A Case for Correctly Rounded Elementary Functions

Santosh Nagarakatte @ NJPLS 2022
Rutgers University

Collaborators: Jay Lim, Mridul Aanjaneya, John Gustafson, and Sehyeok Park
From Compiler Verification to Elementary Functions

From Compiler Verification to Elementary Functions

Alive DSL → Alive → SMT Queries → Z3 → Floating point
Optimizations are wrong!

POPL 2012, PLDI 2013, PLDI 2015,
SAS 2016, PLDI 2017, CACM-RH 2018

Compiler/LLVM
Verification

C++ Instcombine Pass → LLVM

Fast math optimizations

SAS 2016
From Compiler Verification to Elementary Functions

Floating point Optimizations are wrong!

Fast math optimizations

Shadow execution with a high-precision oracle

Math library functions produce wrong results

$e^x, \log_2 x, \ldots$

Alive DSL

Alive

SMT Queries

Z3

Analysis

C++ Instcombine Pass

LLVM

Compiler/LLVM Verification

SAS 2016

PLDI 2020, FSE 2021
From Compiler Verification to Elementary Functions

Who cares?

SAS 2016

Fast math optimizations

PLDI 2020, FSE 2021

Math library functions produce wrong results

Alive DSL → Alive → SMT Queries → Z3

Compiler/LLVM Verification

C++ Instcombine Pass → LLVM

Floating point Optimizations are wrong!

Shadow execution with a high-precision oracle
From Compiler Verification to Elementary Functions

- Alive DSL
- SMT Queries
- Z3
- LLVM
- Analysis
- C++ Instcombine Pass
- Shadow execution with a high-precision oracle
- Floating point Optimizations are wrong!
- Who cares?

Exact same program on different machines => not reproducible executions!
Program crashes, wrong application results!

SAS 2016
PLDI 2020, FSE 2021

Fast math optimizations
Math library functions produce wrong results
What is a Correctly Rounded Result?

real number line

v_1, v_2, v_3
What is a Correctly Rounded Result?

real number line

v_1 v_2 v_3

$ln(x_1)$ in real number
What is a Correctly Rounded Result?

real number line

\[v_1 \rightarrow v_2 \rightarrow v_3 \]

(round-to-nearest-tie-goes-even)

\[\ln(x_1) \text{ in real number} \]
What is a Correctly Rounded Result?

real number line

\[v_1 \quad v_2 \quad v_3 \]

round-to-nearest-tie-goes-even

\(\ln(x_1) \) in real number

correctly rounded result
How do Prior Techniques Approximate Elementary Functions?

1. Approximate the REAL value of ln(x)

2. Feasible with small domains:
Range reduction to transform the input to a small domain

3. Mini-Max Approximation:
Polynomial Approximation that minimizes the maximum error for all points
What's the issue with Mini-Max Approximations?

The real value of $ln(x_1)$ can be extremely close to the decision boundary.

Need to approximate $f(x)$ extremely accurately.
What’s the issue with Mini-Max Approximations?

The real value of $ln(x_1)$ can be extremely close to the decision boundary.

Need to approximate $f(x)$ extremely accurately.

Any approximation error or a numerical error can change the rounding decision.
What's the issue with Mini-Max Approximations?

The real value of $ln(x_1)$ can be extremely close to the decision boundary.

Need to approximate $f(x)$ extremely accurately.

Any approximation error or a numerical error can change the rounding decision.

Wrong result due to Incorrect rounding!
Our RLIBM Project [POPL 2021, PLDI 2021, POPL 2022, PLDI 2022]

real number line

round-to-nearest-tie-goes-even

$log_2(x_1)$ in real number

correctly rounded result

Our RLIBM project makes a case for approximating the correctly rounded result
Our RLIBM Project [POPL 2021, PLDI 2021, POPL 2022, PLDI 2022]

real number line

round-to-nearest-tie-goes-even

v_1 v_2 v_3

$\log_2(x_1)$ in real number correctly rounded result

What is the oracle correctly rounded result?

