A Case for Correctly Rounded Elementary Functions

Santosh Nagarakatte @ NJPLS 2022 Rutgers University

Collaborators: Jay Lim, Mridul Aanjaneya, John Gustafson, and Sehyeok Park

1

4

RUTGERS

RUTGERS

How do Prior Techniques Approximate Elementary Functions?

- 1. Approximate the REAL value of ln(x)
- 2. Feasible with small domains:

Range reduction to transform the input to a small domain

3. Mini-Max Approximation:

Polynomial Approximation that minimizes the maximum error for all points

RUTGERS

What's the issue with Mini-Max Approximations?

What's the issue with Mini-Max Approximations?

RUTGERS

What's the issue with Mini-Max Approximations?

RUTGERS

• Given f(x), a representation, and a rounding mode

• Given f(x), a representation, and a rounding mode

1. Compute the correctly rounded result of f(x)

• Given f(x), a representation, and a rounding mode

1. Compute the correctly rounded result of f(x)

2. Identify rounding interval for each input

• Given f(x), a representation, and a rounding mode

1. Compute the correctly rounded result of f(x)

- 2. Identify rounding interval for each input
 - A linear constraint on the output of the polynomial

$$l_1 \le P(x_1) \le h_1$$

$$l_2 \le P(x_2) \le h_2$$

$$l_3 \le P(x_3) \le h_3$$

$$l_4 \le P(x_4) \le h_4$$

. . .

• Given f(x), a representation, and a rounding mode

1. Compute the correctly rounded result of f(x)

2. Identify rounding interval for each input

• A linear constraint on the output of the polynomial

3. Encode constraint into system of linear inequalities

$$\begin{bmatrix} l_1 \\ l_2 \\ l_3 \\ l_4 \\ \cdots \end{bmatrix} \leq \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^d \\ 1 & x_2 & x_2^2 & \cdots & x_2^d \\ 1 & x_3 & x_3^2 & \cdots & x_3^d \\ 1 & x_4 & x_4^2 & \cdots & x_4^d \\ \cdots \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ \cdots \\ c_d \end{bmatrix} \leq \begin{bmatrix} h_1 \\ h_2 \\ h_3 \\ h_4 \\ \cdots \end{bmatrix}$$

RUTGERS

22

• Given f(x), a representation, and a rounding mode

1. Compute the correctly rounded result of f(x)

2. Identify rounding interval for each input

- A linear constraint on the output of the polynomial
- 3. Encode constraint into system of linear inequalities

4. Use a Linear Programming solver to solve for P(x)

$$\begin{bmatrix} l_1 \\ l_2 \\ l_3 \\ l_4 \\ \dots \end{bmatrix} \leq \begin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^d \\ 1 & x_2 & x_2^2 & \dots & x_2^d \\ 1 & x_3 & x_3^2 & \dots & x_3^d \\ 1 & x_4 & x_4^2 & \dots & x_4^d \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ \dots \\ c_d \end{bmatrix} \leq \begin{bmatrix} h_1 \\ h_2 \\ h_3 \\ h_4 \\ \dots \end{bmatrix}$$

23

• Given f(x), a representation, and a rounding mode

1. Compute the correctly rounded result of f(x)

2. Identify rounding interval for each input

- A linear constraint on the output of the polynomial
- 3. Encode constraint into system of linear inequalities

4. Use Linear Programming solver to solve for P(x)

• Resulting polynomial produces correct results for the chosen representation and rounding mode

chosen representation and rounding mode

How do we produce a single polynomial approximation that produces correctly rounded results for multiple representations and rounding modes?

Let's say we want to produce correctly rounded result of $log_2(x)$ for a 32-bit float

 $log_2(x)$ for 64-bit double type

Let's say we want to produce correctly rounded result of $log_2(x)$ for a 32-bit float

input

x in float $log_2(x)$ for 64-bit double type

Let's say we want to produce correctly rounded result of $log_2(x)$ for a 32-bit float

Double Rounding Is The Enemy

Let's say we want to produce correctly rounded result of $log_2(x)$ for a 32-bit float

Double Rounding Is The Enemy

Let's say we want to produce correctly rounded result of $log_2(x)$ for a 32-bit float

Double Rounding Is The Enemy

Let's say we want to produce correctly rounded result of $log_2(x)$ for a 32-bit float

Double Rounding Is The Enemy

Let's say we want to produce correctly rounded result of $log_2(x)$ for a 32-bit float

38

RUTGERS

- Insight: Retain enough information about the real value even when double rounding
- How to generate 1 polynomial for 10 to 32-bit FP representations
 - Generate a polynomial for the 34-bit FP
 - Using the round-to-odd rounding mode

Generalize: (n + 2) bit floating point representation

Round-to-Odd Rounding Mode

- Insight: Retain enough information about the real value even when double rounding
- How to generate 1 polynomial for 10 to 32-bit FP representation:
 - Generate a polynomial for the 34-bit FP
 - Using the round-to-odd rounding mode
- Round-to-odd:
 - Used for rounding from a decimal to a binary fraction [Goldberg 1991]
 - Used for primitive operations in extended precision [Boldo et al. 2005]

