
190

Fast Shadow Execution for Debugging Numerical Errors

using Error Free Transformations

SANGEETA CHOWDHARY, Rutgers University, United States

SANTOSH NAGARAKATTE, Rutgers University, United States

This paper proposes, EFTSanitizer, a fast shadow execution framework for detecting and debugging numerical

errors during late stages of testing especially for long-running applications. Any shadow execution framework

needs an oracle to compare against the floating point (FP) execution. This paper makes a case for using

error free transformations, which is a sequence of operations to compute the error of a primitive operation

with existing hardware supported FP operations, as an oracle for shadow execution. Although the error of a

single correctly rounded FP operation is bounded, the accumulation of errors across operations can result in

exceptions, slow convergences, and even crashes. To ease the job of debugging such errors, EFTSanitizer

provides a directed acyclic graph (DAG) that highlights the propagation of errors, which results in exceptions

or crashes. Unlike prior work, DAGs produced by EFTSanitizer include operations that span various function

calls while keeping the memory usage bounded. To enable the use of such shadow execution tools with

long-running applications, EFTSanitizer also supports starting the shadow execution at an arbitrary point in

the dynamic execution, which we call selective shadow execution. EFTSanitizer is an order of magnitude

faster than prior state-of-art shadow execution tools such as FPSanitizer and Herbgrind. We have discovered

new numerical errors and debugged them using EFTSanitizer.

CCS Concepts: • Software and its engineering→ Compilers; •Mathematics of computing→ Mathe-

matical software.

Additional Key Words and Phrases: rounding errors, floating point, shadow execution, EFTSanitizer

ACM Reference Format:

Sangeeta Chowdhary and Santosh Nagarakatte. 2022. Fast Shadow Execution for Debugging Numerical Errors

using Error Free Transformations. Proc. ACM Program. Lang. 6, OOPSLA2, Article 190 (October 2022), 28 pages.

https://doi.org/10.1145/3563353

1 INTRODUCTION

Almost all endeavors in science and engineering need real numbers. A floating point number is

an approximation of a real number using a finite number of bits [Goldberg 1991]. In the past,

numerous computer vendors had their own convention for floating point resulting in non-portable

applications. The IEEE-754 standard significantly advanced the ecosystem by standardizing the

floating point (FP) representation, which improved portability and reproducibility of applications.

Rounding errors. Almost all real values cannot be exactly represented in any finite FP rep-

resentation. When a real value is not exactly representable in the FP representation, it has to

be rounded to the nearest value according to the rounding mode specified by the standard. The

rounding operation introduces some error with every operation, which is bounded by the gap

between two FP values adjacent to the real value. Although the rounding error of an individual

Authors’ addresses: Sangeeta Chowdhary, Department of Computer Science, Rutgers University, United States, sangeeta.

chowdhary@rutgers.edu; Santosh Nagarakatte, Department of Computer Science, Rutgers University, United States,

santosh.nagarakatte@cs.rutgers.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/10-ART190

https://doi.org/10.1145/3563353

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 190. Publication date: October 2022.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0003-3053-230X
HTTPS://ORCID.ORG/0000-0002-5048-8548
https://doi.org/10.1145/3563353
https://orcid.org/0000-0003-3053-230X
https://orcid.org/0000-0002-5048-8548
https://doi.org/10.1145/3563353

190:2 Sangeeta Chowdhary and Santosh Nagarakatte

operation is bounded, this rounding error can accumulate over a sequence of operations and one

may encounter a scenario where all the bits in the number are influenced by rounding error (e.g.,

catastrophic cancellation [Goldberg 1991]). Similarly, there are numerous exceptional values such as

Not-a-Number (NaNs) and infinities in the FP representation (see Section 2.1). This accumulation of

rounding errors and/or the concomitant exceptions have resulted in various catastrophic incidents

(e.g., the Patriot missile failure [United States General Accounting Office 1992]).

Performance vs precision. One way to reduce the amount of rounding error is to increase

the precision of the representation, which impacts performance and throughput. However, good

floating point performance is paramount in many application domains like scientific computing and

machine learning. Hence, many accelerators for machine learning use non-standardized custom FP

representations to improve performance. For example, Nvidia’s tensorfloat32 (a 19-bit representa-

tion), Google’s bfloat16 (a 16-bit representation), and Microsoft’s MSFP are some recent FP variants

that make trade-offs between the range of values that can be represented and the precision of each

value.

