
Full Spatial and Temporal Memory Safety for C

Full Spatial and Temporal Memory Safety for C
Santosh Nagarakatte, Rutgers University, New Brunswick, NJ, 08854, USA

Abstract—Lack of memory safety is the root cause of many security exploits even
today. This paper describes the design decisions, implementation choices, and
the trade-offs required to address the under-specification in the C standard and
the de-facto C dialects used by applications to enforce full spatial and temporal
safety.

Introduction
The C programming language is still the preferred
choice for implementing low-level system software be-
cause it provides a thin abstraction layer on top of the
hardware (e.g., features such as low-level control over
memory layout and explicit memory management).
There are more than a billion lines of C code in
various critical components of the computing stack.
Any transition from C to other languages will likely take
time and is challenging.

Incorrect usage of some low-level features is un-
defined behavior according to the C standard, which
allows the compiler and the runtime to improve the per-
formance of correct programs. Hence, the C compiler
and the runtime often does not add runtime checks
to determine whether the programmer uses the low-
level features correctly. In the absence of such checks,
simple programming errors can become the root cause
of security vulnerabilities and exploits.

What is memory safety? Memory safety is a
property of the program that ensures that all memory
accesses are well-defined according to the language
specification. When the compiler and/or the runtime
enforces memory safety, the program terminates with
a fail-stop exception when an access is not according
to the specification. Such an enforcement can prevent
a class of security vulnerabilities and exploits that rely
on a memory safety error.

Spatial and temporal safety. A program can vi-
olate the memory safety property when the memory
accesses are to locations that are either beyond the
memory allocated for an object or to locations that
have not been allocated or have been deallocated. The
former is known as a spatial memory safety violation
(e.g., bounds errors) and the latter is known as a

XXXX-XXX © 2024 IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000

temporal or lifetime memory safety violation (e.g., use-
after-free errors or dangling pointer errors).

Security bugs due to memory safety errors. In
the absence of mechanisms to enforce memory safety,
simple errors can become serious security bugs. For
example, Heartbleed was a result of an out-of-bound
read. Matt Miller from the Microsoft Security Response
Center in his 2019 BlueHat talk reports more than 70%
of the security vulnerabilities addressed in Microsoft’s
security updates are due to memory safety errors.
Similarly, the Chromium security team reports that
approximately 70% of the high severity security bugs in
the Chromium project are due to memory safety errors.
Such errors persist even after continuous fuzz testing
for multiple years. Further, the Chromium team reports
that the number of serious security bugs that exploit
temporal safety errors account for more than half of
the memory safety bugs.

The ingenuity of the attacker determines how these
vulnerabilities will be exploited. It involves crafting a
suitable input in an appropriate context (e.g., making
the attack work in the context of address space ran-
domization and non-executable regions). Any buffer
overflow, use-after-free error, and/or low-level vulner-
ability resulting from memory safety violations can
compromise the security of the system. Tools such as
AddressSanitizer [14] have detected numerous mem-
ory safety errors in both user-space and Linux Kernel
code by placing guards between objects and tracking
whether an object is allocated or not. However, they
can also miss many errors (i.e., with large strides and
with reallocations). Recent hardware extensions such
as ARM’s Memory Tagging Extensions and Pointer Au-
thentication provide probabilistic detection of memory
safety errors in production systems and make the task
of exploiting memory safety errors difficult.

Use of memory-safe languages. Another ap-
proach to completely eliminate security bugs resulting
from memory safety errors is to use a memory-safe
language. Fortunately, these memory-safe languages

March Published by the IEEE Computer Society IEEE Security and Privacy 1

This article has been accepted for publication in IEEE Security & Privacy. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MSEC.2024.3363142

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Special Issue on Memory Safety

are getting adoption wherever applicable. Languages
such as Java, C#, and Go enforce memory safety by
using a strong type system and runtime checks for
accesses that cannot be statically checked. Unsafe
features such as the type casts are either disallowed
or restricted to objects in the same object hierarchy.
Automated memory management using a garbage col-
lector ensures that any reachable object is not freed
and eliminates temporal safety errors. Rust, which is
getting adoption in some domains as a safe replace-
ment for C, uses an ownership-based type system and
a borrow checker to provide memory safety without
garbage collection. Ideally, security critical code should
be written in memory-safe languages in the future. In
the interim, full memory safety for C will hopefully end
the war in memory and enhance the security of our
computing systems [15].

What makes enforcing memory safety for C
challenging? Given an arbitrary pointer in a program’s
execution, typically there is no information about the re-
gion of memory that is safe to access with that pointer.
This problem is exacerbated by the conflation of arrays
and pointers (specifically pointers to a single object),
frequent type casts between pointers (type punning),
and type casts from integers to pointers. In many
cases, pointer manipulation in the various dialects of C
used in mainstream applications is undefined behavior
according to the C standard [6]. Further, the semantics
of pointer provenance for memory objects especially
with pointer to integer casts is ambiguous in the best
interpretation [5]. Reconciling the different interpreta-
tions in existing C code and the abstract semantics
needed to perform high-level compiler optimizations
with the C standard is an open research problem.

