
RAPL - Rutgers Architecture and Programming Languages Lab1

A Case for Correctly Rounded
Elementary Functions

Santosh Nagarakatte @ NJPLS 2022

Rutgers University

Collaborators: Jay Lim, Mridul Aanjaneya, John Gustafson, and Sehyeok Park

RAPL - Rutgers Architecture and Programming Languages LabRAPL - Rutgers Architecture and Programming Languages Lab

From Compiler Verification to Elementary Functions

2

POPL 2012, PLDI 2013, PLDI 2015,
SAS 2016, PLDI 2017, CACM-RH 2018

RAPL - Rutgers Architecture and Programming Languages LabRAPL - Rutgers Architecture and Programming Languages Lab

From Compiler Verification to Elementary Functions

3

POPL 2012, PLDI 2013, PLDI 2015,
SAS 2016, PLDI 2017, CACM-RH 2018

Floating point
Optimizations are wrong!

Fast math
optimizations

SAS 2016

RAPL - Rutgers Architecture and Programming Languages LabRAPL - Rutgers Architecture and Programming Languages Lab

From Compiler Verification to Elementary Functions

4

POPL 2012, PLDI 2013, PLDI 2015,
SAS 2016, PLDI 2017, CACM-RH 2018

Floating point
Optimizations are wrong!

Fast math
optimizations

Shadow execution with a
high-precision oracle

Math library functions
produce wrong results

SAS 2016

PLDI 2020,
FSE 2021

ex, log2x, . . .

RAPL - Rutgers Architecture and Programming Languages LabRAPL - Rutgers Architecture and Programming Languages Lab

From Compiler Verification to Elementary Functions

5

POPL 2012, PLDI 2013, PLDI 2015,
SAS 2016, PLDI 2017, CACM-RH 2018

Floating point
Optimizations are wrong!

Fast math
optimizations

Shadow execution with a
high-precision oracle

Math library functions
produce wrong results

SAS 2016

PLDI 2020,
FSE 2021

Who cares?

RAPL - Rutgers Architecture and Programming Languages LabRAPL - Rutgers Architecture and Programming Languages Lab

From Compiler Verification to Elementary Functions

6

POPL 2012, PLDI 2013, PLDI 2015,
SAS 2016, PLDI 2017, CACM-RH 2018

Floating point
Optimizations are wrong!

Fast math
optimizations

Shadow execution with a
high-precision oracle

Math library functions
produce wrong results

SAS 2016

PLDI 2020,
FSE 2021

Exact same program on different machines => not reproducible executions!

Program crashes, wrong application results!

Who cares?

RAPL - Rutgers Architecture and Programming Languages LabRAPL - Rutgers Architecture and Programming Languages Lab

real number line

v1 v2 v3

What is a Correctly Rounded Result?

7

RAPL - Rutgers Architecture and Programming Languages LabRAPL - Rutgers Architecture and Programming Languages Lab

real number line

v1 v2 v3

 in real numberln(x1)

What is a Correctly Rounded Result?

8

RAPL - Rutgers Architecture and Programming Languages LabRAPL - Rutgers Architecture and Programming Languages Lab

real number line

v1 v2 v3

round-to-nearest-tie-goes-even

9

 in real numberln(x1)

What is a Correctly Rounded Result?

RAPL - Rutgers Architecture and Programming Languages LabRAPL - Rutgers Architecture and Programming Languages Lab

real number line

v1 v2 v3

correctly rounded result

round-to-nearest-tie-goes-even

10

 in real numberln(x1)

What is a Correctly Rounded Result?

RAPL - Rutgers Architecture and Programming Languages Lab

Polynomial Approximation

11

ln(x)

P(x)

How do Prior Techniques Approximate Elementary Functions?

3. Mini-Max Approximation:

Polynomial Approximation that minimizes the
maximum error for all points

1. Approximate the REAL value of ln(x)

2. Feasible with small domains:

Range reduction to transform the input to a
small domain

RAPL - Rutgers Architecture and Programming Languages Lab

What’s the issue with Mini-Max Approximations?

v3v1 v2

real number line

The real value of can be extremely close
to the decision boundary

ln(x1)

12

Need to approximate extremely accuratelyf(x)

RAPL - Rutgers Architecture and Programming Languages Lab

v3v1 v2

real number line

 Any approximation error or a numerical error
can change the rounding decision

13

The real value of can be extremely close
to the decision boundary

ln(x1)

Need to approximate extremely accuratelyf(x)

What’s the issue with Mini-Max Approximations?

