A Case for Correctly Rounded
Elementary Functions

Santosh Nagarakatte @ NJPLS 2022
Rutgers University

Collaborators: Jay Lim, Mridul Aanjaneya, John Gustafson, and Sehyeok Park

N
Eg I{UTGERS 1 RAPL - Rutgers Architecture and Programming Languages Lab

From Compiler Verification to Elementary Functions

Alive e SMT Z
DSL - " Queries
I————- Analysis <———,

. C++ Instcombine Pass
[} o

POPL 2012, PLDI 2013, PLDI 2015,
SAS 2016, PLDI 2017, CACM-RH 2018

KUTGERS 2 RAPL - Rutgers Architecture and Programming Languages Lab

From Compiler Verification to Elementary Functions

Alive N SMT Z '5 . .
DSl ~ - Aive =7 Queres =) Floating point SAS 2016
~ — Optimizations are wrong!
I————— Analysis <———,
—— Fast math
OMmpliel . C++ Instcombine Pass imizati
[ficatior J —/. optimizations

POPL 2012, PLDI 2013, PLDI 2015,
SAS 2016, PLDI 2017, CACM-RH 2018

KUTGERS 3 RAPL - Rutgers Architecture and Programming Languages Lab

From Compiler Verification to Elementary Functions

Alive . SMT z '5 . .
DL -~ Alve 0 queries &)) Floating point SAS 2016
—_— —_— » Optimizations are wrong!
\ I_——- Analysis <——|
. Fast math
ComI3'I|_eI'/|?|-VM " C++ Instcombine Pass _/. optimizations
Verification

POPL 2012, PLDI 2013, PLDI 2015,
SAS 2016, PLDI 2017, CACM-RH 2018

Shadow execution with a PLDI 2020,
high-precision oracle FSE 2021

Math library functions
produce wrong results

KUTGERS 4 RAPL - Rutgers Architecture and Programming Languages Lab

From Compiler Verification to Elementary Functions

Alive . SMT Z 5 . .
DL -~ Alve 0 queries &)) Floating point SAS 2016
—_— —_— » Optimizations are wrong!
I_—— Analysis <——J
: Fast math
Compller/LLVM . C++ Instcombine Pass .
Verification v

optimizations
POPL 2012, PLDI 2013, PLDI 2015,
SAS 2016, PLDI 2017, CACM-RH 2018

Shadow execution with a PLDI 2020,
high-precision oracle FSE 2021
Who cares?

Math library functions
produce wrong results

KUTGERS 5 RAPL - Rutgers Architecture and Programming Languages Lab

From Compiler Verification to Elementary Functions

Alive Alive SMT z g] .

DSL - 4 = Queries Floating point SAS 2016
—_— _ —_— Optimizations are wrong!

\L-—— Analysis —J
N——
_ Fast math
Compller/LLVM | C++ Instcombine Pass | . optlmlzatlons
Verification v

POPL 2012, PLDI 2013, PLDI 2015,
SAS 2016, PLDI 2017, CACM-RH 2018

Shadow execution with a PLDI 2020,
high-precision oracle FSE 2021

produce wrong results

RUTGERS 6 RAPL - Rutgers Architecture and Programming Languages Lab

What is a Correctly Rounded Result?

real number line

\

=
SO
50O

%'E KUTGERS 7 RAPL - Rutgers Architecture and Programming Languages Lab

What is a Correctly Rounded Result?

real number line

I& O O I
I U I

[n(x,) in real number

=

lw KUTGERS 8 RAPL - Rutgers Architecture and Programming Languages Lab

What is a Correctly Rounded Result?

real number line _
& round-to-nearest-tie-goes-even

=0

%)

[n(x,) in real number

RUTGERS 9 RAPL - Rutgers Architecture and Programming Languages Lab

What is a Correctly Rounded Result?

real number line

& round-to-nearest-tie-goes-even
| e e |
| @ U |
V] Vz\ V3
[n(x,) in real number correctly rounded result

RUTGERS 10 RAPL - Rutgers Architecture and Programming Languages Lab

How do Prior Techniques Approximate Elementary Functions?