A consequence of various low-level features (some-
times undefined or implementation defined behavior)
in the dialects of C used in mainstream applications
is that a pointer can point to anything! To enforce
memory safety, we need to maintain additional infor-
mation with each pointer to check whether the access
is safe. Further, this additional information should be
propagated with every pointer operation (sometimes
even with integer operations to be consistent with the
de-facto C standards used by the applications). The
crux of the problem in enforcing memory safety is
maintaining enough information (i.e., metadata) with
pointers, propagating them on every operation, and
checking them before a memory access.

What information should we maintain with each
pointer? To completely enforce full spatial and lifetime
safety with the de-facto C standards used in main-
stream applications, we have to maintain metadata
with each pointer and propagate them with operations.

 lock
locations

q:0x6520

420x2AB50

0x6500

0x6520
0x6504

0x6524

metadata with each pointer

p:0x6500

Spatial

0x6520 0x6524 42 0x2AB50

0x6500 0x6504 42 0x2AB50

Temporal

0x68F0
key lockbase bound

0x6408

FIGURE 1. Metadata maintained with each pointer. The
two pointers p and q point to two different sub-objects
in an aggregate data type. They have different base and
bound metadata (i.e., pointer p can access memory locations
[0x6500, 0x6504) and pointer q can access memory loca-
tions [0x6520, 0x6524)) but have the same lock and key
metadata because they are part of the same allocation.

This metadata provides a view of memory that the
pointer can legally access according to the language
specification [10], [12]. To enforce spatial safety, each
pointer maintains the start (i.e., base) and the end (i.e.,
bound) of the region of memory that the pointer can
access. To ensure lifetime safety, we would need to
track allocations, design a mechanism to identify all
aliased pointers in memory, and invalidate their spa-
tial metadata when a particular object is deallocated.
However, identifying such aliased pointers requires
additional data structures and is often expensive even
with hardware support. In contrast, our approach is to
provide a unique identifier (i.e., key) and a location
in memory (i.e., lock) that stores the key on every
memory allocation and associate them with the pointer.
On a deallocation, we just invalidate the key at the
lock associated with the pointer. The invariant is that
the key associated with the pointer and the key at
the lock associated with the pointer will match for all
valid allocated objects [7], [11]. The key associated
with the pointer and the key at the lock will mismatch
for all pointers that violate lifetime safety. This is the
approach used in our SoftBoundCETS project [7], [11],
[10]. Figure 1 illustrates the metadata maintained with
each pointer for full spatial and temporal safety.

Where should we maintain the additional infor-
mation? One approach is to maintain the additional
information co-located with the pointer (i.e., fat pointer).
However, interfacing with external libraries will require
deep copies of data structures due to memory layout
changes. It also makes incremental adoption difficult.

2 Special Issue on Memory Safety March 2024

This article has been accepted for publication in IEEE Security & Privacy. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MSEC.2024.3363142

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Special Issue on Memory Safety

In contrast, we advocate for maintaining the metadata
in a disjoint metadata space, which avoids the ne-
cessity for deep copies of data structures especially
while enforcing the safety in the presence of insidious
type casts (e.g., the de-facto standards of C used by
the applications). If the external library modifies the
pointer, then any future use of such a pointer will trigger
a memory safety violation because the metadata would
not have not been updated.

To enable incremental adoption, we maintain the
pointer in the metadata and allow the pointer to access
any memory when the pointer produced by the pro-
gram and the pointer in the metadata mismatch (i.e.,
the pointer was updated by an external library and the
runtime does not have valid information), which is in-
spired from Intel’s Memory Protection Extensions [13].
This allows safety checking to be added incrementally
to the code, albeit, at the cost of safety.

Trade-offs. Ideally, we want to have always-on

full spatial and temporal memory safety for all legacy
applications using various de-facto standards with
negligible performance overhead. However, these are
conflicting goals given the diverse de-facto C stan-
dards used in mainstream applications. Hence, any
technique will have to make some trade-offs and
probably use a combination of various hardware fea-
tures. The performance overheads can be mitigated
with some hardware support [8], [9], [13], [2]. Re-
stricting some of the undefined behaviors statically
by disallowing integer-to-pointer casts will require
some source code modifications but can reduce the
performance overheads significantly. Further, annota-
tions from the programmer (e.g., annotations with the
-fbounds-safety approach widely used at Apple
and Deputy [3]) can reduce the performance cost of
enforcing safety. With implementation optimizations,
some source code changes, and modest hardware
support, full spatial and temporal memory safety can
be achieved with approximately 15% performance
overhead compared to an unsafe program execution.