Static analyses for numerical errors. There is a large body of work to estimate rounding

errors without executing the program through static analysis [Chiang et al. 2017; Darulova et al.

2018; Darulova and Kuncak 2014; Feliú et al. 2018; Ghorbal et al. 2012; Goubault 2001; Goubault

et al. 2007; Higham 2002; Solovyev et al. 2018]. Such techniques tend to work well for loop-free

fragments of code [Chiang et al. 2017; Das et al. 2020] and when there are well-defined error

specifications [Darulova and Kuncak 2014]. How to scale these techniques to large code bases is

still an open problem.

Shadow execution for detecting numerical errors. Alternatively, dynamic analyses to detect

exceptions [Barr et al. 2013; Dinda et al. 2020] and/or cancellations [Bao and Zhang 2013] are useful

to detect specific kinds of errors. Beyond such specific errors, an attractive technique to detect a wide

classes of numerical errors is shadow execution with high-precision computation [Benz et al. 2012;

Chowdhary et al. 2020a; Chowdhary and Nagarakatte 2021; Sanchez-Stern et al. 2018]. Every FP

value is shadowed with a corresponding high-precision value (e.g., using the MPFR library [Fousse

et al. 2007]). Similarly for every FP operation, the corresponding operation is performed with

high-precision computation. The value produced by the FP program is compared with the value

in the shadow execution at various points of interest. The instrumentation for shadow execution

can be injected either with compile-time instrumentation [Chowdhary et al. 2020a; Chowdhary

and Nagarakatte 2021] or with binary instrumentation [Benz et al. 2012; Sanchez-Stern et al. 2018].

Prior research has demonstrated that such shadow execution is effective in detecting numerical

errors.

Challenges with existing shadow execution approaches. Shadow execution is not widely

used with long-running applications because of the associated performance overhead. Prior binary

instrumentation based shadow execution tools such as FPDebug [Benz et al. 2012] and Herb-

grind [Sanchez-Stern et al. 2018] have performance overheads of 200 × −600× or more for small

programs. Our prior work, FPSanitizer [Chowdhary et al. 2020a], is a compiler-based shadow

execution tool that significantly reduces the overhead compared to Herbgrind and FPDebug. How-

ever, it still has performance overheads of 100× or more. Such large performance overheads limit

the use of these tools with long-running applications. Software emulation of high-precision FP

values using the MPFR library is the primary cause of performance overheads with these shadow

execution tools.

Beyond detecting numerical errors, debugging a numerical error often requires reasoning about

the propagation of errors. FPSanitizer and Herbgrind provide a limited directed acyclic graph

(DAG) of instructions to highlight the propagation of errors. Herbgrind can generate such DAGs

only for small unit tests as the extra information needed per-memory location in their approach

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 190. Publication date: October 2022.

Fast Shadow Execution for Debugging Numerical Errors using Error Free Transformations 190:3

is proportional to the number of dynamic instructions. In contrast, FPSanitizer addresses this

problem by providing DAGs for long-running programs but makes two simplifying assumptions.

First, it provides DAGs only when the instructions in the DAG belong to functions in the set of

active stack frames when the error is detected. When a function completes execution, the DAG

information about operations in that function will be lost. Second, it provides DAGs only for the

last iteration in the presence of loops. While debugging numerical errors with FPSanitizer is

better than what was previously possible, it is still challenging especially when the accumulation

of rounding error spans function calls and loops. In such scenarios, the user will need to re-run the

program numerous times with breakpoints before every function return or every loop iteration.

Error free transformations as the oracle in EFTSanitizer.We propose EFTSanitizer, a

shadow execution framework that is usable with long-running applications because it is an order of

magnitude faster than FPSanitizer. A key insight about the FP representation, which is surprisingly

not used frequently by the developers of shadow execution tools, is that the rounding error of a

primitive operation can be represented as an FP number in the same FP representation [Muller et al.

2018]. Further, the rounding error of a primitive operation can be computed with a sequence of

regular FP arithmetic operations, which are known as error free transformations (EFTs). Section 2.2

provides background on EFTs. Rather than using high-precision computation as the oracle for

comparing the FP executionwith the shadow execution, we propose using error free transformations

as the oracle for the shadow execution. Use of hardware supported FP operations to compute the

error makes EFTSanitizer’s shadow execution significantly faster than a shadow execution using

the MPFR library.

EFTs have been previously used to extend the precision for geometric algorithms [Shewchuk

1996], to create libraries for encapsulating error with Shaman [Demeure 2020], and to generate

compensation code. To the best of our knowledge, EFTSanitizer is first approach that advocates

the use of error free transformations as an oracle for shadow execution.