RUTGERS

Polynomial Approximation

1.50 -

1.25 1

1.00 -

0.75 1

0.50 A

0.25 A

0.00

In(x) /
Ny

/

—0.25 -

—0.50 -

/L 2 3 4 5

11

1. Approximate the REAL value of In(x)

2. Feasible with small domains:

Range reduction to transform the input to a
small domain

3. Mini-Max Approximation:

Polynomial Approximation that minimizes the
maximum error for all points

RAPL - Rutgers Architecture and Programming Languages Lab

What’s the issue with Mini-Max Approximations?

real number line

k‘ | ® ® ® ® |

Vi %) V3

The real value of [n(x;) can be extremely close
to the decision boundary

Need to approximate f(x) extremely accurately

I{UTGERS 12 RAPL - Rutgers Architecture and Programming Languages Lab

What’s the issue with Mini-Max Approximations?

real number line

k‘ | ® oo ® ® |

%) V3

The real value of [n(x;) can be extremely close
to the decision boundary

Need to approximate f(x) extremely accurately

Any approximation error or a numerical error
can change the rounding decision

NJTGERS 13 RAPL - Rutgers Architecture and Programming Languages Lab

What’s the issue with Mini-Max Approximations?

real number line Rounds to
~ . 04/\0 ° |
vl V2 V3

The real value of [n(x;) can be extremely close
to the decision boundary

Need to approximate f(x) extremely accurately

Any approximation error or a numerical error
can change the rounding decision

Wrong result due to Incorrect rounding!

NJTGERS 14 RAPL - Rutgers Architecture and Programming Languages Lab

Our RLiBM PrOjeCt [POPL 2021, PLDI 2021, POPL 2022, PLDI 2022]

real number line

& round-to-nearest-tie-goes-even
| O O |
|) () |
Vi Vz\ V3
N
log umber correctly rounded result

Our RLIBM project makes a case for
approximating the correctly rounded
result

RUTGERS 15 RAPL - Rutgers Architecture and Programming Languages Lab

0ur RLIBM PrOjeCt [POPL 2021, PLDI 2021, POPL 2022, PLDI 2022]

real number line

& round-to-nearest-tie-goes-even
| O O |
| (U () |
Vi Vz\ V3
N
log umber correctly rounded result

Our RLIBM project makes a case for
approximating the correctly rounded
result

What is the oracle correctly rounded result?

How to build an efficient implementation that produces the oracle correctly rounded result?

[RUTGERS 16 RAPL - Rutgers Architecture and Programming Languages Lab

Our RLIBM PrOjeCt [POPL 2021, PLDI 2021, POPL 2022, PLDI 2022]

real number line _
& round-to-nearest-tie-goes-even

| I 'b/-\i e l
|),), |
Vi Vz\ V3

/ "
correctly rounded result

Rounding interval

Our RLIBM project makes a case for
approximating the correctly rounded result

KUTGERS 17 RAPL - Rutgers Architecture and Programming Languages Lab

Our RLIBM Project ror 2001, pioi 2021, ot 2022, pLoi 2022)

« Given f(x), a representation, and a rounding mode

® Correct result
B Rounding interval

RUTGERS 18 RAPL - Rutgers Architecture and Programming Languages Lab

Our RLIBM Project ror 2001, pioi 2021, ot 2022, pLoi 2022)

« Given f(x), a representation, and a rounding mode

1.Compute the correctly rounded result of f(x)

® Correct result
B Rounding interval

RUTGERS 19 RAPL - Rutgers Architecture and Programming Languages Lab

Our RLIBM Project ror 2001, pioi 2021, ot 2022, pLoi 2022)

« Given f(x), a representation, and a rounding mode

1.Compute the correctly rounded result of f(x)

2.ldentify rounding interval for each input

® Correct result
B Rounding interval

RUTGERS 20 RAPL - Rutgers Architecture and Programming Languages Lab

Our RLIBM Project ror 2001, pioi 2021, ot 2022, pLoi 2022)

« Given f(x), a representation, and a rounding mode
[]

1.Compute the correctly rounded result of f(x)

2.ldentify rounding interval for each input L

* A linear constraint on the output of the polynomial 3 N
[]
|:| |:| ® Correct result
ll < P(Xl) < hl |:| |:| 3 Rounding interval

L, < P(x,) < h,
I, < P(xy) < Iy
I, < P(x,) < hy

KUTGERS 21 RAPL - Rutgers Architecture and Programming Languages Lab

Our RLIBM Project ror 2001, pioi 2021, ot 2022, pLoi 2022)