The SoftBoundCETS Approach
To enforce full spatial and temporal safety, our ap-
proach is to maintain metadata with each pointer that
identifies the region of memory that the pointer can
safely access and check them before every access.
The pointer together with the metadata can be con-
sidered as a capability in that the metadata allows the
pointer to access a particular region of memory.

We need to identify what metadata to maintain for
enforcing spatial and temporal safety, how to propa-
gate them according to the provenance semantics of

the de-facto C standards, and how to check them to
enforce full spatial and temporal safety. Subsequently,
we discuss how to ease the job of incremental adoption
with easy interoperation with external libraries.

Metadata for spatial safety. For enforcing spa-
tial safety, we maintain the base and bound of the
underlying memory object that the pointer points to.
The compiler and the runtime can easily identify the
size of the memory region based on the underlying
data type and the source or the intermediate code.
Identifying such information from stripped binaries will
be challenging. When the pointer is assigned to an
object with the address-of operator (int *p = &a;),
then the memory that is accessible through that pointer
is restricted to the beginning and the end of the specific
object. Similarly, for memory objects allocated on the
heap dynamically (i.e., using malloc), the base is set
to the beginning of the allocation and the bound is set
to the end of the allocation. By explicitly maintaining
the base and bound metadata, we can support C
code that creates out-of-bounds pointers and pointers
to the internal elements of objects/structs and arrays.
Figure 2(a) illustrates the spatial safety check on a
pointer dereference once we maintain the base and
the bound metadata.

Metadata for temporal safety. To enforce temporal
safety, the runtime creates a unique identifier on every
memory allocation both implicit (e.g., stack frames and
globals) and explicit (i.e., dynamic memory allocation
with malloc). The identifier is invalidated on memory
deallocation. The idea is to maintain this identifier with
each pointer and check whether the identifier is valid
before every memory access. By maintaining unique
identifiers on every allocation, this approach detects
temporal safety violations even in the presence of
reallocations and memory reuse.

To make the temporal safety check simple, we
organize the identifier metadata as a key and a lock.
The key is an unsigned integer (of an appropriate
size) and the lock is the address of the memory
location (which we call a lock location) that holds the
key [11], [8]. The key and the value at the lock location
will match if the underlying memory for the object is
valid. The key and lock are also associated with each
pointer. All aliased pointers receive the same key and
lock. Freeing an allocated region changes the value
at the lock location, thereby invalidating other aliased
pointers (i.e., dangling pointers) to the region. The
lock locations can be reused after the allocation that
it guards is deallocated because the keys are unique.
Figure 2(b) illustrates the temporal safety check, which
is a simple load from the lock and a comparison with
the key.

March 2024 Special Issue on Memory Safety 3

This article has been accepted for publication in IEEE Security & Privacy. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MSEC.2024.3363142

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Special Issue on Memory Safety

(b) Temporal safety check

(a) Spatial safety check

 if (p < p_base || p + size >= p_bound){
 raise exception();
 }

 if (p_key != *(p_lock)) {
 raise exception();
 }

FIGURE 2. Spatial and temporary safety checks done before
dereferencing a pointer p. The metadata associated with this
pointer is (p_base, p_bound, p_key, p_lock).

q = p + index;
 q_base = p_base;
 q_bound = p_bound;
 q_key = p_key;
 q_lock = p_lock;

FIGURE 3. Metadata propagation on pointer arithmetic with
an integer.

In summary, the pointer along with its metadata can
be abstractly considered as a capability, (p, base,

bound, key, lock); it allows the pointer to access
a particular region of memory that is bounded by the
base and the bound and satisfies the temporal safety
invariant. The program only manipulates the pointer p
and the other information is present to define whether
the execution is safe or not.

Metadata propagation. Once we have this meta-
data that defines the region of memory that the pointer
can access safely, it needs to be propagated with var-
ious operations (i.e., arithmetic, copying, casts, func-
tion calls, returns). The semantics of this propagation
is straight-forward with pointer casts and when the
pointer arithmetic is with integers (i.e., one operand
is an integer and other is a pointer). Pointer arithmetic
and casts between pointer types just propagate the
metadata from the source pointer to the destination
pointer. Figure 3 illustrates metadata propagation with
pointer arithmetic.

The thorny issues are the corner cases of the C
standard. Creating a pointer beyond the end of the
memory object is undefined behavior according to the
C standard (one-past the end is allowed). Legacy C
applications use their own de-facto C standards and

int **p, *q;
...

q = *p;

(a) Pointer loads (b) Pointer stores

 scheck(p, p_base, p_bound);
 tcheck(p_key, p_lock);

 q_base = lookup(p)->base;
 q_bound = lookup(p)->bound;
 q_key = lookup(p)->key;
 q_lock = lookup(p)->lock;

int **p, *q;
...