RAPL - Rutgers Architecture and Programming Languages Lab

v3v1 v2

Wrong result due to Incorrect rounding!

real number line

14

Rounds to

Any approximation error or a numerical error
can change the rounding decision

The real value of can be extremely close
to the decision boundary

ln(x1)

Need to approximate extremely accuratelyf(x)

What’s the issue with Mini-Max Approximations?

RAPL - Rutgers Architecture and Programming Languages LabRAPL - Rutgers Architecture and Programming Languages Lab

real number line

v1 v2 v3

round-to-nearest-tie-goes-even

Our RLIBM project makes a case for
approximating the correctly rounded
result  

Our RLIBM Project

15

 in real numberlog2(x1) correctly rounded result

[POPL 2021, PLDI 2021, POPL 2022, PLDI 2022]

RAPL - Rutgers Architecture and Programming Languages LabRAPL - Rutgers Architecture and Programming Languages Lab

real number line

v1 v2 v3

round-to-nearest-tie-goes-even

Our RLIBM project makes a case for
approximating the correctly rounded
result  

16

 in real numberlog2(x1) correctly rounded result

What is the oracle correctly rounded result?

How to build an efficient implementation that produces the oracle correctly rounded result?

Focus of the RLIBM
project

Our RLIBM Project [POPL 2021, PLDI 2021, POPL 2022, PLDI 2022]

RAPL - Rutgers Architecture and Programming Languages LabRAPL - Rutgers Architecture and Programming Languages Lab

real number line

v1 v2 v3

round-to-nearest-tie-goes-even

17

correctly rounded result

Our RLIBM project makes a case for
approximating the correctly rounded result  

Rounding interval

Our RLIBM Project [POPL 2021, PLDI 2021, POPL 2022, PLDI 2022]

RAPL - Rutgers Architecture and Programming Languages LabRAPL - Rutgers Architecture and Programming Languages Lab

Correct result
Rounding interval

• Given , a representation, and a rounding modef(x)

18

Our RLIBM Project [POPL 2021, PLDI 2021, POPL 2022, PLDI 2022]

RAPL - Rutgers Architecture and Programming Languages LabRAPL - Rutgers Architecture and Programming Languages Lab

Correct result
Rounding interval

• Given , a representation, and a rounding mode

1.Compute the correctly rounded result of

f(x)

f(x)

19

Our RLIBM Project [POPL 2021, PLDI 2021, POPL 2022, PLDI 2022]

RAPL - Rutgers Architecture and Programming Languages LabRAPL - Rutgers Architecture and Programming Languages Lab

• Given , a representation, and a rounding mode

1.Compute the correctly rounded result of

2.Identify rounding interval for each input

f(x)

f(x)

20

Correct result
Rounding interval

Our RLIBM Project [POPL 2021, PLDI 2021, POPL 2022, PLDI 2022]

RAPL - Rutgers Architecture and Programming Languages LabRAPL - Rutgers Architecture and Programming Languages Lab

• Given , a representation, and a rounding mode

1.Compute the correctly rounded result of

2.Identify rounding interval for each input

• A linear constraint on the output of the polynomial

f(x)

f(x)

21

Correct result
Rounding interval

 

…

l1 ≤ P(x1) ≤ h1
l2 ≤ P(x2) ≤ h2
l3 ≤ P(x3) ≤ h3
l4 ≤ P(x4) ≤ h4

Our RLIBM Project [POPL 2021, PLDI 2021, POPL 2022, PLDI 2022]

RAPL - Rutgers Architecture and Programming Languages LabRAPL - Rutgers Architecture and Programming Languages Lab

• Given , a representation, and a rounding mode

1.Compute the correctly rounded result of

2.Identify rounding interval for each input

• A linear constraint on the output of the polynomial

3. Encode constraint into system of linear inequalities

f(x)

f(x)