« Given f(x), a representation, and a rounding mode

[]
1.Compute the correctly rounded result of f(x)
2.ldentify rounding interval for each input L
* A linear constraint on the output of the polynomial 3 N
3. Encode constraint into system of linear inequalities []
|:| ® Correct result
[]
i i |:| |:| 3 Rounding interval
(7] 1 ox xf a1 [
[, 1 x, x3 S | e h,
Iy =1 X3 X3 x§ C2 = hy
.1.4. 1 x, x2 [€ @4

RUTGERS 22 RAPL - Rutgers Architecture and Programming Languages Lab

Our RLIBM Project ror 2001, pioi 2021, ot 2022, pLoi 2022)

« Given f(x), a representation, and a rounding mode

1.Compute the correctly rounded result of f(x)
2.ldentify rounding interval for each input
* A linear constraint on the output of the polynomial

3. Encode constraint into system of linear inequalities

— P(x)

4.Use a Linear Programming solver to solve for P(x) = Rewgi
ounaing interva

] 2 d] .
l 1 1 X 1 xl oo .xl B CO T hl
[, 1 x, x3 S | e h,
< <
LI=11 x5 x3 2] = |5
ly 1 x, x2 [€ hy

RUTGERS 23 RAPL - Rutgers Architecture and Programming Languages Lab

Our RLIBM Project ror 2001, pioi 2021, ot 2022, pLoi 2022)

« Given f(x), a representation, and a rounding mode

1.Compute the correctly rounded result of f(x)
2.ldentify rounding interval for each input
* A linear constraint on the output of the polynomial

3. Encode constraint into system of linear inequalities

— P(x)

4.Use Linear Programming solver to solve for P(x) = Rounding inferval
ounaing interva

* Resulting polynomial produces correct results for the ~
chosen representation and rounding mode

KUTGERS 24 RAPL - Rutgers Architecture and Programming Languages Lab

Our RLIBM Project -ori 2021, pioizoo1, por 2022, pLoi 2022

« Given f(x), a representation, and a rounding mode

1.Compute the correctly rounded result of f(x)

2.ldentify rounding interval for each input

* Resulting polynomial produces correct results for the
chosen representation and rounding mode

[z | KUTGERS 25 RAPL - Rutgers Architecture and Programming Languages Lab

How do we produce a single polynomial approximation
that produces correctly rounded results for
multiple representations and rounding modes?

%E KUTGERS 26 RAPL - Rutgers Architecture and Programming Languages Lab

A Naive Solution

Let’s say we want to produce correctly rounded result of log,(x) for a 32-bit float

N\
NJTGERS 27 RAPL - Rutgers Architecture and Programming Languages Lab

A Naive Solution

Let’s say we want to produce correctly rounded result of log,(x) for a 32-bit float

log,(x) for
64-bit double type

N]TGERS 28 RAPL - Rutgers Architecture and Programming Languages Lab

A Naive Solution

Let’s say we want to produce correctly rounded result of log,(x) for a 32-bit float

input
Z log,(x) for
in float 64-bit double type

N]TGERS 29 RAPL - Rutgers Architecture and Programming Languages Lab

A Naive Solution

Let’s say we want to produce correctly rounded result of log,(x) for a 32-bit float

input input

. | ; log,(x) for

in float in double 64-bit double type

I{UTGERS 30 RAPL - Rutgers Architecture and Programming Languages Lab

A Naive Solution

Let’s say we want to produce correctly rounded result of log,(x) for a 32-bit float

input input output
y — oy — l.ogz(x) for s
in float in double 64-bit double type in double

I{UTGERS 31 RAPL - Rutgers Architecture and Programming Languages Lab

A Naive Solution

Let’s say we want to produce correctly rounded result of log,(x) for a 32-bit float

input input output
. ; l.ogz(x) for y | round y
in float in double 64-bit double type in double to float

I{UTGERS 32 RAPL - Rutgers Architecture and Programming Languages Lab

A Naive Solution

Let’s say we want to produce correctly rounded result of log,(x) for a 32-bit float

input 18154515 ; _output—
x ; 0g,(x) for SN | round y
: : = ouble type to float
in float in le - Indouble—_

—

I{UTGERS 33 RAPL - Rutgers Architecture and Programming Languages Lab

A Naive Solution

Let’s say we want to produce correctly rounded result of log,(x) for a 32-bit float

input 18154515 ; _output—
x — @y — 02,(x) for SN | round y
: : = ouble type to float
in float in le - Indouble—_

—

Double rounding error!