*p = q;

 scheck(p, p_base, p_bound);
 tcheck(p_key, p_lock);

 lookup(p)->base = q_base;
 lookup(p)->bound = q_bound;
 lookup(p)->key = q_key;
 lookup(p)->lock = q_lock;

FIGURE 4. Metadata propagation through disjoint metadata
space on (a) pointer loads and (b) pointer stores. Here,
scheck and tcheck are the spatial safety and temporal
safety checks in Figure 2(a) and Figure 2(b), respectively.

create out-of-bound pointers. Further, the propagation
of metadata depends on the pointer provenance se-
mantics [5], which is ambiguous in the C standard.
Consider the scenario where a pointer is cast to an
integer, arithmetic performed over integers, and then
cast back to a pointer. What should be the metadata
of the resultant pointer? In our approach, we do not
track metadata with integers and other non-pointer
data types. We support various type of casts between
different types of pointers.

Sub-object bounds. Another issue that is am-
biguous in the C standard concerning the memory
model and the pointer provenance is the creation of
pointers to sub-fields of an aggregate data type. What
should be the bounds of the resulting pointer? Should
it be bounds of the entire memory object or the just
bounds of the sub-object? Our approach, by default,
narrows the bounds of pointers to sub-objects, which
in turn allows us to prevent internal object overflows.
Narrowing of bounds can result in false violations for
some C use cases. One common example is in the
Linux kernel. Linux uses the ANSI C offsetof()

macro to create a container_of() macro, which is
used when creating a pointer to an enclosing container
structure based only on a pointer to an internal sub-
field. Another example is to create a pointer to the spe-
cific element of an integer array and then use pointer
arithmetic to access the other elements (e.g., int*
p = &arr[4]; b = *(p+1);. When we narrow the
bounds for sub-objects, the above idioms will raise
an exception. The programmer can disable narrowing
of bounds for such use cases by providing specific
attributes to our compiler.

Metadata in disjoint metadata space for point-
ers in memory. To prevent malicious corruption of
metadata and to leave the memory layout of the pro-

4 Special Issue on Memory Safety March 2024

This article has been accepted for publication in IEEE Security & Privacy. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MSEC.2024.3363142

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Special Issue on Memory Safety

gram intact that eases interfacing with external libraries
without deep copies, we maintain the metadata for
pointers in memory in a disjoint metadata space. Our
runtime maps the pointer in memory to its metadata
in the disjoint metadata space, which can be orga-
nized using various data structures such as a linear
array or a trie. To minimize accesses to the disjoint
metadata space, we maintain metadata in registers
(i.e., temporaries in the context of the compiler) for
pointers in registers. The disjoint metadata space is
accessed only when pointers are loaded from or stored
to memory. Hence, the cost of accessing the disjoint
metadata space is primarily experienced by pointer-
chasing code (i.e., linked data structures). Accessing
an element of a dynamic allocated array using a pointer
just pays the cost of spatial safety and temporal safety
checks. We use the address of the pointer to index
into the disjoint metadata space (more importantly it
is not what the pointer points to). When the program
does a dereference to load a pointer (i.e., q = *p;),
the metadata for pointer q is loaded from the disjoint
metadata space. The lookup is done using the address
of pointer q, which is p. Figure 4(a) and Figure 4(b) il-
lustrate the disjoint metadata accesses when a pointer
is loaded from or stored to memory.

Safety in the presence of type casts. Our ap-
proach does not access the disjoint metadata space
when non-pointer values are written (read) to (from)
memory. One side effect of instrumenting only pointer
operations is that a pointer can be manufactured from
an integer implicitly through memory (e.g., using type
casts between pointers of two different structure types
and writes through memory in some legacy C code).
However, our approach allows such a dereference
through a manufactured pointer only when the resulting
pointer belongs to the same allocation and is within
bounds of the object pointed by the pointer before the
cast.

Our approach enforces comprehensive memory
safety even when we propagate metadata only
with pointers because (1) metadata is manipu-
lated/accessed only through the extra instrumentation
added, (2) metadata is not corrupted and accurately
depicts the region of memory that a pointer can legally
access, and (3) all memory accesses are conceptually
checked before a dereference [7]. A store operation
using a pointer involved in an unsafe type cast can
only overwrite pointer values but not the metadata in
the disjoint metadata space. When pointers involved
in arbitrary casts are subsequently dereferenced, the
pointer is checked with respect to its metadata. As the
checks use the metadata to ascertain the validity of the
memory access and the metadata is never corrupted,

our approach provides comprehensive detection of
memory safety errors.

Metadata propagation with function calls and
returns. Metadata propagation also needs to hap-
pen with pointer arguments and return values. The
mechanism is important especially when the calls are
across the application binary interface and to external
libraries. In many instruction set architectures (ISAs),
arguments are passed in registers. Furthermore, indi-
rect calls through function pointers can create unsafe
type casts.