22

Correct result
Rounding interval

l1
l2
l3
l4…

≤

1 x1 x2
1 … xd

1

1 x2 x2
2 … xd

2

1 x3 x2
3 … xd

3

1 x4 x2
4 … xd

4…

c0
c1
c2…
cd

≤

h1

h2

h3

h4…

Our RLIBM Project [POPL 2021, PLDI 2021, POPL 2022, PLDI 2022]

RAPL - Rutgers Architecture and Programming Languages LabRAPL - Rutgers Architecture and Programming Languages Lab

Rounding interval
P(x)

23

• Given , a representation, and a rounding mode

1.Compute the correctly rounded result of

2.Identify rounding interval for each input

• A linear constraint on the output of the polynomial

3. Encode constraint into system of linear inequalities

4.Use a Linear Programming solver to solve for

f(x)

f(x)

P(x)

l1
l2
l3
l4…

≤

1 x1 x2
1 … xd

1

1 x2 x2
2 … xd

2

1 x3 x2
3 … xd

3

1 x4 x2
4 … xd

4…

c0
c1
c2…
cd

≤

h1

h2

h3

h4…

Our RLIBM Project [POPL 2021, PLDI 2021, POPL 2022, PLDI 2022]

RAPL - Rutgers Architecture and Programming Languages LabRAPL - Rutgers Architecture and Programming Languages Lab

Rounding interval
P(x)

24

• Given , a representation, and a rounding mode

1.Compute the correctly rounded result of

2.Identify rounding interval for each input

• A linear constraint on the output of the polynomial

3. Encode constraint into system of linear inequalities

4.Use Linear Programming solver to solve for

• Resulting polynomial produces correct results for the
chosen representation and rounding mode

f(x)

f(x)

P(x)

Our RLIBM Project [POPL 2021, PLDI 2021, POPL 2022, PLDI 2022]

RAPL - Rutgers Architecture and Programming Languages LabRAPL - Rutgers Architecture and Programming Languages Lab

Rounding interval
P(x)

25

• Given , a representation, and a rounding mode

1.Compute the correctly rounded result of

2.Identify rounding interval for each input

• A linear constraint on the output of the polynomial

3. Encode constraint into system of linear inequalities

4.Use Linear Programming solver to solve for

• Resulting polynomial produces correct results for the
chosen representation and rounding mode

f(x)

f(x)

P(x)

There are 5 different rounding modes in the IEEE-754 standard

Everyone designing new representations trading-off dynamic range and/
or precision

Our RLIBM Project [POPL 2021, PLDI 2021, POPL 2022, PLDI 2022]

RAPL - Rutgers Architecture and Programming Languages LabRAPL - Rutgers Architecture and Programming Languages Lab

How do we produce a single polynomial approximation

that produces correctly rounded results for

multiple representations and rounding modes?

26

RAPL - Rutgers Architecture and Programming Languages Lab27

A Naive Solution
Let’s say we want to produce correctly rounded result of for a 32-bit floatlog2(x)

RAPL - Rutgers Architecture and Programming Languages Lab28

A Naive Solution

 for

64-bit double type

log2(x)

Let’s say we want to produce correctly rounded result of for a 32-bit floatlog2(x)

RAPL - Rutgers Architecture and Programming Languages Lab29

A Naive Solution

input

in float
x for

64-bit double type
log2(x)

Let’s say we want to produce correctly rounded result of for a 32-bit floatlog2(x)

RAPL - Rutgers Architecture and Programming Languages Lab30

A Naive Solution

input

in float
x

input

in double
x for

64-bit double type
log2(x)

Let’s say we want to produce correctly rounded result of for a 32-bit floatlog2(x)

RAPL - Rutgers Architecture and Programming Languages Lab31

A Naive Solution

output

in double
y

input

in float
x

input

in double
x for

64-bit double type
log2(x)

Let’s say we want to produce correctly rounded result of for a 32-bit floatlog2(x)

RAPL - Rutgers Architecture and Programming Languages Lab32

A Naive Solution

round

to float

y
output

in double

y
input

in float

x
input

in double

x for

64-bit double type

log2(x)