Generalize: (n + 2) bit floating point representation

Round-to-Odd Rounding Mode

- Insight: Retain enough information about the real value even when double rounding
- How to generate 1 polynomial for 10 to 32-bit FP representation:
 - Generate a polynomial for the 34-bit FP
 - Using the round-to-odd rounding mode
- Round-to-odd:
 - Used for rounding from a decimal to a binary fraction [Goldberg 1991]
 - Used for primitive operations in extended precision [Boldo et al. 2005]
- How do we make it work for elementary functions?
 - Extremely challenging using prior approaches (e.g., Remez Algorithm)
 - How to perform error analysis when round-to-odd mode is involved?
 - Our **RLIBM** approach allows straight-forward integration with round-to-odd!

Generalize: (n + 2) bit floating point representation

How Does Round-to-Odd Work?

- Insight: Retain enough information about the real value even when double rounding
- How to generate 1 polynomial for 10 to 32-bit FP representation:
 - Generate a polynomial for the 34-bit FP
 - Using the round-to-odd rounding mode
- Round-to-odd:

Generalize: (n + 2) bit floating point representation

How Does Round-to-Odd Work?

- Insight: Retain enough information about the real value even when double rounding
- How to generate 1 polynomial for 10 to 32-bit FP representation:
 - Generate a polynomial for the 34-bit FP
 - Using the round-to-odd rounding mode
- Round-to-odd:
 - If exactly representable, then it is represented with the value

Generalize: (n + 2) bit floating point representation

How Does Round-to-Odd Work?

- Insight: Retain enough information about the real value even when double rounding
- How to generate 1 polynomial for 10 to 32-bit FP representation:
 - Generate a polynomial for the 34-bit FP
 - Using the round-to-odd rounding mode
- Round-to-odd:
 - If exactly representable, then it is represented with the value
 - Otherwise, rounds to the adjacent odd value

Generalize: (n + 2) bit floating point representation

- Insight: Retain enough information about the real value even when double rounding
- How to generate 1 polynomial for 10 to 32-bit FP representation:
 - Generate a polynomial for the 34-bit FP

Generalize: (n + 2) bit floating point representation

- Using the round-to-odd rounding mode
- Producing correctly rounded results for a FP type with n-bits or less than n-bit:

- Insight: Retain enough information about the real value even when double rounding
- How to generate 1 polynomial for 10 to 32-bit FP representation:
 - Generate a polynomial for the 34-bit FP
- Generalize: (n + 2) bit floating point representation

- Using the round-to-odd rounding mode
- Producing correctly rounded results for a FP type with n-bits or less than n-bit:
 - Produce correctly rounded results for (n+2)-bit FP in the round-to-odd mode

- Insight: Retain enough information about the real value even when double rounding
- How to generate 1 polynomial for 10 to 32-bit FP representation:
 - Generate a polynomial for the 34-bit FP Generalize: (n + 2) bit floating point representation
 - Using the round-to-odd rounding mode
- Producing correctly rounded results for a FP type with n-bits or less than n-bit:
 - Produce correctly rounded results for (n+2)-bit FP in the round-to-odd mode
 - Round the result to FP type with n-bits or less than n-bits using any IEEE-754 rounding mode

47

- Insight: Retain enough information about the real value even when double rounding
- How to generate 1 polynomial for 10 to 32-bit FP representation:
 - Generate a polynomial for the 34-bit FP Generalize: (n + 2) bit floating point representation
 - Using the round-to-odd rounding mode
- Producing correctly rounded results for a FP type with n-bits or less than n-bit:
 - Produce correctly rounded results for (n+2)-bit FP in the round-to-odd mode
 - Round the result to FP type with n-bits or less than n-bits using any IEEE-754 rounding mode
 - Guaranteed to produce correctly rounded results!

48

- Insight: Retain enough information about the real value even when double rounding
- How to generate 1 polynomial for 10 to 32-bit FP representation:
 - Generate a polynomial for the 34-bit FP Generalize: (n + 2) bit floating point representation
 - Using the round-to-odd rounding mode
- Producing correctly rounded results for a FP type with n-bits or less than n-bit:
 - Produce correctly rounded results for (n+2)-bit FP in the round-to-odd mode
 - Round the result to FP type with n-bits or less than n-bits using any IEEE-754 rounding mode
 - Guaranteed to produce correctly rounded results!

• For each float input, compute

- For each float input, compute
 - the *round-to-odd* result of $log_2(x)$ in FP34

- For each float input, compute
 - the *round-to-odd* result of $log_2(x)$ in FP34
 - Rounding interval with round-to-odd mode

3.0

2.0

1.0

-1.5

0.0

RUTGERS

RAPL - Rutgers Architecture and Programming Languages Lab

RUTGERS

RAPL - Rutgers Architecture and Programming Languages Lab

RUTGERS

RAPL - Rutgers Architecture and Programming Languages Lab

Several results regarding rationality of elementary functions!