EFTSanitizer’s debugging support for long-running applications. To facilitate effective

debugging with long-running applications, EFTSanitizer incorporates two key features. First,

EFTSanitizer allows the user to perform shadow execution starting from an arbitrary point in

the dynamic execution, which we call selective shadow execution. This is appealing for scientific

simulations that execute for days. Second, EFTSanitizer provides a directed acyclic graph of

instructions that spans multiple functions (many of which may have already completed) and

multiple iterations of the loop while keeping the memory usage bounded.

EFTSanitizer is a compile-time instrumentation framework that instruments every FP variable

in memory and registers to track additional information, which we call metadata. The key technical

contribution of EFTSanitizer is the design of the metadata such that shadow execution can be

started at an arbitrary point in the dynamic execution while detecting errors and providing a rich

DAG of instructions to highlight the propagation of rounding errors.

To just detect errors, it is sufficient to propagate the rounding error computed using error free

transformations with each FP variable. To produce DAGs, additional information about the operands

needs to be maintained. To keep the memory usage bounded, DAGs produced by EFTSanitizer

consists of last 𝑘 dynamic instructions at the point of a numerical error. The threshold 𝑘 can

be configured by the user. These instructions can span functions that have already completed

execution and various iterations of a loop. We found these DAGs useful to debug new numerical

errors discovered by EFTSanitizer and also to validate existing bugs. However, it is important

to note that just knowing the propagation of errors using the DAGs produced by our approach

does not necessarily mean that the issue can be easily fixed. Repairing some errors may require

different algorithms. In some cases, it may be feasible to use a modified expression using tools

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 190. Publication date: October 2022.

190:4 Sangeeta Chowdhary and Santosh Nagarakatte

S E
1

… E
8

E
2

F
1

… F
23

F
2

F
3

sign exponent fraction bits

(a) 32-bit float

32 bits

S E
1

… E
11

E
2

F
1

… F
52F

2
F
3

sign exponent fraction bits

(b) 64-bit double

64 bits

Fig. 1. The bit-string of the float and double formats in the IEEE-754 binary FP representation.

like Herbie [Panchekha et al. 2015] to reduce the error. The user will have to identify appropriate

techniques to repair the program depending on the program in consideration.

Our prototype of EFTSanitizer is open source and publicly available [Chowdhary and Na-

garakatte 2022a,b]. It is built on top of the LLVM-10 compiler and supports C/C++ programs. We

have discovered new bugs in well tested applications (e.g., Lulesh, AMG, and NAS IS) and validated

that our tool detects existing bugs. EFTSanitizer is approximately 15× faster than FPSanitizer,

which is the state-of-the-art for shadow execution.

In summary, this paper makes the following contributions.

• Proposes the first shadow execution framework that uses error free transformations as the

oracle.

• Proposes a method that enables the user to run shadow execution starting from an arbitrary

point in time in the dynamic execution.

• Proposes techniques for metadata management with shadow execution to produce DAGs,

which highlights the propagation of rounding errors, that spans multiple function calls and

loop iterations.

• Demonstrates that EFTSanitizer is effective in discovering previously unknown numerical

errors and has an order of magnitude speedup compared to FPSanitizer.

2 BACKGROUND

We provide a brief overview of the FP representation and describe error free transformations, which

will be used by EFTSanitizer as the oracle for shadow execution.

2.1 The Floating Point Representation

The floating point (FP) representation specified by the IEEE-754 standard is widely used to ap-

proximate real numbers. Two main attributes of any FP representation are its dynamic range

(i.e., range of values representable) and the precision with which each value is represented. The

various formats (e.g., half, float, and double) in the IEEE-754 standard provide reasonable dynamic

range and precision appropriate for widely used applications. Most processors have hardware

implementations for at least a few formats (i.e., float and double).

In the IEEE-754 binary FP representation, the FP value is represented by a bit-string that consists

of a sign bit (S), a set of bits that represent the unsigned (biased) exponent (E), and a set of bits

that represents the fraction (F). We represent the number of bits used for the exponent field with

| 𝐸 | and the number of bits used for the fraction field with | 𝐹 |. The values represented by the FP

representation are classified into normal values, subnormal values, and special values depending on

the bit-pattern in the exponent. The exponent field is interpreted as an unsigned integer. Hence, a

bias is used to represent FP values with negative exponents. The bias for a given format is 2 |𝐸 |−1 − 1,
which is the midpoint of the set of feasible exponents representable with the FP representation. By

interpreting the exponent field as an unsigned integer, two floating values with the same sign can

be compared using integer comparisons.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 190. Publication date: October 2022.

