval with round-to-odd mode | s
e Singleton intervals (special case): 0.5 -
e When [og,(x) is|exactly representable|in FP34 o
e And value is even 0-07
¢ How to quickly identify them? 05
104 = Odd interval
' ® round-to-odd resultin T, ,
— logy(x)
-1.5 T T T 1 — | |
0.0 1.0 2.0 3.0
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Handling Singleton Intervals

® For each float input, compute 1.5
e the round-to-odd result of log,(x) in FP34 o /E/E/E’
® Rounding interval with round-to-odd mode | s
e Singleton intervals (special case): 0.5 -
e When [og,(x) is|exactly representable|in FP34 o
e And value is even 0-07
¢ How to quickly identify them? 05
e Rational input with rational output |
104 = Odd interval
' ® round-to-odd resultin T, ,
— logy(x)
-1.5 T T T 1 — | |
0.0 1.0 2.0 3.0
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Handling Singleton Intervals

® For each float input, compute 1.5
e the round-to-odd result of log,(x) in FP34 o /E/E/E’
® Rounding interval with round-to-odd mode | s
e Singleton intervals (special case): 0.5 -
e When [og,(x) is|exactly representable|in FP34 o
e And value is even 0-07
¢ How to quickly identify them? 05
e Rational input with rational output |
: : : : Odd i |
e When is log,(x) rational for rational input?  -1.0- - interva _
® round-to-odd resultin T, ,
— logy(x)
-1.5 T T T 1 — | |
0.0 1.0 2.0 3.0
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Handling Singleton Intervals

® For each float input, compute

e the round-to-odd result of log,(x) in FP34

® Rounding interval with round-to-odd mode

e Singleton intervals

e When [og,(x) is

(special case):

exactly representable

® And value is even

¢ How to quickly identify them?

e Rational input with rational output

in FP34

e When is log,(x) rational for rational input?

RUTGERS

1.5

1.0 4 /IEI/E/|2|>
0.5

°

0.0

-0.5

10 = Odd interval

' ® round-to-oddresultin T, _,
— log,(x)
-1.5 w T 1 ] I w
0.0 1.0 2.0 3.0

Several results regarding rationality of elementary functions!
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Handling Singleton Intervals

® For each float input, compute

e the round-to-odd result of log,(x) in FP34

® Rounding interval with round-to-odd mode

e Singleton intervals

e When [og,(x) is

(special case):

exactly representable

® And value is even

¢ How to quickly identify them?

e Rational input with rational output

in FP34

e When is log,(x) rational for rational input?

e When x = 2! for integer i

RUTGERS

1.5

1.0 4 /IEI/E/|2|>
0.5

°

0.0

-0.5

10 = Odd interval

' ® round-to-oddresultin T, _,
— log,(x)
-1.5 w T 1 ] I w
0.0 1.0 2.0 3.0

Several results regarding rationality of elementary functions!
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Handling Singleton Intervals

® For each float input, compute

e the round-to-odd result of log,(x) in FP34

® Rounding interval with round-to-odd mode

e Singleton intervals

e When [og,(x) is

(special case):

exactly representable

® And value is even

¢ How to quickly identify them?

e Rational input with rational output

in FP34

e When is log,(x) rational for rational input?

e When x = 2! for integer i

RUTGERS

1.5
1.0
0.5
0.0
-0.5
10 = Odd interval
' ® round-to-oddresultin T, _,
— log,(x)
-1.5 T T 1 1 w w
0.0 1.0 2.0 3.0

Several results regarding rationality of elementary functions!
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Handling Singleton Intervals

® For each float input, compute 1.5
e the round-to-odd result of log,(x) in FP34 o n [] L
® Rounding interval with round-to-odd mode
e Singleton intervals (special case): 0.5 5 []
e When [og,(x) is exactly representable in FP34 []
e And value is even 007
¢ How to quickly identify them? 05 L
e Rational input with rational output []
e When is log,(x) rational for rational input?  -1.0- I? Zi:::_::\;jd resultinT,..,
e When x = 2! for integer i U — log,®) n
_1'50.0 - 1T0 | | 2To | 3‘.0
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Handling Singleton Intervals

® For each float input, compute 1.5
e the round-to-odd result of log,(x) in FP34 o - [] L
® Rounding interval with round-to-odd mode
e Singleton intervals (special case): 0.5 - 5 []
e When [og,(x) is exactly representable in FP34 []
e And value is even 007
¢ How to quickly identify them? 05 L
e Rational input with rational output []
e When is log,(x) rational for rational input?  -1.0- I? Zii:;_::\zd resultin T,
e When x = 2! for integer i L — logy() n
e Use the LP formulation to generate a polynomial " '50.0 - 1i0 | | 2.‘0 | 3{.0
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Handling Singleton Intervals