Let’s say we want to produce correctly rounded result of for a 32-bit floatlog2(x)

RAPL - Rutgers Architecture and Programming Languages Lab

round

to float

y
output

in double

y
input

in float

x
input

in double

x for

64-bit double type

log2(x)

33

A Naive Solution
Let’s say we want to produce correctly rounded result of for a 32-bit floatlog2(x)

RAPL - Rutgers Architecture and Programming Languages Lab34

A Naive Solution

Double rounding error!

round

to float

y
output

in double

y
input

in float

x
input

in double

x for

64-bit double type

log2(x)

Let’s say we want to produce correctly rounded result of for a 32-bit floatlog2(x)

RAPL - Rutgers Architecture and Programming Languages Lab35

Double Rounding Is The Enemy

round

to float

y
output

in double

y
input

in float

x
input

in double

x for

64-bit double type

log2(x)

64-bit

double

32-bit

float

Double rounding error!

Let’s say we want to produce correctly rounded result of for a 32-bit floatlog2(x)

RAPL - Rutgers Architecture and Programming Languages Lab36

Double Rounding Is The Enemy

correctly rounded in double

64-bit

double

32-bit

float

round

to float

y
output

in double

y
input

in float

x
input

in double

x for

64-bit double type

log2(x)

Double rounding error!

Let’s say we want to produce correctly rounded result of for a 32-bit floatlog2(x)

RAPL - Rutgers Architecture and Programming Languages Lab37

Double Rounding Is The Enemy

64-bit

double

32-bit

float

correctly rounded in double

rounded to float

round

to float

y
output

in double

y
input

in float

x
input

in double

x for

64-bit double type

log2(x)

Double rounding error!

Let’s say we want to produce correctly rounded result of for a 32-bit floatlog2(x)

RAPL - Rutgers Architecture and Programming Languages Lab38

Double Rounding Is The Enemy

64-bit

double

32-bit

float

correctly rounded in double

rounded to floatcorrectly rounded in float

round

to float

y
output

in double

y
input

in float

x
input

in double

x for

64-bit double type

log2(x)

Double rounding error!

Let’s say we want to produce correctly rounded result of for a 32-bit floatlog2(x)

RAPL - Rutgers Architecture and Programming Languages Lab39

• Insight: Retain enough information about the real value even when double rounding

• How to generate 1 polynomial for 10 to 32-bit FP representations

• Generate a polynomial for the 34-bit FP

• Using the round-to-odd rounding mode

Generalize: (n + 2) bit floating point representation

Our RLIBM Approach for Multiple Representations

RAPL - Rutgers Architecture and Programming Languages Lab40

• Insight: Retain enough information about the real value even when double rounding

• How to generate 1 polynomial for 10 to 32-bit FP representation:

• Generate a polynomial for the 34-bit FP

• Using the round-to-odd rounding mode

• Round-to-odd:

• Used for rounding from a decimal to a binary fraction [Goldberg 1991]

• Used for primitive operations in extended precision [Boldo et al. 2005]

Round-to-Odd Rounding Mode

Generalize: (n + 2) bit floating point representation

RAPL - Rutgers Architecture and Programming Languages Lab41

• Insight: Retain enough information about the real value even when double rounding

• How to generate 1 polynomial for 10 to 32-bit FP representation:

• Generate a polynomial for the 34-bit FP

• Using the round-to-odd rounding mode

• Round-to-odd:

• Used for rounding from a decimal to a binary fraction [Goldberg 1991]

• Used for primitive operations in extended precision [Boldo et al. 2005]

• How do we make it work for elementary functions?

• Extremely challenging using prior approaches (e.g., Remez Algorithm)

• How to perform error analysis when round-to-odd mode is involved?

• Our RLIBM approach allows straight-forward integration with round-to-odd!

Round-to-Odd Rounding Mode

Generalize: (n + 2) bit floating point representation

RAPL - Rutgers Architecture and Programming Languages Lab42

• Insight: Retain enough information about the real value even when double rounding

• How to generate 1 polynomial for 10 to 32-bit FP representation:

• Generate a polynomial for the 34-bit FP

• Using the round-to-odd rounding mode

• Round-to-odd:

How Does Round-to-Odd Work?