I{UTGERS 34 RAPL - Rutgers Architecture and Programming Languages Lab

Double Rounding Is The Enemy

Let’s say we want to produce correctly rounded result of log,(x) for a 32-bit float

input 18154515 ; _output—

X | x 0g-(x) for SN | round y
in float in - ouble type — o] to float
Double rounding error!

e FO——0—%0 O O O O O O—
double A\ \J U U \J N\ I
32-Dbit

float m L] L] |

RUTGERS

35

RAPL - Rutgers Architecture and Programming Languages Lab

Double Rounding Is The Enemy

Let’s say we want to produce correctly rounded result of log,(x) for a 32-bit float

input 18154515 ; _output—

x ; 0g,(x) for SN | round y
in float in - ouble type — o] to float
Double rounding error!

correctly rounded in double
o m—O—*QQ O O O O O o
double U \J \\ \\ U \\ |
32-bit
float m L] L] |

RUTGERS

36

RAPL - Rutgers Architecture and Programming Languages Lab

Double Rounding Is The Enemy

Let’s say we want to produce correctly rounded result of log,(x) for a 32-bit float

input 18154515 ; _output—
X | x 0g-(x) for SN | round y
: : : = ouble type to float
in float in e - Indouble—_
Double rounding error!
correctly rounded in double
64-bit /) A\) A\ A\ A\ A
double U \J \\ \\ U N\ I

rounded to float
32-bit ./\

I{UTGERS 37 RAPL - Rutgers Architecture and Programming Languages Lab

Double Rounding Is The Enemy

Let’s say we want to produce correctly rounded result of log,(x) for a 32-bit float

input 18154515 ; _output—
x x 02,(x) for SN | round y
: : : = ouble type to float
in float in e - Indouble—_
Double rounding error!
correctly rounded in double
64-bit /\ I O O I O O)—|
double \\ \J \ \\ \\ \ |
correctly rounded in float rounded to float
32-bit /_./\A —
foat “I [

I{UTGERS 38 RAPL - Rutgers Architecture and Programming Languages Lab

Our RLiBM Approach for Multiple Representations

® Insight: Retain enough information about the real value even when double rounding
® How to generate 1 polynomial for 10 to 32-bit FP representations
e Generate a polynomial for the 34-bit FP Generalize: (n + 2) bit floating point representation

® Using the round-to-odd rounding mode

I{UTGERS 39 RAPL - Rutgers Architecture and Programming Languages Lab

Round-to-Odd Rounding Mode

® Insight: Retain enough information about the real value even when double rounding

® How to generate 1 polynomial for 10 to 32-bit FP representation:
e Generate a polynomial for the 34-bit FP Generalize: (n + 2) bit floating point representation
® Using the round-to-odd rounding mode

¢ Round-to-odd:
e Used for rounding from a decimal to a binary fraction

e Used for primitive operations in extended precision

I{UTGERS 40 RAPL - Rutgers Architecture and Programming Languages Lab

Round-to-Odd Rounding Mode

® Insight: Retain enough information about the real value even when double rounding
® How to generate 1 polynomial for 10 to 32-bit FP representation:
e Generate a polynomial for the 34-bit FP Generalize: (n + 2) bit floating point representation
® Using the round-to-odd rounding mode
¢ Round-to-odd:
e Used for rounding from a decimal to a binary fraction
e Used for primitive operations in extended precision
® How do we make it work for elementary functions?
e Extremely challenging using prior approaches (e.g., Remez Algorithm)
e How to perform error analysis when round-to-odd mode is involved?

e Our RLiBM approach allows straight-forward integration with round-to-odd!

I{UTGERS 41 RAPL - Rutgers Architecture and Programming Languages Lab

How Does Round-to-Odd Work?

® Insight: Retain enough information about the real value even when double rounding

® How to generate 1 polynomial for 10 to 32-bit FP representation:
e Generate a polynomial for the 34-bit FP Generalize: (n + 2) bit floating point representation
® Using the round-to-odd rounding mode

¢ Round-to-odd:

34-bit PaN A\
FP }_O N NV

<&
&
<&
<&
<&
T

I{UTGERS 42 RAPL - Rutgers Architecture and Programming Languages Lab

How Does Round-to-Odd Work?