Fast Shadow Execution for Debugging Numerical Errors using Error Free Transformations 190:5

When the exponent bits are not all zeros and not all ones (i.e., E ∈ [1, 2 |𝐸 | −2]), then the bit-string

represents a normal value. The value represented by the FP bit-string is (−1)𝑆 ×2𝐸−𝑏𝑖𝑎𝑠 ×(1+𝐹/2 |𝐹 |).
When the exponent bits are all zeros, it represents subnormal values. It is used to represent

values close to zero. The value represented by the bit-string is (−1)𝑆 × 21−𝑏𝑖𝑎𝑠 × (𝐹/2 |𝐹 |). When the

exponent bits are all ones, it represents special values. When, additionally, the fraction field is all

0’s, it represents +∞ if the sign bit is 0 and −∞ otherwise. When the fraction field is not all zeros,

then bit-string represents Not-a-Number (NaN), which is used to represent exceptional conditions.

The commonly used 32-bit float format has 1 bit for the sign, 8 bits for the exponent, and 23 bits

for the fraction. The 64-bit double format has 1 bit for the sign, 11 bits for the exponent, and 52 bits

for the fraction. Figure 1 shows the bit-patterns used for the 32-bit float and 64-bit double formats.

Rounding modes. Most real numbers cannot be exactly represented in a FP representation.

Hence, a real value is rounded to the nearest FP value according to the rounding mode. Given a

real number 𝑥 , 𝑥𝑙 is the FP number less than or equal to 𝑥 , and 𝑥ℎ is the FP number greater than 𝑥 .

Depending on the rounding mode, 𝑥 is rounded either to 𝑥𝑙 or 𝑥ℎ . The IEEE-754 standard specifies

multiple rounding modes: round down (RD), round up (RU), round to zero (RZ), round to nearest

ties to even (RN), and round to nearest ties to away (RA). The round to nearest ties to even mode

is the default rounding mode. With the round to nearest ties to even mode, when x is less than

the midpoint, it rounds to 𝑥𝑙 and when 𝑥 is greater than the midpoint, it rounds to 𝑥ℎ . When 𝑥 is

exactly at the midpoint between 𝑥𝑙 and 𝑥ℎ , 𝑥 is rounded to 𝑥𝑙 if the last bit of 𝑥𝑙 is 0. Otherwise, 𝑥

rounds to 𝑥ℎ .

Rounding errors. Rounding a real value, which is is not exactly representable in a FP represen-

tation, to the nearest FP number results in rounding error. If 𝑥 is a real value and 𝑥fp is the rounded

FP value, then the absolute error is |𝑥fp − 𝑥 |. If x is in range of normal values, then the absolute

error is less than the gap between two floating-point numbers 𝑥𝑙 and 𝑥ℎ where 𝑥𝑙 ≤ 𝑥 ≤ 𝑥ℎ for all

rounding modes defined by the IEEE-754 standard. The absolute rounding error for the round to

nearest modes (i.e., RN and RA) is at most half of the gap between 𝑥𝑙 and 𝑥ℎ . If 𝑥fp has an exponent

e, then |𝑥fp − 𝑥 | < 2
−𝑝 × 2𝑒 , where 𝑝 is the precision of the FP representation [Muller et al. 2018].

The IEEE-754 standard mandates correct rounding of primitive operations. Hence, the rounding

error of any primitive operation is bounded. However, this rounding error can be amplified by

operations such as subtraction. When two values close to each other are subtracted, it can cancel out

all the leading bits such that remaining bits are influenced by rounding errors. This accumulation of

errors with a sequence of operations can cause the program to produce totally different results, ex-

ceptional results such as NaNs and infinities, and can cause divergence in iterative algorithms [Benz

et al. 2012; Higham 2002; Muller et al. 2018].

In the context of shadow execution, a common way to measure the absolute error and its

propagation with various operations is to use a high-precision library such as MPFR [Fousse et al.

2007]. Next, we describe how we can compute this rounding error using FP operations itself.