34-bit

FP

Generalize: (n + 2) bit floating point representation

RAPL - Rutgers Architecture and Programming Languages Lab43

• Insight: Retain enough information about the real value even when double rounding

• How to generate 1 polynomial for 10 to 32-bit FP representation:

• Generate a polynomial for the 34-bit FP

• Using the round-to-odd rounding mode

• Round-to-odd:

• If exactly representable, then it is represented with the value

How Does Round-to-Odd Work?

34-bit

FP

Generalize: (n + 2) bit floating point representation

RAPL - Rutgers Architecture and Programming Languages Lab44

• Insight: Retain enough information about the real value even when double rounding

• How to generate 1 polynomial for 10 to 32-bit FP representation:

• Generate a polynomial for the 34-bit FP

• Using the round-to-odd rounding mode

• Round-to-odd:

• If exactly representable, then it is represented with the value

• Otherwise, rounds to the adjacent odd value

How Does Round-to-Odd Work?

(odd) (odd) (odd) (odd)
34-bit

FP

Generalize: (n + 2) bit floating point representation

RAPL - Rutgers Architecture and Programming Languages Lab45

Correctly Rounded Results with Round-to-Odd

34-bit

FP

32-bit

float

• Insight: Retain enough information about the real value even when double rounding

• How to generate 1 polynomial for 10 to 32-bit FP representation:

• Generate a polynomial for the 34-bit FP

• Using the round-to-odd rounding mode

• Producing correctly rounded results for a FP type with n-bits or less than n-bit:

Generalize: (n + 2) bit floating point representation

RAPL - Rutgers Architecture and Programming Languages Lab46

34-bit

FP

32-bit

float

round-to-odd result in 34-bit FP

• Insight: Retain enough information about the real value even when double rounding

• How to generate 1 polynomial for 10 to 32-bit FP representation:

• Generate a polynomial for the 34-bit FP

• Using the round-to-odd rounding mode

• Producing correctly rounded results for a FP type with n-bits or less than n-bit:

• Produce correctly rounded results for (n+2)-bit FP in the round-to-odd mode

Correctly Rounded Results with Round-to-Odd

Generalize: (n + 2) bit floating point representation

RAPL - Rutgers Architecture and Programming Languages Lab47

34-bit

FP

32-bit

float

round-to-odd result in 34-bit FP

• Insight: Retain enough information about the real value even when double rounding

• How to generate 1 polynomial for 10 to 32-bit FP representation:

• Generate a polynomial for the 34-bit FP

• Using the round-to-odd rounding mode

• Producing correctly rounded results for a FP type with n-bits or less than n-bit:

• Produce correctly rounded results for (n+2)-bit FP in the round-to-odd mode

• Round the result to FP type with n-bits or less than n-bits using any IEEE-754 rounding mode

Correctly Rounded Results with Round-to-Odd

Generalize: (n + 2) bit floating point representation

RAPL - Rutgers Architecture and Programming Languages Lab48

34-bit

FP

32-bit

float

round-to-odd result in 34-bit FP

• Insight: Retain enough information about the real value even when double rounding

• How to generate 1 polynomial for 10 to 32-bit FP representation:

• Generate a polynomial for the 34-bit FP

• Using the round-to-odd rounding mode

• Producing correctly rounded results for a FP type with n-bits or less than n-bit:

• Produce correctly rounded results for (n+2)-bit FP in the round-to-odd mode

• Round the result to FP type with n-bits or less than n-bits using any IEEE-754 rounding mode

• Guaranteed to produce correctly rounded results!

Correctly Rounded Results with Round-to-Odd

Generalize: (n + 2) bit floating point representation

RAPL - Rutgers Architecture and Programming Languages Lab49

34-bit

FP

32-bit

float

round-to-odd result in 34-bit FP

• Insight: Retain enough information about the real value even when double rounding

• How to generate 1 polynomial for 10 to 32-bit FP representation:

• Generate a polynomial for the 34-bit FP

• Using the round-to-odd rounding mode

• Producing correctly rounded results for a FP type with n-bits or less than n-bit:

• Produce correctly rounded results for (n+2)-bit FP in the round-to-odd mode

• Round the result to FP type with n-bits or less than n-bits using any IEEE-754 rounding mode

• Guaranteed to produce correctly rounded results!