® Insight: Retain enough information about the real value even when double rounding

® How to generate 1 polynomial for 10 to 32-bit FP representation:
e Generate a polynomial for the 34-bit FP Generalize: (n + 2) bit floating point representation
® Using the round-to-odd rounding mode

¢ Round-to-odd:

e |f exactly representable, then it is represented with the value

Q0 9QQQQQQ

FP

I{UTGERS 43 RAPL - Rutgers Architecture and Programming Languages Lab

How Does Round-to-Odd Work?

® Insight: Retain enough information about the real value even when double rounding

® How to generate 1 polynomial for 10 to 32-bit FP representation:
e Generate a polynomial for the 34-bit FP Generalize: (n + 2) bit floating point representation
® Using the round-to-odd rounding mode

¢ Round-to-odd:
e |f exactly representable, then it is represented with the value

e Otherwise, rounds to the adjacent odd value

SNSRI Ve M-V olb=No}

" (odd) (odd) (odd) (odd)

I{UTGERS 44 RAPL - Rutgers Architecture and Programming Languages Lab

Correctly Rounded Results with Round-to-Odd

® Insight: Retain enough information about the real value even when double rounding

® How to generate 1 polynomial for 10 to 32-bit FP representation:
e Generate a polynomial for the 34-bit FP Generalize: (n + 2) bit floating point representation
® Using the round-to-odd rounding mode

® Producing correctly rounded results for a FP type with n-bits or less than n-bit:

34-bit

SO O— O O O O O O—
32-bit — —
float L] - =

I{UTGERS 45 RAPL - Rutgers Architecture and Programming Languages Lab

Correctly Rounded Results with Round-to-Odd

® Insight: Retain enough information about the real value even when double rounding

® How to generate 1 polynomial for 10 to 32-bit FP representation:
e Generate a polynomial for the 34-bit FP Generalize: (n + 2) bit floating point representation
® Using the round-to-odd rounding mode

® Producing correctly rounded results for a FP type with n-bits or less than n-bit:

® Produce correctly rounded results for (n+2)-bit FP in the round-to-odd mode

round-to-odd result in 34-bit FP

34-bit K\ALO
SO < O O & O & O—
32-bit }_D D D I

I{UTGERS 46 RAPL - Rutgers Architecture and Programming Languages Lab

Correctly Rounded Results with Round-to-Odd

® Insight: Retain enough information about the real value even when double rounding

® How to generate 1 polynomial for 10 to 32-bit FP representation:
e Generate a polynomial for the 34-bit FP Generalize: (n + 2) bit floating point representation
® Using the round-to-odd rounding mode

® Producing correctly rounded results for a FP type with n-bits or less than n-bit:
® Produce correctly rounded results for (n+2)-bit FP in the round-to-odd mode

® Round the result to FP type with n-bits or less than n-bits using any IEEE-754 rounding mode

round-to-odd result in 34-bit FP

34-bi
DS KO OO OO OO

o
4
[l

|
L1

I{UTGERS 47 RAPL - Rutgers Architecture and Programming Languages Lab

Correctly Rounded Results with Round-to-Odd

® Insight: Retain enough information about the real value even when double rounding
® How to generate 1 polynomial for 10 to 32-bit FP representation:
e Generate a polynomial for the 34-bit FP Generalize: (n + 2) bit floating point representation
® Using the round-to-odd rounding mode
® Producing correctly rounded results for a FP type with n-bits or less than n-bit:
® Produce correctly rounded results for (n+2)-bit FP in the round-to-odd mode
® Round the result to FP type with n-bits or less than n-bits using any IEEE-754 rounding mode

e Guaranteed to produce correctly rounded results!

round-to-odd result in 34-bit FP
34-pit K\ALO A A A A A
0 O 2 <O % <O <O \% O—
oot @ [0—

I{UTGERS 48 RAPL - Rutgers Architecture and Programming Languages Lab

Correctly Rounded Results with Round-to-Odd

® Insight: Retain enough information about the real value even when double rounding
® How to generate 1 polynomial for 10 to 32-bit FP representation:
e Generate a polynomial for the 34-bit FP Generalize: (n + 2) bit floating point representation
® Using the round-to-odd rounding mode
® Producing correctly rounded results for a FP type with n-bits or less than n-bit:
® Produce correctly rounded results for (n+2)-bit FP in the round-to-odd mode
® Round the result to FP type with n-bits or less than n-bits using any IEEE-754 rounding mode

e Guaranteed to produce correctly rounded results!