Focus of the RLIBM project

How to build an efficient implementation that produces the oracle correctly rounded result?
Our RLIBM Project [POPL 2021, PLDI 2021, POPL 2022, PLDI 2022]

Our RLIBM project makes a case for approximating the correctly rounded result.
Our RLIBM Project [POPL 2021, PLDI 2021, POPL 2022, PLDI 2022]

• Given $f(x)$, a representation, and a rounding mode
• Given $f(x)$, a representation, and a rounding mode

 1. Compute the correctly rounded result of $f(x)$
Our RLIBM Project [POPL 2021, PLDI 2021, POPL 2022, PLDI 2022]

• Given $f(x)$, a representation, and a rounding mode

 1. Compute the correctly rounded result of $f(x)$
 2. Identify rounding interval for each input
Our RLIBM Project [POPL 2021, PLDI 2021, POPL 2022, PLDI 2022]

• Given $f(x)$, a representation, and a rounding mode

1. Compute the correctly rounded result of $f(x)$
2. Identify rounding interval for each input
 • A linear constraint on the output of the polynomial

\[
\begin{align*}
l_1 & \leq P(x_1) \leq h_1 \\
l_2 & \leq P(x_2) \leq h_2 \\
l_3 & \leq P(x_3) \leq h_3 \\
l_4 & \leq P(x_4) \leq h_4 \\
& \vdots
\end{align*}
\]
• Given $f(x)$, a representation, and a rounding mode

 1. Compute the correctly rounded result of $f(x)$
 2. Identify rounding interval for each input
 • A linear constraint on the output of the polynomial
 3. Encode constraint into system of linear inequalities

\[
\begin{bmatrix}
 l_1 \\
 l_2 \\
 l_3 \\
 l_4 \\
 \vdots
\end{bmatrix} \leq \begin{bmatrix}
 1 & x_1 & x_1^2 & \cdots & x_1^d \\
 1 & x_2 & x_2^2 & \cdots & x_2^d \\
 1 & x_3 & x_3^2 & \cdots & x_3^d \\
 1 & x_4 & x_4^2 & \cdots & x_4^d \\
 \vdots & & & & \\
\end{bmatrix} \begin{bmatrix}
 c_0 \\
 c_1 \\
 c_2 \\
 \vdots \\
 c_d
\end{bmatrix} \leq \begin{bmatrix}
 h_1 \\
 h_2 \\
 h_3 \\
 h_4 \\
 \vdots
\end{bmatrix}
\]
Our RLIBM Project [POPL 2021, PLDI 2021, POPL 2022, PLDI 2022]

- Given $f(x)$, a representation, and a rounding mode
 1. Compute the correctly rounded result of $f(x)$
 2. Identify rounding interval for each input
 - A linear constraint on the output of the polynomial
 3. Encode constraint into system of linear inequalities
 4. Use a Linear Programming solver to solve for $P(x)$

\[
\begin{bmatrix}
 l_1 \\
 l_2 \\
 l_3 \\
 l_4 \\
 \vdots \\
\end{bmatrix} \leq \begin{bmatrix}
 1 & x_1 & x_1^2 & \cdots & x_1^d \\
 1 & x_2 & x_2^2 & \cdots & x_2^d \\
 1 & x_3 & x_3^2 & \cdots & x_3^d \\
 1 & x_4 & x_4^2 & \cdots & x_4^d \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
\end{bmatrix} \begin{bmatrix}
 c_0 \\
 c_1 \\
 c_2 \\
 \cdots \\
 c_d \\
\end{bmatrix} \leq \begin{bmatrix}
 h_1 \\
 h_2 \\
 h_3 \\
 h_4 \\
 \vdots \\
\end{bmatrix}
\]
Our RLIBM Project [POPL 2021, PLDI 2021, POPL 2022, PLDI 2022]