Correctly Rounded Results with Round-to-Odd

Generalize: (n + 2) bit floating point representation

RAPL - Rutgers Architecture and Programming Languages Lab50

Our RLIBM Approach for Multiple Representations

-1.5
0.0 1.0 2.0 3.0

1.5

1.0

0.5

0.0

-0.5

-1.0

• For each float input, compute

round-to-odd result in 𝕋n+2

Odd interval

log2(x)

RAPL - Rutgers Architecture and Programming Languages Lab51

Our RLIBM Approach for Multiple Representations

-1.5
0.0 1.0 2.0 3.0

1.5

round-to-odd result in 𝕋n+2

1.0

0.5

0.0

-0.5

-1.0 Odd interval

• For each float input, compute

• the round-to-odd result of in FP34log2(x)

log2(x)

RAPL - Rutgers Architecture and Programming Languages Lab52

-1.5
0.0 1.0 2.0 3.0

1.5

1.0

0.5

0.0

-0.5

-1.0

• For each float input, compute

• the round-to-odd result of in FP34

• Rounding interval with round-to-odd mode

log2(x)

Our RLIBM Approach for Multiple Representations

round-to-odd result in 𝕋n+2

Odd interval

log2(x)

RAPL - Rutgers Architecture and Programming Languages Lab53

-1.5
0.0 1.0 2.0 3.0

1.5

1.0

0.5

0.0

-0.5

-1.0

• For each float input, compute

• the round-to-odd result of in FP34

• Rounding interval with round-to-odd mode

• Singleton intervals (special case):

• When is exactly representable in FP34

• And value is even

• How to quickly identify them?

log2(x)

log2(x)

Handling Singleton Intervals

round-to-odd result in 𝕋n+2

Odd interval

log2(x)

RAPL - Rutgers Architecture and Programming Languages Lab54

-1.5
0.0 1.0 2.0 3.0

1.5

1.0

0.5

0.0

-0.5

-1.0

• For each float input, compute

• the round-to-odd result of in FP34

• Rounding interval with round-to-odd mode

• Singleton intervals (special case):

• When is exactly representable in FP34

• And value is even

• How to quickly identify them?

log2(x)

log2(x)

Handling Singleton Intervals

round-to-odd result in 𝕋n+2

Odd interval

log2(x)

RAPL - Rutgers Architecture and Programming Languages Lab55

-1.5
0.0 1.0 2.0 3.0

1.5

1.0

0.5

0.0

-0.5

-1.0

• For each float input, compute

• the round-to-odd result of in FP34

• Rounding interval with round-to-odd mode

• Singleton intervals (special case):

• When is exactly representable in FP34

• And value is even

• How to quickly identify them?

• Rational input with rational output

log2(x)

log2(x)

Handling Singleton Intervals

round-to-odd result in 𝕋n+2

Odd interval

log2(x)

RAPL - Rutgers Architecture and Programming Languages Lab56

-1.5
0.0 1.0 2.0 3.0

1.5

1.0

0.5

0.0

-0.5

-1.0

• For each float input, compute

• the round-to-odd result of in FP34

• Rounding interval with round-to-odd mode

• Singleton intervals (special case):

• When is exactly representable in FP34

• And value is even

• How to quickly identify them?

• Rational input with rational output

• When is rational for rational input?

log2(x)

log2(x)

log2(x)

Handling Singleton Intervals

round-to-odd result in 𝕋n+2

Odd interval

log2(x)

RAPL - Rutgers Architecture and Programming Languages Lab57

-1.5
0.0 1.0 2.0 3.0

1.5

1.0

0.5

0.0

-0.5

-1.0

• For each float input, compute

• the round-to-odd result of in FP34

• Rounding interval with round-to-odd mode

• Singleton intervals (special case):

• When is exactly representable in FP34

• And value is even

• How to quickly identify them?