round-to-odd result in 34-bit FP
34-pit K\ALO A A A A A
0 O 2 <O % <O <O \% O—
P

32-bit — —
ot I ® K . =

I{UTGERS 49 RAPL - Rutgers Architecture and Programming Languages Lab

Our RLiBM Approach for Multiple Representations

® For each float input, compute 1.5 -

1.0

0.5

0.0

0.5

10 = Odd interval

. ® round-to-odd resultin T,)
- lng(x)
-1.5 T T T T w w
0.0 1.0 2.0 3.0

NJTGERS 50 RAPL - Rutgers Architecture and Programming Languages Lab

Our RLiBM Approach for Multiple Representations

® For each float input, compute 1.5
e the round-to-odd result of log,(x) in FP34 g
0.5
0.0
0.5
10 B Odd interval
' ® round-to-odd resultin T, ,
— log,(x)
-1.5 T T T 7 — | |
0.0 1.0 2.0 3.0

N]TGERS 51 RAPL - Rutgers Architecture and Programming Languages Lab

Our RLiBM Approach for Multiple Representations

® For each float input, compute 1.5
e the round-to-odd result of log,(x) in FP34 g
® Rounding interval with round-to-odd mode
0.5 1
0.0
0.5
104 = Odd interval
' ® round-to-odd resultin T, ,
— log,(x)
-1.5 T T T 7 — | |
0.0 1.0 2.0 3.0

N]TGERS 52 RAPL - Rutgers Architecture and Programming Languages Lab

Handling Singleton Intervals

® For each float input, compute 1.5
e the round-to-odd result of log,(x) in FP34 o /E/E/E’
® Rounding interval with round-to-odd mode | s
e Singleton intervals (special case): 0.5 -
e When [og,(x) is exactly representable in FP34 o
¢ And value is even 0-07
¢ How to quickly identify them? 05
104 = Odd interval
' ® round-to-odd resultin T, ,
— logy(x)
-1.5 T T T 1 — | |
0.0 1.0 2.0 3.0

I{UTGERS 53 RAPL - Rutgers Architecture and Programming Languages Lab

Handling Singleton Intervals

® For each float input, compute 1.5
e the round-to-odd result of log,(x) in FP34 o /E/E/E’
® Rounding interval with round-to-odd mode | s
e Singleton intervals (special case): 0.5 -
e When [og,(x) is|exactly representable|in FP34 o
e And value is even 0-07
¢ How to quickly identify them? 05
104 = Odd interval
' ® round-to-odd resultin T, ,
— logy(x)
-1.5 T T T 1 — | |
0.0 1.0 2.0 3.0

I{UTGERS 54 RAPL - Rutgers Architecture and Programming Languages Lab

Handling Singleton Intervals

® For each float input, compute 1.5
e the round-to-odd result of log,(x) in FP34 o /E/E/E’
® Rounding interval with round-to-odd mode | s
e Singleton intervals (special case): 0.5 -
e When [og,(x) is|exactly representable|in FP34 o
e And value is even 0-07
¢ How to quickly identify them? 05
e Rational input with rational output |
104 = Odd interval
' ® round-to-odd resultin T, ,
— logy(x)
-1.5 T T T 1 — | |
0.0 1.0 2.0 3.0

I{UTGERS 55 RAPL - Rutgers Architecture and Programming Languages Lab

Handling Singleton Intervals

® For each float input, compute 1.5
e the round-to-odd result of log,(x) in FP34 o /E/E/E’
® Rounding interval with round-to-odd mode | s
e Singleton intervals (special case): 0.5 -
e When [og,(x) is|exactly representable|in FP34 o
e And value is even 0-07
¢ How to quickly identify them? 05
e Rational input with rational output |
: : : : Odd i |
e When is log,(x) rational for rational input? -1.0- - interva _
® round-to-odd resultin T, ,
— logy(x)
-1.5 T T T 1 — | |
0.0 1.0 2.0 3.0

I{UTGERS 56 RAPL - Rutgers Architecture and Programming Languages Lab

Handling Singleton Intervals

® For each float input, compute

e the round-to-odd result of log,(x) in FP34

® Rounding interval with round-to-odd mode

e Singleton intervals

e When [og,(x) is

(special case):

exactly representable

® And value is even

¢ How to quickly identify them?

e Rational input with rational output

in FP34

e When is log,(x) rational for rational input?