2.2 Computing the Rounding Error with Error Free Transformations

An important, yet commonly unused, property of the floating point representation is that the round-

ing error of a primitive FP operation itself can be represented as a floating point number [Muller

et al. 2018]. A sequence of FP operations to compute the rounding error of a primitive operation

are called error free transformations (EFTs) [Ogita et al. 2005]. EFTs are appealing for shadow

execution because we can use existing hardware supported FP operations to compute the rounding

error. Given two FP operands 𝑎, 𝑏, and a primitive FP operation +, the error free transformations

enables us to compute the floating point result 𝑥 = 𝑎 + 𝑏 and the rounding error 𝛿𝑥 such that

𝑎 +𝑅 𝑏 = 𝑥 +𝑅 𝛿𝑥 . Here, +𝑅 represents primitive operation with real numbers. Although the error of

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 190. Publication date: October 2022.

190:6 Sangeeta Chowdhary and Santosh Nagarakatte

1 Function TwoSum(𝑎, 𝑏):

2 𝑥 ← 𝑎 + 𝑏
3 𝑏 ′ ← 𝑥 − 𝑎
4 𝑎′ ← 𝑥 − 𝑏 ′
5 𝛿𝑎 ← 𝑎 − 𝑎′
6 𝛿𝑏 ← 𝑏 − 𝑏 ′
7 𝛿𝑥 ← 𝛿𝑎 + 𝛿𝑏
8 return (𝑥, 𝛿𝑥)

1 Function PropSumError((𝑎, 𝛿𝑎), (𝑏, 𝛿𝑏)):
2 (𝑥, 𝛿𝑥) ← TwoSum(𝑎, 𝑏);
3 𝛿𝑥 ← 𝛿𝑥 + 𝛿𝑎 + 𝛿𝑏 ;
4 return (𝑥, 𝛿𝑥)

Fig. 2. Error free transformations for addition. The function TwoSum computes the result (𝑥) of FP addition

and the rounding error (𝛿𝑥) from FP addition of two operands 𝑎 and 𝑏 with the assumption that operands do

not have any error. All operations are performed using FP operations. The function PropSumError computes

the FP result and the rounding error when the input operands also have some error (i.e., 𝛿𝑎 and 𝛿𝑏).

the primitive operation 𝛿𝑥 is representable in the FP representation, the value 𝑥 +𝑅 𝛿𝑥 rounds to 𝑥

in the FP representation.

An interesting aspect of EFTs is that for some computation they provide more precision when

compared to arithmetic performed with the 128-bit format (i.e., double-double) even when we

maintain a single 64-bit error term. For example, the expression (1.0 + (1.7 × 10308)) − (1.7 × 10308)
will return 0 with double precision arithmetic. The addition (1.0 + (1.7 × 10308)) returns 1.7 × 10308
due to the loss of precision. This causes the final result to be 0. To capture this error with high

precision computation (e.g., MPFR library), we need at least 1024 bits of precision to store the result

of addition precisely. By explicitly maintaining error with EFTs, we can easily capture this error. In

essence, we can store the result of (1 + (1.7 × 10308)) as the sum of two floating-point numbers

using EFTs. Hence, EFTs provide a mechanism to split the floating-point numbers as the sum of

two non-overlapping floating-point numbers [Jeannerod et al. 2018].

Next, we describe error free transformations to compute the error of various primitive operations

with the assumption that input operands do not have any error. Subsequently, we describe how

to compose the error of the operands with error free transformations. We use +𝑅 to represent

primitive operation + performed with real numbers. Otherwise, all operations are performed using

floating point arithmetic operations.

Computing the rounding error for an FP addition operation. The sequence of FP operations

to compute the rounding error of an FP addition operation with the round to nearest mode was

proposed by Donald Knuth [Muller et al. 2018]. It was called TwoSum by Shewchuk [Shewchuk 1996].

Figure 2 provides the TwoSum algorithm. It assumes that there is no error in the input operands.

It uses Sterbenz’s lemma that states certain FP operations are exact without any rounding error.

Specifically, if 𝑎 and 𝑏 are nonnegative FP numbers such that 𝑏/2 ≤ 𝑎 ≤ 2𝑏, then 𝑎 − 𝑏 is exactly

representable in the FP representation [Sterbenz 1974]. If |𝑎 | ≥ |𝑏 |, then the subtraction in line

3 of TwoSum in Figure 2 is exact from Sterbenz’s lemma. If |𝑎 | < |𝑏 |, then line 2 may have some

rounding error, which is computed by computing (𝑎 − 𝑎′) and (𝑏 − 𝑏 ′) as shown in Figure 2. Other

subtraction operations in the TwoSum algorithm in Figure 2 are exact from Sterbenz’s lemma.