• Rational input with rational output

• When is rational for rational input?

log2(x)

log2(x)

log2(x)

Handling Singleton Intervals

Several results regarding rationality of elementary functions!

round-to-odd result in 𝕋n+2

Odd interval

log2(x)

RAPL - Rutgers Architecture and Programming Languages Lab58

-1.5
0.0 1.0 2.0 3.0

1.5

1.0

0.5

0.0

-0.5

-1.0

• For each float input, compute

• the round-to-odd result of in FP34

• Rounding interval with round-to-odd mode

• Singleton intervals (special case):

• When is exactly representable in FP34

• And value is even

• How to quickly identify them?

• Rational input with rational output

• When is rational for rational input?

• When for integer

log2(x)

log2(x)

log2(x)

x = 2i i

Handling Singleton Intervals

Several results regarding rationality of elementary functions!

round-to-odd result in 𝕋n+2

Odd interval

log2(x)

RAPL - Rutgers Architecture and Programming Languages Lab59

-1.5
0.0 1.0 2.0 3.0

1.5

1.0

0.5

0.0

-0.5

-1.0

• For each float input, compute

• the round-to-odd result of in FP34

• Rounding interval with round-to-odd mode

• Singleton intervals (special case):

• When is exactly representable in FP34

• And value is even

• How to quickly identify them?

• Rational input with rational output

• When is rational for rational input?

• When for integer

log2(x)

log2(x)

log2(x)

x = 2i i

Handling Singleton Intervals

Several results regarding rationality of elementary functions!

round-to-odd result in 𝕋n+2

Odd interval

log2(x)

RAPL - Rutgers Architecture and Programming Languages Lab60

-1.5
0.0 1.0 2.0 3.0

1.5

1.0

0.5

0.0

-0.5

-1.0

• For each float input, compute

• the round-to-odd result of in FP34

• Rounding interval with round-to-odd mode

• Singleton intervals (special case):

• When is exactly representable in FP34

• And value is even

• How to quickly identify them?

• Rational input with rational output

• When is rational for rational input?

• When for integer

log2(x)

log2(x)

log2(x)

x = 2i i

Handling Singleton Intervals

round-to-odd result in 𝕋n+2

Odd interval

log2(x)

RAPL - Rutgers Architecture and Programming Languages Lab61

-1.5
0.0 1.0 2.0 3.0

1.5

1.0

0.5

0.0

-0.5

-1.0

• For each float input, compute

• the round-to-odd result of in FP34

• Rounding interval with round-to-odd mode

• Singleton intervals (special case):

• When is exactly representable in FP34

• And value is even

• How to quickly identify them?

• Rational input with rational output

• When is rational for rational input?

• When for integer

• Use the LP formulation to generate a polynomial

log2(x)

log2(x)

log2(x)

x = 2i i

Handling Singleton Intervals

round-to-odd result in 𝕋n+2

Odd interval

log2(x)

RAPL - Rutgers Architecture and Programming Languages Lab62

-1.5
0.0 1.0 2.0 3.0

1.5

1.0

0.5

0.0

-0.5

-1.0

• For each float input, compute

• the round-to-odd result of in FP34

• Rounding interval with round-to-odd mode

• Singleton intervals (special case):

• When is exactly representable in FP34

• And value is even

• How to quickly identify them?

• Rational input with rational output

• When is rational for rational input?

• When for integer

• Use the LP formulation to generate a polynomial

log2(x)

log2(x)

log2(x)

x = 2i i

Handling Singleton Intervals

round-to-odd result in 𝕋n+2

Odd interval

log2(x)

RAPL - Rutgers Architecture and Programming Languages Lab63

Does it Work?