RUTGERS

1.5

1.0 4 /IEI/E/|2|>
0.5

°

0.0

-0.5

10 = Odd interval

' ® round-to-oddresultin T, _,
— log,(x)
-1.5 w T 1] I w
0.0 1.0 2.0 3.0

Several results regarding rationality of elementary functions!

57

RAPL - Rutgers Architecture and Programming Languages Lab

Handling Singleton Intervals

® For each float input, compute

e the round-to-odd result of log,(x) in FP34

® Rounding interval with round-to-odd mode

e Singleton intervals

e When [og,(x) is

(special case):

exactly representable

® And value is even

¢ How to quickly identify them?

e Rational input with rational output

in FP34

e When is log,(x) rational for rational input?

e When x = 2! for integer i

RUTGERS

1.5

1.0 4 /IEI/E/|2|>
0.5

°

0.0

-0.5

10 = Odd interval

' ® round-to-oddresultin T, _,
— log,(x)
-1.5 w T 1] I w
0.0 1.0 2.0 3.0

Several results regarding rationality of elementary functions!

58

RAPL - Rutgers Architecture and Programming Languages Lab

Handling Singleton Intervals

® For each float input, compute

e the round-to-odd result of log,(x) in FP34

® Rounding interval with round-to-odd mode

e Singleton intervals

e When [og,(x) is

(special case):

exactly representable

® And value is even

¢ How to quickly identify them?

e Rational input with rational output

in FP34

e When is log,(x) rational for rational input?

e When x = 2! for integer i

RUTGERS

1.5
1.0
0.5
0.0
-0.5
10 = Odd interval
' ® round-to-oddresultin T, _,
— log,(x)
-1.5 T T 1 1 w w
0.0 1.0 2.0 3.0

Several results regarding rationality of elementary functions!

59

RAPL - Rutgers Architecture and Programming Languages Lab

Handling Singleton Intervals

® For each float input, compute 1.5
e the round-to-odd result of log,(x) in FP34 o n [] L
® Rounding interval with round-to-odd mode
e Singleton intervals (special case): 0.5 5 []
e When [og,(x) is exactly representable in FP34 []
e And value is even 007
¢ How to quickly identify them? 05 L
e Rational input with rational output []
e When is log,(x) rational for rational input? -1.0- I? Zi:::_::\;jd resultinT,..,
e When x = 2! for integer i U — log,®) n
_1'50.0 - 1T0 | | 2To | 3‘.0

I{UTGERS 60 RAPL - Rutgers Architecture and Programming Languages Lab

Handling Singleton Intervals

® For each float input, compute 1.5
e the round-to-odd result of log,(x) in FP34 o - [] L
® Rounding interval with round-to-odd mode
e Singleton intervals (special case): 0.5 - 5 []
e When [og,(x) is exactly representable in FP34 []
e And value is even 007
¢ How to quickly identify them? 05 L
e Rational input with rational output []
e When is log,(x) rational for rational input? -1.0- I? Zii:;_::\zd resultin T,
e When x = 2! for integer i L — logy() n
e Use the LP formulation to generate a polynomial " '50.0 - 1i0 | | 2.‘0 | 3{.0

I{UTGERS 61 RAPL - Rutgers Architecture and Programming Languages Lab

Handling Singleton Intervals

® For each float input, compute 1.5
e the round-to-odd result of log,(x) in FP34 o
® Rounding interval with round-to-odd mode
e Singleton intervals (special case): 0.5 -
e When [og,(x) is exactly representable in FP34
¢ And value is even 0-07
¢ How to quickly identify them? 05
e Rational input with rational output
e When is log,(x) rational for rational input? -1.0- ? :ii::_::\gd resultin T,
e When x = 2! for integer i — log,®)
e Use the LP formulation to generate a polynomial _1'50.0 - 1i0 | | 2.‘0 | 3{.0

I{UTGERS 62 RAPL - Rutgers Architecture and Programming Languages Lab

Does it Work?