® For each float input, compute 1.5
e the round-to-odd result of log,(x) in FP34 o
® Rounding interval with round-to-odd mode
e Singleton intervals (special case): 0.5 -
e When [og,(x) is exactly representable in FP34
¢ And value is even 0-07
¢ How to quickly identify them? 05
e Rational input with rational output
e When is log,(x) rational for rational input?  -1.0- ? :ii::_::\gd resultin T,
e When x = 2! for integer i — log,®)
e Use the LP formulation to generate a polynomial _1'50.0 - 1i0 | | 2.‘0 | 3{.0
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Does it Work?
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Our RLiBM Functions Are Correctly Rounded

float
functions

Using
RLiBM-ALL

In(x)

log2(x)

log10(x)

exp(x)

exp2(x)

exp10(x)

sinh(x)

cosh(x)

ANANANANANANE VAN VAN

RUTGERS

® Produces correctly rounded results for multiple representations
e < 8 exponent bits (Same or less than 32-bit float)

e < 23 mantissa bits (same or less than 32-bit float)
e 161 different configurations
® [ncludes float, bfloat16, Tensorfloat32, half, etc

e Supports all five standard rounding modes

e 161 X5 = 805 combinations of configurations and rounding
modes
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Our RLiBM Functions Are Correctly Rounded

Ability to produce correctly rounded float value with all standard rounding modes for all inputs

float Using Using Using Using Using Using CRLibm
functions | RLiBM-ALL| glibc (float) glibc (double) Intel (float) Intel (double) (double)
In(x) v X X X X X
log2(x) v X v X v v
log10(x) v X X X X X
exp(x) v X X X X v/
exp2(x) v X X X X N/A
exp10(x) v X X X X N/A
sinh(x) v X X X X X
cosh(x) v X X X X v
sinpi(x) v/ N/A N/A X X e
cospi(x) v N/A N/A X X v
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RLIBM-ALL Functions Are Fast

W Speedup over float libm B Speedup over double libm

In  log2 log10 exp exp2 expl10 sinh cosh sinpi cospi avg.

Speedup over using Intel math library
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RLIBM-ALL Functions Are Fast

2.5x

Speedup

0.0x

2.5X

In  log2 log10 exp10 sinh cosh sinpi cospi avg.

Speedup over using CR-LIBM library
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Transition to Practice

5 functions in LLVM'’s libc is built using RLIBM’s implementations!

[libc] Implement correctly rounded logf based on RLIBM library. Browse files
Implement correctly rounded logf based on RLIBM library: https://people.cs.rutgers.edu/~sn349/rlibm/.

[libc] Implement correctly rounded log2f based on RLIBM library. Browse files
Implement log2f based on RLIBM library correctly rounded for all rounding modes.

x [libc] Implement log10f correctly rounded for all rounding modes. Browse files
Based on RLIBM implementation similar to logf and log2f. Most of the exceptional inputs are the exact powers of 10.

[libc] Improve the performance of expf. Browse files
Reduce the polynomial's degree from 7 down to 4.

[libc] Improve the performance of exp2f. Browse files

Reduce the range-reduction table size from 128 entries down to 64 entries, and
reduce the polynomial's degree from 6 down to 4.

Currently we use a degree-6 minimax polynomial on an interval of length 2~-7

around @ to compute exp2f. Based on the suggestion of @santoshn and the RLIBM

project (https://github.com/rutgers—-apl/rlibm-prog/blob/main/libm/float/exp2.c)

it is possible to have a good polynomial of degree-4 on a subinterval of length y109acea92elacb661c404fa62b9
2~(-6) to approximate 2”x.

We did try to either reduce the degree of the polynomial down to 3 or increase
the interval size to 2~(-5), but in both cases the number of exceptional values
exploded. So we settle with using a degree-4 polynomial of the interval of
size 2~(-6) around 0.

Reviewed By: michaelrj, sivachandra, zimmermann6, santoshn

Differential Revision: https://reviews.llvm.org/D122346

¥ main
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Conclusion

¢ Approximate the correctly rounded result rather than the real value
¢ Linear programming formulation based on the interval around the correct result

e How to generate a generic polynomial for all representations up to n-bits?
e Generate polynomials for (n+2)-bit representation
e That produces correct results with round-to-odd mode
 Quickly identify singleton intervals: when f(x) is rational for rational input
e Our RLIBM prototype produces correctly rounded results for all inputs in
e 161 different FP configurations
e All 5 IEEE-754 standard rounding modes
e Faster than mainstream math libraries

Make correctly rounded results mandatory rather than a recommendation by the standards
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Open Source

Visit the RLIBM page for papers & prototypes
https://www.cs.rutgers.edu/~santosh.nagarakatte/rlibm/

Thanks National Science Foundation for the support <
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