RAPL - Rutgers Architecture and Programming Languages LabRAPL - Rutgers Architecture and Programming Languages Lab

float
functions

Using
RLIBM-ALL

Using
glibc (float)

Using
glibc (double)

Using
Intel (float)

Using
Intel (double)

Using CRLibm
(double)

ln(x) ✔ ✗ ✗ ✗ ✗ ✗

log2(x) ✔ ✗ ✔ ✗ ✔ ✔

log10(x) ✔ ✗ ✗ ✗ ✗ ✗

exp(x) ✔ ✗ ✗ ✗ ✗ ✔

exp2(x) ✔ ✗ ✗ ✗ ✗ N/A
exp10(x) ✔ ✗ ✗ ✗ ✗ N/A
sinh(x) ✔ ✗ ✗ ✗ ✗ ✗

cosh(x) ✔ ✗ ✗ ✗ ✗ ✔

sinpi(x) ✔ N/A N/A ✗ ✗ ✔

cospi(x) ✔ N/A N/A ✗ ✗ ✔

64

• Produces correctly rounded results for multiple representations

• exponent bits (Same or less than 32-bit float)

• mantissa bits (same or less than 32-bit float)

• 161 different configurations

• Includes float, bfloat16, Tensorfloat32, half, etc

• Supports all five standard rounding modes

• combinations of configurations and rounding
modes

≤ 8

≤ 23

161 × 5 = 805

Our RLIBM Functions Are Correctly Rounded

RAPL - Rutgers Architecture and Programming Languages LabRAPL - Rutgers Architecture and Programming Languages Lab

float
functions

Using
RLIBM-ALL

Using
glibc (float)

Using
glibc (double)

Using
Intel (float)

Using
Intel (double)

Using CRLibm
(double)

ln(x) ✔ ✗ ✗ ✗ ✗ ✗

log2(x) ✔ ✗ ✔ ✗ ✔ ✔

log10(x) ✔ ✗ ✗ ✗ ✗ ✗

exp(x) ✔ ✗ ✗ ✗ ✗ ✔

exp2(x) ✔ ✗ ✗ ✗ ✗ N/A
exp10(x) ✔ ✗ ✗ ✗ ✗ N/A
sinh(x) ✔ ✗ ✗ ✗ ✗ ✗

cosh(x) ✔ ✗ ✗ ✗ ✗ ✔

sinpi(x) ✔ N/A N/A ✗ ✗ ✔

cospi(x) ✔ N/A N/A ✗ ✗ ✔

65

Ability to produce correctly rounded float value with all standard rounding modes for all inputs

Our RLIBM Functions Are Correctly Rounded

RAPL - Rutgers Architecture and Programming Languages LabRAPL - Rutgers Architecture and Programming Languages Lab66

Speedup over using Intel math library

Sp
ee

du
p

0.0x

0.5x

1.0x

1.5x

2.0x

2.5x
Speedup over float libm Speedup over double libm

ln log2 log10 exp exp2 exp10 sinh cosh sinpi avg.cospi

RLIBM-ALL Functions Are Fast

RAPL - Rutgers Architecture and Programming Languages LabRAPL - Rutgers Architecture and Programming Languages Lab67

Speedup over using CR-LIBM library

Sp
ee

du
p

0.0x

0.5x

1.0x

1.5x

2.0x

2.5x

ln log2 log10 exp10 sinh cosh sinpi avg.cospi

2.5x 3.4x

RLIBM-ALL Functions Are Fast

RAPL - Rutgers Architecture and Programming Languages Lab68

Transition to Practice
5 functions in LLVM’s libc is built using RLIBM’s implementations!

RAPL - Rutgers Architecture and Programming Languages LabRAPL - Rutgers Architecture and Programming Languages Lab69

• Approximate the correctly rounded result rather than the real value

• Linear programming formulation based on the interval around the correct result

• How to generate a generic polynomial for all representations up to n-bits?

• Generate polynomials for (n+2)-bit representation

• That produces correct results with round-to-odd mode

• Quickly identify singleton intervals: when is rational for rational input

• Our RLIBM prototype produces correctly rounded results for all inputs in

• 161 different FP configurations

• All 5 IEEE-754 standard rounding modes

• Faster than mainstream math libraries

f(x)

Conclusion

Make correctly rounded results mandatory rather than a recommendation by the standards

RAPL - Rutgers Architecture and Programming Languages LabRAPL - Rutgers Architecture and Programming Languages Lab

Open Source

Visit the RLIBM page for papers & prototypes

https://www.cs.rutgers.edu/~santosh.nagarakatte/rlibm/

70

Thanks National Science Foundation for the support