- Given $f(x)$, a representation, and a rounding mode
 1. Compute the correctly rounded result of $f(x)$
 2. Identify rounding interval for each input
 - A linear constraint on the output of the polynomial
 3. Encode constraint into system of linear inequalities
 4. Use Linear Programming solver to solve for $P(x)$
- Resulting polynomial produces correct results for the chosen representation and rounding mode
Our RLIBM Project [POPL 2021, PLDI 2021, POPL 2022, PLDI 2022]

- Given $f(x)$, a representation, and a rounding mode
 1. Compute the correctly rounded result of $f(x)$
 2. Identify rounding interval for each input
 - There are 5 different rounding modes in the IEEE-754 standard
 - Everyone designing new representations trading-off dynamic range and/or precision
 3. Encode constraint into system of linear inequalities
 4. Use Linear Programming solver to solve for
 - Resulting polynomial produces correct results for the chosen representation and rounding mode
How do we produce a single polynomial approximation that produces correctly rounded results for multiple representations and rounding modes?
A Naive Solution

Let’s say we want to produce correctly rounded result of $\log_2(x)$ for a 32-bit float.
A Naive Solution

Let's say we want to produce correctly rounded result of $\log_2(x)$ for a 32-bit float

$log_2(x)$ for 64-bit double type
A Naive Solution

Let’s say we want to produce correctly rounded result of $\log_2(x)$ for a 32-bit float

input

\[x \]

in float

$\log_2(x)$ for

64-bit double type
A Naive Solution

Let’s say we want to produce correctly rounded result of $\log_2(x)$ for a 32-bit float.

input x in float \[\rightarrow\] input x in double

$log_2(x)$ for 64-bit double type
A Naive Solution

Let’s say we want to produce correctly rounded result of $\log_2(x)$ for a 32-bit float.
A Naive Solution

Let’s say we want to produce correctly rounded result of $\log_2(x)$ for a 32-bit float.

\[
\begin{align*}
\text{input } x & \quad \text{in float} \\
\text{input } x & \quad \text{in double} \\
\text{log}_2(x) \text{ for 64-bit double type} & \\
\text{output } y & \quad \text{in double} \\
\text{round } y & \quad \text{to float}
\end{align*}
\]
A Naive Solution

Let’s say we want to produce correctly rounded result of $log_2(x)$ for a 32-bit float
A Naive Solution

Let's say we want to produce correctly rounded result of $\log_2(x)$ for a 32-bit float.
Double Rounding Is The Enemy

Let’s say we want to produce correctly rounded result of $\log_2(x)$ for a 32-bit float.
Double Rounding Is The Enemy

Let’s say we want to produce correctly rounded result of $\log_2(x)$ for a 32-bit float.
Double Rounding Is The Enemy

Let’s say we want to produce correctly rounded result of $\log_2(x)$ for a 32-bit float.
Double Rounding Is The Enemy

Let's say we want to produce correctly rounded result of $\log_2(x)$ for a 32-bit float.
Our RLIBM Approach for Multiple Representations

- Insight: Retain enough information about the real value even when double rounding
- How to generate 1 polynomial for 10 to 32-bit FP representations
 - Generate a polynomial for the 34-bit FP
 - Using the round-to-odd rounding mode

Generalize: \((n + 2)\) bit floating point representation
Round-to-Odd Rounding Mode

- Insight: **Retain enough information about the real value** even when double rounding
- How to generate **1 polynomial** for 10 to 32-bit FP representation:
 - Generate a polynomial for the **34-bit FP**
 - Using the **round-to-odd** rounding mode
- **Round-to-odd**:
 - Used for rounding from a decimal to a binary fraction **[Goldberg 1991]**
 - Used for primitive operations in extended precision **[Boldo et al. 2005]**