We explore two methods: (1) passing metadata
as extra arguments and (2) passing metadata using
a shadow stack. For functions that are not involved
in indirect calls and are amenable to the fast calling
convention, we pass the metadata as extra arguments.
Otherwise, we use a shadow stack for all other function
calls including variadic functions. Our shadow stack
implementation provides dynamic typing between the
arguments pushed at the call site and those retrieved
by the callee [7]. The shadow stack prevents the callee
from dereferencing a non-pointer value pushed by the
caller in the call stack by treating it as a pointer value.
In compliance with the de-facto standards, we trigger
the exception only when such pointers are derefer-
enced but not when they are created.

Interfacing with external libraries. The above
approach provides full spatial and temporal safety.
It also supports separate compilation and link-time
optimizations. Separate compilation allows creation of
memory-safe libraries. In many cases where we cannot
recompile external libraries, we need a mechanism
to provide metadata for pointers that are returned
and those that are updated in memory (e.g., qsort
function invocation to sort pointers). In the prior ver-
sions of our SoftBoundCETS prototype, we developed
wrapper code to interface with external libraries. When
an external library function returns a pointer or up-
dates pointers in memory, wrappers provide the glue
code between the instrumented code and the external
library. Although writing wrappers with our approach
does not require deep copies of data structures, it can
be tedious to develop when the pointers are updated
in memory by the external library function.

Given that incremental adoption of memory safety
enforcement is necessary for adoption with legacy
code, our latest prototype uses the Intel’s MPX idea
of redundantly storing the pointer value produced by
the program in the disjoint metadata space along with
the other metadata. When the external library, which is
not hardened with our approach, updates the pointer in
memory, it will not touch the disjoint metadata space.
When the program subsequently loads the pointer from

March 2024 Special Issue on Memory Safety 5

This article has been accepted for publication in IEEE Security & Privacy. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MSEC.2024.3363142

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Special Issue on Memory Safety

 lock
locations

q:0x6520

420x2AB50

0x6500

0x6520
0x6504

0x6524

metadata with each pointer

p:0x6500

Spatial

0x6520 0x6524 42 0x2AB50

0x6500 0x6504 42 0x2AB50

Temporal

0x68F0
key lockbase bound

0x6408 0x6500

0x6520
pointer

pointer

int **p, *q;
...

q = *p;

 scheck(p, p_base, p_bound);
 tcheck(p_key, p_lock);

 if (lookup(p)->pointer == q){
 q_base = lookup(p)->base;
 q_bound = lookup(p)->bound;
 q_key = lookup(p)->key;
 q_lock = lookup(p)->lock;
}
else{
 q_base = q;
 q_bound = q + SIZE_OF_TYPE;
 q_key = GLOBAL_KEY;
 q_lock = GLOBAL_LOCK;
}

FIGURE 5. Disjoint metadata with the pointer value in the metadata space along with base, bound, key, and lock for every
pointer in memory. It enables selective and incremental adoption of memory safety checking. The semantics of safety checking
on pointer loads changes a bit to check if the pointer produced by the program matches the pointer in the metadata space to
identify updates to memory by external libraries.

memory in the instrumented code, it loads the meta-
data from the disjoint metadata space. The pointer
produced by the program and the one in the disjoint
metadata space will mismatch. The programmer can
appropriately set bounds for such memory accesses
(e.g., treat it as singleton access or even access the
entire heap). Figure 5 illustrates the pointer value in the
metadata space along with other metadata and check
done on pointer loads. We have found this approach
to be extremely useful to incrementally apply dynamic
monitoring tools in a variety of contexts (e.g., race
detection, numerical error detection) beyond memory
safety.

Optimizations and Hardware
Support

The approach described in the previous section can
be accelerated by optimizing the encoding of the meta-
data in the metadata space to reduce the memory foot-
print, reducing the number of both spatial and temporal
safety checks with static analysis, and accelerating
various operations with hardware extensions.

Compressed encoding of the metadata. To keep
the exposition simple, we described our approach to
maintain five 64-bit pieces of metadata per-pointer on
a 64-bit machine. Using 40-bytes of metadata for every
pointer can significantly increase the memory usage.
To reduce the size of the metadata, we compress our
metadata using the following insights: (1) only 48-bits
of the virtual address space is currently used on Linux
x86-64 machines, (2) pointers are word-aligned, (3) our
compiler and the runtime can add padding to make

each allocation to be sized as a power of two, and (4)
the entire pointer is not needed to identify whether an
external library modified the pointer in memory.

We use the above insights to pack the entire meta-
data in 128-bits. Rather than maintaining the virtual
address of the bound, we just maintain the size of
the allocation. When every allocation is sized to be
a power of two, we just the need to remember the
power of two for the bound, which is inspired from the
baggy bounds project [1]. Just six bits are sufficient
to represent allocation sizes up to 263 bytes (i.e.,
bound = base+2size). We use only 13-bits of the pointer
in the metadata space to identify whether external
library modified the pointer in memory or not, which is
inspired from random property testing literature. Finally,
the compressed base is just 45-bits of the virtual
address representing the beginning of the memory
object. Using this compression, we have reduced the
metadata space required per pointer in the disjoint
metadata space for spatial safety to 64-bits. Rather
than using the actual virtual address for the locks, we
use a 32-bit offset from the start of the lock locations
to represent the lock. We also use 32-bit identifiers
as the key. Even when we reuse the lock locations
and use 32-bit identifiers for the key, the probability
of conflict due to reuse is very small because the lock
and key together constitute the unique identifier for the
allocation.