Several results regarding rationality of elementary functions!

RUTGERS

Several results regarding rationality of elementary functions!

RUTGERS

RUTGERS

RAPL - Rutgers Architecture and Programming Languages Lab

RUTGERS

RAPL - Rutgers Architecture and Programming Languages Lab

RUTGERS

RAPL - Rutgers Architecture and Programming Languages Lab

Does it Work?

Our RLIBM Functions Are Correctly Rounded

float functions	Using RLIBM-ALL
ln(x)	 ✓
log2(x)	 Image: A start of the start of
log10(x)	 ✓
exp(x)	 ✓
exp2(x)	 ✓
exp10(x)	 ✓
sinh(x)	 ✓
cosh(x)	 ✓
sinpi(x)	 ✓
cospi(x)	

- Produces correctly rounded results for multiple representations
 - ≤ 8 exponent bits (Same or less than 32-bit float)
 - ≤ 23 mantissa bits (same or less than 32-bit float)
 - 161 different configurations
 - Includes float, bfloat16, Tensorfloat32, half, etc
- Supports all five standard rounding modes
- $161 \times 5 = 805$ combinations of configurations and rounding modes

Our RLIBM Functions Are Correctly Rounded

Ability to produce correctly rounded float value with all standard rounding modes for all inputs

float functions	Using RLIBM-ALL	Using glibc (float)	Using glibc (double)	Using Intel (float)	Using Intel (double)	Using CRLibm (double)
ln(x)	 ✓ 	×	×	×	×	×
log2(x)	 Image: A start of the start of	×	 ✓ 	×	 ✓ 	 ✓
log10(x)	 ✓ 	×	×	×	×	×
exp(x)	 ✓ 	×	×	×	×	 ✓
exp2(x)	 ✓ 	×	×	×	×	N/A
exp10(x)	 ✓ 	×	×	×	×	N/A
sinh(x)	 ✓ 	×	×	×	×	×
cosh(x)	 ✓ 	×	×	×	×	v
sinpi(x)	 ✓ 	N/A	N/A	×	×	v
cospi(x)	 ✓ 	N/A	N/A	×	×	 ✓

RLIBM-ALL Functions Are Fast

Speedup over using Intel math library

RLIBM-ALL Functions Are Fast

Speedup over using CR-LIBM library

Transition to Practice

5 functions in LLVM's libc is built using RLIBM's implementations!

] Implement correctly rounded log2f based on RLIBM library.		Browse files
ement log2f based on RLIBM library correctly rounded for all rounding modes.		
ibc] Implement log10f correctly rounded for all rounding modes.		Browse files
d on RLIBM implementation similar to logf and log2f. Most of the exception	onal inputs are the exact powers of 10.	
[libc] Improve the performance of expf.	Browse files	
Reduce the polynomial's degree from 7 down to 4.		
[libc] Improve the performance of exp2f.	Browse files	
Reduce the range-reduction table size from 128 entries down to 64 entries, and reduce the polynomial's degree from 6 down to 4.		
Currently we use a degree-6 minimax polynomial on an interval of length 2^{-7} around 0 to compute exp2f. Based on the suggestion of @santoshn and the RLIBM		
<pre>project (https://github.com/rutgers-apl/rlibm-prog/blob/main/libm/float/exp2.c)</pre>		j109acea92e1acb661c404fa62b9
it is possible to have a good polynomial of degree-4 on a subinterval of length $2^{(-6)}$ to approximate 2^{x} .)109acea92e1acb00104041a02b9
We did try to either reduce the degree of the polynomial down to 3 or increase		
the interval size to $2^{(-5)}$, but in both cases the number of exceptional values exploded. So we settle with using a degree-4 polynomial of the interval of		
size 2 ⁽⁻⁶⁾ around 0.		
Reviewed By: michaelrj, sivachandra, zimmermann6, santoshn		
Differential Revision: https://reviews.llvm.org/D122346		

Conclusion

- Approximate the correctly rounded result rather than the real value
 - Linear programming formulation based on the interval around the correct result
- How to generate a generic polynomial for all representations up to n-bits?
 - Generate polynomials for (n+2)-bit representation
 - That produces correct results with round-to-odd mode
 - Quickly identify singleton intervals: when f(x) is rational for rational input
- Our RLIBM prototype produces correctly rounded results for all inputs in
 - 161 different FP configurations
 - All 5 IEEE-754 standard rounding modes
- Faster than mainstream math libraries

Make correctly rounded results mandatory rather than a recommendation by the standards

Open Source

Visit the RLIBM page for papers & prototypes https://www.cs.rutgers.edu/~santosh.nagarakatte/rlibm/

Thanks National Science Foundation for the support