Generalize: (n + 2) bit floating point representation
Round-to-Odd Rounding Mode

• Insight: Retain enough information about the real value even when double rounding
• How to generate 1 polynomial for 10 to 32-bit FP representation:
 • Generate a polynomial for the 34-bit FP
 • Using the round-to-odd rounding mode
• Round-to-odd:
 • Used for rounding from a decimal to a binary fraction \[\text{[Goldberg 1991]}\]
 • Used for primitive operations in extended precision \[\text{[Boldo et al. 2005]}\]
• How do we make it work for elementary functions?
 • Extremely challenging using prior approaches (e.g., Remez Algorithm)
 • How to perform error analysis when round-to-odd mode is involved?
 • Our RLIBM approach allows straight-forward integration with round-to-odd!
How Does Round-to-Odd Work?

- Insight: Retain enough information about the real value even when double rounding
- How to generate 1 polynomial for 10 to 32-bit FP representation:
 - Generate a polynomial for the 34-bit FP
 - Using the round-to-odd rounding mode
- Round-to-odd:

Generalize: \((n + 2)\) bit floating point representation
How Does Round-to-Odd Work?

- Insight: Retain enough information about the real value even when double rounding
- How to generate 1 polynomial for 10 to 32-bit FP representation:
 - Generate a polynomial for the 34-bit FP
 - Using the round-to-odd rounding mode
- Round-to-odd:
 - If exactly representable, then it is represented with the value

34-bit FP

Generalize: (n + 2) bit floating point representation
How Does Round-to-Odd Work?

- Insight: **Retain enough information about the real value** even when double rounding
- How to generate 1 polynomial for 10 to 32-bit FP representation:
 - Generate a polynomial for the **34-bit FP**
 - Using the **round-to-odd** rounding mode
- Round-to-odd:
 - If exactly representable, then it is represented with the value
 - Otherwise, rounds to the adjacent odd value
Correctly Rounded Results with Round-to-Odd

- Insight: Retain enough information about the real value even when double rounding
- How to generate 1 polynomial for 10 to 32-bit FP representation:
 - Generate a polynomial for the 34-bit FP
 - Using the round-to-odd rounding mode
- Producing correctly rounded results for a FP type with n-bits or less than n-bit:

```
34-bit FP
32-bit float
```
Correctly Rounded Results with Round-to-Odd

- Insight: Retain enough information about the real value even when double rounding
- How to generate 1 polynomial for 10 to 32-bit FP representation:
 - Generate a polynomial for the 34-bit FP
 - Using the round-to-odd rounding mode
- Producing correctly rounded results for a FP type with n-bits or less than n-bit:
 - Produce correctly rounded results for (n+2)-bit FP in the round-to-odd mode

![Diagram showing the relationship between 34-bit and 32-bit floating point representations with a round-to-odd result in 34-bit FP]
Correctly Rounded Results with Round-to-Odd

- **Insight:** Retain enough information about the real value even when double rounding
- **How to generate 1 polynomial for 10 to 32-bit FP representation:**
 - Generate a polynomial for the 34-bit FP
 - Using the round-to-odd rounding mode
- **Producing correctly rounded results for a FP type with n-bits or less than n-bit:**
 - Produce correctly rounded results for (n+2)-bit FP in the round-to-odd mode
 - Round the result to FP type with n-bits or less than n-bits using any IEEE-754 rounding mode

![Diagram showing the relationship between 34-bit and 32-bit floating point representations](image-url)
Correctly Rounded Results with Round-to-Odd

- **Insight:** Retain enough information about the real value even when double rounding
- **How to generate 1 polynomial for 10 to 32-bit FP representation:**
 - Generate a polynomial for the 34-bit FP
 - Using the round-to-odd rounding mode
- **Producing correctly rounded results for a FP type with n-bits or less than n-bit:**
 - Produce correctly rounded results for (n+2)-bit FP in the round-to-odd mode
 - Round the result to FP type with n-bits or less than n-bits using any IEEE-754 rounding mode
 - Guaranteed to produce correctly rounded results!
Correctly Rounded Results with Round-to-Odd