This encoding reduces the memory overhead sig-
nificantly even for pointer intensive applications. We do
not change the sizes of sub-objects especially when
they are used in aggregate types to minimize memory
layout changes. Hence, we disable sub-object bounds

6 Special Issue on Memory Safety March 2024

This article has been accepted for publication in IEEE Security & Privacy. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MSEC.2024.3363142

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Special Issue on Memory Safety

FIGURE 6. Performance overhead for enforcing spatial safety,
temporal safety, and full spatial+temporal safety with the
latest SoftBoundCETS prototype for a collection of SPEC
benchmarks when compared to a native execution without any
instrumentation.

to enable metadata compression when the underlying
object is not sized to be power of 2. In some cases,
this metadata compression can cause false violations
because the library updated the pointer but left the 13-
bits of the pointer exactly identical.

Optimizations to reduce the number of checks.
A wide range of check optimizations based on loop
invariant code motion and loop peeling can reduce the
number of spatial safety checks. Specifically, we hoist
the spatial check inside the loop outside by computing
a new check using the weakest-precondition, which
can reduce the number of checks by 30% in some
applications. In contrast to spatial safety checks, op-
timizing temporal safety checks need different kinds of
static analysis that identifies lifetimes.

Performance overhead of a software-only pro-
totype with compressed metadata. Figure 6 re-
ports the performance overhead of our latest software-
only prototype of SoftBoundCETS, which is based
on LLVM-17.6, to enforce only spatial safety (left-
most bar), only temporal safety (middle bar), and the
full memory safety (right-most bar) over an uninstru-
mented native execution with a collection of SPEC
applications. On average, enforcing only spatial safety
incurs a performance overhead of 46% over an unin-
strumented application. Enforcing only temporal safety
incurs a performance overhead of 36% on average. En-
forcing full spatial and temporal safety incurs a perfor-
mance overhead of 72% on average when compared
to a native execution without any instrumentation. We
found that metadata compression to reduce memory
overheads and inlining of all instrumentation are in-
strumental in reducing the performance overheads.

Hardware support. The above overheads may not
be appealing to some applications. Hardware support

can further reduce these overheads. We, in the past,
have investigated various degrees of hardware support
to accelerate the task of enforcing memory safety [8],
[9]. Intel’s MPX adopts some of the same design deci-
sions from our project. Dedicated metadata registers,
specific instructions for spatial and temporal safety
checks with compression, and dedicated load and
store instructions with the above encoding can enforce
memory safety for a wide class of applications at 10-
20% performance overhead compared to an unsafe
execution. To ensure these bounds checks are not
bypassed with speculative execution, the compiler also
needs to introduce appropriate barriers (e.g., LFENCE
and bounds clipping instructions on Intel machines).

Multithreading. To support multithreaded pro-
grams, our approach has to ensure the atomicity of
the checks and the memory access to prevent time-of-
check-to-time-of-use errors and atomicity of the meta-
data accesses and the memory access. If a pointer
operation, temporal safety check and the metadata
accesses occur non-atomically, interleaved execution
and race conditions can report false errors and miss
errors. To avoid them, the compiler instrumentation
must ensure that: (1) a pointer load/store’s data and
metadata access execute atomically, (2) checks exe-
cute atomically with the load/store operation, and (3)
allocation of metadata is thread safe. We can satisfy
requirements #1 and #2 for data-race free programs
by inserting metadata access and check instructions
within the same synchronization region as the pointer
operation. For programs with data races, hardware
support in the form atomic wide load/store can help,
which needs more research from the community to be
practical.

Related Work
There is a large body of work on enforcing memory
safety for C. Initially, majority of the techniques were
focused on spatial safety. Recently, there is increasing
interest to enforce temporal safety by detecting use-
after-free errors either using spatial safety metadata or
through virtual memory mechanisms. A survey, albeit
ten years old, details the various techniques [15].