I{UTGERS 63 RAPL - Rutgers Architecture and Programming Languages Lab

Our RLiBM Functions Are Correctly Rounded

float
functions

Using
RLiBM-ALL

In(x)

log2(x)

log10(x)

exp(x)

exp2(x)

exp10(x)

sinh(x)

cosh(x)

ANANANANANANE VAN VAN

RUTGERS

® Produces correctly rounded results for multiple representations
e < 8 exponent bits (Same or less than 32-bit float)

e < 23 mantissa bits (same or less than 32-bit float)
e 161 different configurations
® [ncludes float, bfloat16, Tensorfloat32, half, etc

e Supports all five standard rounding modes

e 161 X5 = 805 combinations of configurations and rounding
modes

64 RAPL - Rutgers Architecture and Programming Languages Lab

Our RLiBM Functions Are Correctly Rounded

Ability to produce correctly rounded float value with all standard rounding modes for all inputs

float Using Using Using Using Using Using CRLibm
functions | RLiBM-ALL| glibc (float) glibc (double) Intel (float) Intel (double) (double)
In(x) v X X X X X
log2(x) v X v X v v
log10(x) v X X X X X
exp(x) v X X X X v/
exp2(x) v X X X X N/A
exp10(x) v X X X X N/A
sinh(x) v X X X X X
cosh(x) v X X X X v
sinpi(x) v/ N/A N/A X X e
cospi(x) v N/A N/A X X v

RUTGERS 65 RAPL - Rutgers Architecture and Programming Languages Lab

RLIBM-ALL Functions Are Fast

W Speedup over float libm B Speedup over double libm

In log2 log10 exp exp2 expl10 sinh cosh sinpi cospi avg.

Speedup over using Intel math library

[RUTGERS 66 RAPL - Rutgers Architecture and Programming Languages Lab

RLIBM-ALL Functions Are Fast

2.5x

Speedup

0.0x

2.5X

In log2 log10 exp10 sinh cosh sinpi cospi avg.

Speedup over using CR-LIBM library

67

RAPL - Rutgers Architecture and Programming Languages Lab

Transition to Practice

5 functions in LLVM'’s libc is built using RLIBM’s implementations!

[libc] Implement correctly rounded logf based on RLIBM library. Browse files
Implement correctly rounded logf based on RLIBM library: https://people.cs.rutgers.edu/~sn349/rlibm/.

[libc] Implement correctly rounded log2f based on RLIBM library. Browse files
Implement log2f based on RLIBM library correctly rounded for all rounding modes.

x [libc] Implement log10f correctly rounded for all rounding modes. Browse files
Based on RLIBM implementation similar to logf and log2f. Most of the exceptional inputs are the exact powers of 10.

[libc] Improve the performance of expf. Browse files
Reduce the polynomial's degree from 7 down to 4.

[libc] Improve the performance of exp2f. Browse files

Reduce the range-reduction table size from 128 entries down to 64 entries, and
reduce the polynomial's degree from 6 down to 4.

Currently we use a degree-6 minimax polynomial on an interval of length 2~-7

around @ to compute exp2f. Based on the suggestion of @santoshn and the RLIBM

project (https://github.com/rutgers—-apl/rlibm-prog/blob/main/libm/float/exp2.c)

it is possible to have a good polynomial of degree-4 on a subinterval of length y109acea92elacb661c404fa62b9
2~(-6) to approximate 2”x.

We did try to either reduce the degree of the polynomial down to 3 or increase
the interval size to 2~(-5), but in both cases the number of exceptional values
exploded. So we settle with using a degree-4 polynomial of the interval of
size 2~(-6) around 0.

Reviewed By: michaelrj, sivachandra, zimmermann6, santoshn

Differential Revision: https://reviews.llvm.org/D122346

¥ main

I{UTGERS T 68 - a RAPL- Rutgers Architecture and Programming Languages Lab

Conclusion

¢ Approximate the correctly rounded result rather than the real value
¢ Linear programming formulation based on the interval around the correct result

e How to generate a generic polynomial for all representations up to n-bits?
e Generate polynomials for (n+2)-bit representation
e That produces correct results with round-to-odd mode
 Quickly identify singleton intervals: when f(x) is rational for rational input
e Our RLIBM prototype produces correctly rounded results for all inputs in
e 161 different FP configurations
e All 5 IEEE-754 standard rounding modes
e Faster than mainstream math libraries

Make correctly rounded results mandatory rather than a recommendation by the standards

RUTGERS 69 RAPL - Rutgers Architecture and Programming Languages Lab

Open Source

Visit the RLIBM page for papers & prototypes
https://www.cs.rutgers.edu/~santosh.nagarakatte/rlibm/

Thanks National Science Foundation for the support <

%' KUTGERS 70 RAPL - Rutgers Architecture and Programming Languages Lab