• Insight: Retain enough information about the real value even when double rounding
• How to generate 1 polynomial for 10 to 32-bit FP representation:
 • Generate a polynomial for the 34-bit FP
 • Using the round-to-odd rounding mode
• Producing correctly rounded results for a FP type with n-bits or less than n-bit:
 • Produce correctly rounded results for (n+2)-bit FP in the round-to-odd mode
 • Round the result to FP type with n-bits or less than n-bits using any IEEE-754 rounding mode
 • Guaranteed to produce correctly rounded results!

34-bit FP

round-to-odd result in 34-bit FP

32-bit float
Our RLIBM Approach for Multiple Representations

- For each float input, compute
Our RLIBM Approach for Multiple Representations

- For each float input, compute
 - the \textit{round-to-odd} result of $\log_2(x)$ in FP34

![Graph showing the relation between $\log_2(x)$ and the round-to-odd result in \mathbb{T}_{n+2}]
Our RLIBM Approach for Multiple Representations

- For each float input, compute
 - the round-to-odd result of $\log_2(x)$ in FP34
 - Rounding interval with round-to-odd mode
Handling Singleton Intervals

- For each float input, compute
 - the *round-to-odd* result of $\log_2(x)$ in FP34
- Rounding interval with *round-to-odd* mode
- Singleton intervals (special case):
 - When $\log_2(x)$ is exactly representable in FP34
 - And value is even
 - How to quickly identify them?
Handling Singleton Intervals

- For each float input, compute
 - the *round-to-odd* result of $\log_2(x)$ in FP34
 - Rounding interval with *round-to-odd* mode
- Singleton intervals *(special case)*:
 - When $\log_2(x)$ is *exactly representable* in FP34
 - And value is even
 - How to quickly identify them?

![Graph showing handling of singleton intervals](image)
Handling Singleton Intervals

- For each float input, compute
 - the *round-to-odd* result of $\log_2(x)$ in FP34
 - Rounding interval with *round-to-odd* mode
- Singleton intervals (special case):
 - When $\log_2(x)$ is exactly representable in FP34
 - And value is even
 - How to quickly identify them?
 - Rational input with rational output
Handling Singleton Intervals

• For each float input, compute
 • the *round-to-odd* result of $\log_2(x)$ in FP34
 • Rounding interval with *round-to-odd* mode
• Singleton intervals *(special case)*:
 • When $\log_2(x)$ is *exactly representable* in FP34
 • And value is even
 • How to quickly identify them?
 • Rational input with *rational* output
 • When is $\log_2(x)$ rational for rational input?
Handling Singleton Intervals

- For each float input, compute
 - the round-to-odd result of \(\log_2(x) \) in FP34
 - Rounding interval with round-to-odd mode

Singleton intervals (special case):
- When \(\log_2(x) \) is exactly representable in FP34
- And value is even
- How to quickly identify them?
 - Rational input with rational output
 - When is \(\log_2(x) \) rational for rational input?

Several results regarding rationality of elementary functions!
Handling Singleton Intervals

- For each float input, compute
 - the round-to-odd result of $\log_2(x)$ in FP34
 - Rounding interval with round-to-odd mode
- Singleton intervals (special case):
 - When $\log_2(x)$ is exactly representable in FP34
 - And value is even
 - How to quickly identify them?
 - Rational input with rational output
 - When is $\log_2(x)$ rational for rational input?
 - When $x = 2^i$ for integer i

Several results regarding rationality of elementary functions!
Handling Singleton Intervals

- For each float input, compute
 - the *round-to-odd* result of \(\log_2(x) \) in FP34
- Rounding interval with *round-to-odd* mode
- Singleton intervals *(special case)*:
 - When \(\log_2(x) \) is exactly representable in FP34
 - And value is even
 - How to quickly identify them?
 - Rational input with rational output
 - When is \(\log_2(x) \) rational for rational input?
 - When \(x = 2^i \) for integer \(i \)