Our approach is inspired by the seminal work on
enforcing spatial memory safety in the CCured [12] and
Cyclone [4] projects. Cyclone [4] provided full safety
with reasonable performance overheads but it required
significant code changes to be compatible with region-
based memory management. CCured [12] provided
comprehensive spatial safety with a fat pointer rep-
resentation. It relied on a garbage collector to pro-
vide temporal safety. With the use of a fat-pointer,

March 2024 Special Issue on Memory Safety 7

This article has been accepted for publication in IEEE Security & Privacy. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MSEC.2024.3363142

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Special Issue on Memory Safety

CCured required deep copies of data structures to re-
move metadata while interfacing with external libraries
through wrappers. The pointer metadata could be po-
tentially overwritten with unsafe type casts. CCured
used a whole program inference to detect such point-
ers involved in casts (e.g., WILD pointers), which
prevented separate compilation and WILD pointers
had higher performance overhead. To mitigate these
issues, the programs had to be changed/rewritten to
avoid such type casts or use run-time type informa-
tion extensions. Our approach is an effort to address
compatibility issues with CCured in an effort to make
it easily usable with large code bases while avoiding
garbage collection.

Intel Memory Protection Extensions (MPX) pro-
vided hardware acceleration with additional instruc-
tions for metadata accesses and checks for enforcing
spatial safety using disjoint metadata similar to our
approach. Intel’s pointer checker, which is a software-
only prototype, uses compiler instrumentation similar to
our SoftBound prototype [10]. We believe that MPX’s
feature to enable incremental adoption by maintaining
the pointer in the disjoint metadata space is a great
contribution to the class of dynamic checking tools,
which we use with our latest prototype. One reason
for MPX’s failure to get significant adoption, in our
opinion, is the lack of compiler and tooling support
in open-source compilers, which resulted in significant
performance overheads. Further, Intel’s own compiler
did not generate optimal instrumentation to effectively
use MPX.

CHERI is a hardware capability machine that can
provide spatial safety and compartmentalization by
converting every pointer into a capability [2]. Each
pointer on a 64-bit machine becomes a 128-bit capa-
bility and a tag to confirm the validity of the capability.
Conceptually, CHERI’s capability is similar to CCured’s
WILD pointer enforced in hardware. The 1-bit validity
tag in CHERI exactly has the same purpose as the
tag used with CCured’s WILD pointers. The key dif-
ference is CHERI’s hardware enforcement rather than
the runtime enforcement with CCured. Our metadata
is also a form of capability, albeit without the need for
additional validity tags because of the disjoint metadata
space. By default, CHERI does not provide temporal
safety. Recent proposals in the CHERI project prevent
dangling pointers by deferring deallocation on a free

and reclaiming memory after a sweep to revoke the
capabilities. CHERI also explores metadata compres-
sion to store base and bound along with the pointer in
a 128-bit capability. It also needs to resolve the exact
same issues about pointer provenance and the de-
facto C standards followed by legacy C code.

ARM recently has introduced Memory Tagging Ex-
tensions (MTE) to enforce probabilistic memory safety.
MTE maintains a 4-bit tag with each 16-byte block of
memory. These tags are stored in a dedicated region
of memory. Any pointer that points to the memory block
has the 4-bit tag stored in the upper unused bits of the
pointer. The memory access is safe if the tag in the
upper bits of the pointer and the tag associated with
the memory pointed by the pointer match. By assigning
different tags for adjacent memory allocations, MTE
can enable detection of adjacent spatial safety errors.
MTE is a limited form of lock-and-key checking that
we described in our approach where lock locations
are in a dedicated memory region and the metadata
is in the upper bits of the pointer. Given the small
number of distinct 4-bit tags, MTE can miss bugs and
the protection is probabilistic. However, it is a useful
addition to the set of hardware extensions explored for
always-on low-overhead enforcement of some memory
safety.

Apart from MTE, another recent ARM feature,
Pointer Authentication (PAC), stores a short 16-bit
cryptographic signature in the upper unused bits of the
pointer. The signature is computed using the pointer
value, a discriminator to diversify signed pointers, and
a signing key. The signature is checked on a pointer
dereference to ensure integrity. When used with func-
tion pointers and return addresses, it can prevent a
class of return-or-jump oriented programming attacks.

Recent efforts such as the -fbounds-safety

transformation from Apple that is being mainstreamed
into LLVM and the CheckedC project incremen-
tally add annotations to make C spatially safe. The
-fbounds-safety pass requires the developer to
provide annotations (e.g., to identify bounds, single-
tons) to reduce the performance overhead. The main
insight in this effort, which was also identified by the
Deputy project [3], is that code often has bounds
information already present in it. The accompanying
code may not be correctly checking the accesses.
These annotations enable the runtime to enforce mem-
ory safety using a combination of static analysis and
runtime checks with a low performance overhead.

Conclusion
Substantial work by the community, including our ap-
proach, has developed methods that can be used by
the language implementation with or without hardware
support to enforce full spatial and temporal safety. Ap-
propriately restricting the de-facto C standards, incre-
mental adoption, and annotations distinguishing point-
ers to arrays from pointers to non-array objects will

8 Special Issue on Memory Safety March 2024

This article has been accepted for publication in IEEE Security & Privacy. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MSEC.2024.3363142

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Special Issue on Memory Safety

make the task of hardening legacy C code easier.
Hardware support coupled with an efficient stream-
lined implementation can make the performance over-
heads of full spatial and temporal safety negligible
and can make always-on deployment a reality. Recent
efforts such as -fbounds-safety and the CheckedC
project are promising directions to make new C code
safe and incrementally make legacy C code safer.