Several results regarding rationality of elementary functions!
Handling Singleton Intervals

- For each float input, compute
 - the \textit{round-to-odd} result of $\log_2(x)$ in FP34
 - Rounding interval with \textit{round-to-odd} mode
- Singleton intervals (special case):
 - When $\log_2(x)$ is exactly representable in FP34
 - And value is even
 - How to quickly identify them?
 - \textbf{Rational} input with \textbf{rational} output
 - When is $\log_2(x)$ rational for rational input?
 - When $x = 2^i$ for integer i
Handling Singleton Intervals

• For each float input, compute
 • the *round-to-odd* result of $\log_2(x)$ in FP34
 • Rounding interval with *round-to-odd* mode
• Singleton intervals *(special case)*:
 • When $\log_2(x)$ is exactly representable in FP34
 • And value is even
 • How to quickly identify them?
 • *Rational* input with *rational* output
 • When is $\log_2(x)$ rational for rational input?
 • When $x = 2^i$ for integer i
• Use the LP formulation to generate a polynomial
Handling Singleton Intervals

- For each float input, compute
 - the \textit{round-to-odd} result of $\log_2(x)$ in FP34
 - Rounding interval with \textit{round-to-odd} mode
- Singleton intervals (special case):
 - When $\log_2(x)$ is exactly representable in FP34
 - And value is even
 - How to quickly identify them?
 - \textbf{Rational} input with \textbf{rational} output
 - When is $\log_2(x)$ rational for rational input?
 - When $x = 2^i$ for integer i
 - Use the LP formulation to generate a polynomial

\begin{tikzpicture}
 % Add TikZ code for the graph
\end{tikzpicture}
Does it Work?
Our RLIBM Functions Are Correctly Rounded

- Produces correctly rounded results for multiple representations
 - \(\leq 8 \) exponent bits (Same or less than 32-bit float)
 - \(\leq 23 \) mantissa bits (same or less than 32-bit float)
 - 161 different configurations
- Includes float, bfloat16, Tensorfloat32, half, etc
- Supports all five standard rounding modes
- 161 \(\times \) 5 = 805 combinations of configurations and rounding modes

<table>
<thead>
<tr>
<th>float functions</th>
<th>Using RLIBM-ALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln(x)</td>
<td>✔</td>
</tr>
<tr>
<td>log2(x)</td>
<td>✔</td>
</tr>
<tr>
<td>log10(x)</td>
<td>✔</td>
</tr>
<tr>
<td>exp(x)</td>
<td>✔</td>
</tr>
<tr>
<td>exp2(x)</td>
<td>✔</td>
</tr>
<tr>
<td>exp10(x)</td>
<td>✔</td>
</tr>
<tr>
<td>sinh(x)</td>
<td>✔</td>
</tr>
<tr>
<td>cosh(x)</td>
<td>✔</td>
</tr>
<tr>
<td>sinpi(x)</td>
<td>✔</td>
</tr>
<tr>
<td>cospi(x)</td>
<td>✔</td>
</tr>
</tbody>
</table>
Our RLibM Functions Are Correctly Rounded

Ability to produce correctly rounded float value with all standard rounding modes for all inputs

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ln(x)</td>
<td>✔️</td>
<td>✗</td>
<td>✔️</td>
<td>✗</td>
<td>✗</td>
<td>✔️</td>
</tr>
<tr>
<td>log2(x)</td>
<td>✔️</td>
<td>✗</td>
<td>✔️</td>
<td>✗</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>log10(x)</td>
<td>✔️</td>
<td>✗</td>
<td>✔️</td>
<td>✗</td>
<td>✔️</td>
<td>✗</td>
</tr>
<tr>
<td>exp(x)</td>
<td>✔️</td>
<td>✗</td>
<td>✔️</td>
<td>✗</td>
<td>✔️</td>
<td>✗</td>
</tr>
<tr>
<td>exp2(x)</td>
<td>✔️</td>
<td>✗</td>
<td>✔️</td>
<td>✗</td>
<td>✔️</td>
<td>N/A</td>
</tr>
<tr>
<td>exp10(x)</td>
<td>✔️</td>
<td>✗</td>
<td>✔️</td>
<td>✗</td>
<td>✔️</td>
<td>N/A</td>
</tr>
<tr>
<td>sinh(x)</td>
<td>✔️</td>
<td>✗</td>
<td>✔️</td>
<td>✗</td>
<td>✔️</td>
<td>✗</td>
</tr>
<tr>
<td>cosh(x)</td>
<td>✔️</td>
<td>✗</td>
<td>✔️</td>
<td>✗</td>
<td>✔️</td>
<td>✗</td>
</tr>
<tr>
<td>sinpi(x)</td>
<td>✔️</td>
<td>N/A</td>
<td>✔️</td>
<td>✗</td>
<td>✔️</td>
<td>✗</td>
</tr>
<tr>
<td>cospi(x)</td>
<td>✔️</td>
<td>N/A</td>
<td>✔️</td>
<td>✗</td>
<td>✔️</td>
<td>✗</td>
</tr>
</tbody>
</table>
RLIBM-ALL Functions Are Fast

Speedup over using Intel math library

- Speedup over float libm
- Speedup over double libm
RLIBM-ALL Functions Are Fast

Speedup over using CR-LIBM library
Transition to Practice

5 functions in LLVM’s libc is built using RLIBM’s implementations!

- [libc] Implement correctly rounded logf based on RLIBM library.
 Implement correctly rounded logf based on RLIBM library: https://people.cs.rutgers.edu/~sn349/rlibm/.

- [libc] Implement correctly rounded log2f based on RLIBM library.
 Implement log2f based on RLIBM library correctly rounded for all rounding modes.

- [libc] Implement log10f correctly rounded for all rounding modes.
 Based on RLIBM implementation similar to logf and log2f. Most of the exceptional inputs are the exact powers of 10.

- [libc] Improve the performance of expf.
 Reduce the polynomial’s degree from 7 down to 4.

- [libc] Improve the performance of exp2f.
 Reduce the range-reduction table size from 128 entries down to 64 entries, and reduce the polynomial’s degree from 6 down to 4.

 Currently we use a degree-6 minimax polynomial on an interval of length 2^-7 around 0 to compute exp2f. Based on the suggestion of @santoshn and the RLIBM project (https://github.com/rutgers-apl/rlibm-prog/blob/main/lib/libf/float/exp2.c) it is possible to have a good polynomial of degree-4 on a subinterval of length 2^-6 to approximate 2^x.

 We did try to either reduce the degree of the polynomial down to 3 or increase the interval size to 2^-5, but in both cases the number of exceptional values exploded. So we settle with using a degree-4 polynomial of the interval of size 2^-6 around 0.

Reviewed By: michaelrj, sivachandra, zimmermann0, santoshn

Differential Revision: https://reviews.llvm.org/D122346
Conclusion

• Approximate the correctly rounded result rather than the real value
 • Linear programming formulation based on the interval around the correct result

• How to generate a generic polynomial for all representations up to n-bits?
 • Generate polynomials for (n+2)-bit representation
 • That produces correct results with round-to-odd mode
 • Quickly identify singleton intervals: when $f(x)$ is rational for rational input

• Our RLIBM prototype produces correctly rounded results for all inputs in
 • 161 different FP configurations
 • All 5 IEEE-754 standard rounding modes

• Faster than mainstream math libraries

Make correctly rounded results mandatory rather than a recommendation by the standards
Open Source

Visit the RLIBM page for papers & prototypes
https://www.cs.rutgers.edu/~santosh.nagarakatte/rlibm/

Thanks National Science Foundation for the support