ACKNOWLEDGMENTS
This work is supported in part by the National Science
Foundation under Grant 2110861 and research gifts
from the Intel corporation. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the author and do not necessarily
reflect the views of the National Science Foundation or
the Intel corporation.

REFERENCES
1. Periklis Akritidis, Manuel Costa, Miguel Castro, and

Steven Hand. Baggy bounds checking: An efficient
and backwards-compatible defense against out-of-
bounds errors. In Proceedings of the 18th USENIX
Security Symposium, August 2009.

2. David Chisnall, Colin Rothwell, Robert N.M. Wat-
son, Jonathan Woodruff, Munraj Vadera, Simon W.
Moore, Michael Roe, Brooks Davis, and Peter G.
Neumann. Beyond the pdp-11: Architectural support
for a memory-safe c abstract machine. In Proceed-
ings of the Twentieth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, ASPLOS ’15, page 117–130,
New York, NY, USA, 2015. Association for Computing
Machinery.

3. Jeremy Condit, Matthew Harren, Zachary Anderson,
David Gay, and George C. Necula. Dependent types
for low-level programming. In Proceedings of the 16th
European Symposium on Programming, 2007.

4. Trevor Jim, Greg Morrisett, Dan Grossman, Michael
Hicks, James Cheney, and Yanling Wang. Cyclone: A
safe dialect of c. In Proceedings of the 2002 USENIX
Annual Technical Conference, 2002.

5. Kayvan Memarian, Victor B. F. Gomes, Brooks Davis,
Stephen Kell, Alexander Richardson, Robert N. M.
Watson, and Peter Sewell. Exploring c semantics
and pointer provenance. Proc. ACM Program. Lang.,
3(POPL), jan 2019.

6. Kayvan Memarian, Justus Matthiesen, James Lin-
gard, Kyndylan Nienhuis, David Chisnall, Robert
N. M. Watson, and Peter Sewell. Into the depths
of c: Elaborating the de facto standards. In Pro-

ceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation,
PLDI ’16, page 1–15, New York, NY, USA, 2016.
Association for Computing Machinery.

7. Santosh Nagarakatte. Practical Low-Overhead En-
forcement of Memory Safety for C Programs. PhD
thesis, University of Pennsylvania, 2012.

8. Santosh Nagarakatte, Milo M. K. Martin, and Steve
Zdancewic. Watchdog: Hardware for safe and se-
cure manual memory management and full memory
safety. In Proceedings of the 39th Annual Interna-
tional Symposium on Computer Architecture, 2012.

9. Santosh Nagarakatte, Milo M. K. Martin, and Steve
Zdancewic. Watchdoglite: Hardware-accelerated
compiler-based pointer checking. In 12th Annual
IEEE/ACM International Symposium on Code Gen-
eration and Optimization, CGO ’14, page 175, 2014.

10. Santosh Nagarakatte, Jianzhou Zhao, Milo M. K.
Martin, and Steve Zdancewic. Softbound: Highly
compatible and complete spatial memory safety for c.
In Proceedings of the SIGPLAN 2009 Conference on
Programming Language Design and Implementation,
2009.

11. Santosh Nagarakatte, Jianzhou Zhao, Milo M. K.
Martin, and Steve Zdancewic. Cets: Compiler en-
forced temporal safety for c. In Proceedings of the
2010 International Symposium on Memory Manage-
ment, 2010.

12. George C. Necula, Jeremy Condit, Matthew Harren,
Scott McPeak, and Westley Weimer. Ccured: Type-
safe retrofitting of legacy software. ACM Transactions
on Programming Languages and Systems, 27(3),
May 2005.

13. Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhato-
tia, Pascal Felber, and Christof Fetzer. Intel mpx
explained: A cross-layer analysis of the intel mpx
system stack. In Abstracts of the 2018 ACM In-
ternational Conference on Measurement and Mod-
eling of Computer Systems, SIGMETRICS ’18, page
111–112, New York, NY, USA, 2018. Association for
Computing Machinery.

14. Konstantin Serebryany, Derek Bruening, Alexander
Potapenko, and Dmitriy Vyukov. Addresssanitizer: A
fast address sanity checker. In Proceedings of the
USENIX Annual Technical Conference, 2012.

15. Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn
Song. Sok: Eternal war in memory. In Proceedings of
the 2013 IEEE Symposium on Security and Privacy,
2013.

March 2024 Special Issue on Memory Safety 9

This article has been accepted for publication in IEEE Security & Privacy. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MSEC.2024.3363142

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

	Introduction
	The SoftBoundCETS Approach
	Optimizations and Hardware Support
	Related Work
	Conclusion
	ACKNOWLEDGMENTS
	REFERENCES
	REFERENCES