Provided there are no underflows or overflows in the computation of 𝑎 +𝑏, the TwoSum algorithm
computes the error exactly representable as a FP value. The TwoSum algorithm may experience an

overflow for some rare cases when the actual computation does not overflow [Boldo et al. 2017].

However, those cases are rare in practice [Muller et al. 2018]. Such error free transformations

have also been explored to produce the rounding error for other rounding modes in the IEEE

standard [Priest 1992].

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 190. Publication date: October 2022.

Fast Shadow Execution for Debugging Numerical Errors using Error Free Transformations 190:7

If |𝑎 | ≥ |𝑏 |, then a faster algorithm for computing the rounding error with FP operations can be

used, which is also known as Dekker’s Fast2Sum algorithm [Muller et al. 2018]. The rounding error

can be computed exactly as 𝑏 − (𝑥 − 𝑎). We use the TwoSum algorithm for our shadow execution

with error free transformations because we do not want to have an additional branch instruction

and a swap of the operands for computing the error.

Propagating the error of the operands with addition. Using TwoSum, we can compute the

rounding error of a single FP addition operation. The operands to this addition themselves may

have been produced as a result of other FP operations. Hence, they will have some error. We need

to propagate the error from the operands to the error of the result. The PropSumError function

in Figure 2 shows the computation of the resultant error. We add the error in the operands to the

error of the result of the FP addition. As the addition of error is performed with FP arithmetic,

there will be some small rounding error corresponding to the error terms. It is possible to use the

non-overlapping components method to compute this error [Shewchuk 1996]. For the purpose of

shadow execution, we chose to ignore the second order error terms as they are extremely small.

The computed error with this method is at least as good as the error computed with double-double

arithmetic (i.e., 128-bit FP format).

EFTs for Subtraction. To compute the error of the subtraction operation, we use TwoSum with

sign of the second operand changed (i.e., TwoSum(𝑎,−𝑏)). The propagated error is 𝛿𝑥 +𝛿𝑎 −𝛿𝑏 , where
𝛿𝑥 is the error of the subtraction assuming no error in the operands. Here, 𝛿𝑎 and 𝛿𝑏 represents the

error in the operands 𝑎 and 𝑏, respectively.

Computing the rounding error for FP multiplication. Computing the rounding error of a

single FP multiplication operation is easy when there exists a fused multiply-add (fma) operation

in the system. Hardware vendors started adding fused multiply-add operations to processors in

1990 (e.g., IBM POWER1). Now, almost all mainstream processors have hardware support for them.

Fused multiply-add operations are also included in the 2008 version of the IEEE-754 FP standard.

Further, recent processors also support SIMD versions of fused multiply-add (i.e., FMA3 and FMA4

in the x86 instruction set). Semantically, a correctly rounded fused multiply-add operation performs

both the multiplication and the addition operation with infinite precision and the result is finally

rounded to the FP representation (i.e., only one rounding). Given operands 𝑎 and 𝑏 and the FP

multiplication result 𝑥 , the rounding error with FP multiplication can be computed as follows:

𝛿𝑥 = fma(𝑎, 𝑏,−𝑥)

The above method accurately computes the rounding error, which is representable as an FP

value, for the round to nearest ties to even mode provided overflows and underflows do not occur.

Specifically, error term 𝛿𝑥 is an exact FP number if 𝑒𝑎 + 𝑒𝑏 ≥ 𝑒min + 𝑝 − 1, where 𝑒𝑎 and 𝑒𝑏 represent

the exponents of 𝑎 and 𝑏, and 𝑝 is the precision of the FP representation. When this condition is not

satisfied, then the error 𝛿𝑥 is below the underflow threshold. Hence, it is not exactly representable

as an FP number [Muller et al. 2018].

When the system does not support fused multiply-add operations, then a more sophisticated

algorithm called Dekker-Veltkamp splitting is used to compute the rounding error [Muller et al.

2018]. We use the fused multiply-add operation to compute the rounding error with a single

multiplication operation.

Propagating the rounding error with multiplication.When the operands have error, we

have (𝑎, 𝛿𝑎) and (𝑏, 𝛿𝑏) as the operands, we want to compute (𝑎 +𝑅 𝛿𝑎) ∗𝑅 (𝑏 +𝑅 𝛿𝑏). Hence,

𝑥 +𝑅 𝛿𝑥 = (𝑎 +𝑅 𝛿𝑎) ∗𝑅 (𝑏 + 𝛿𝑏) = (𝑎 ∗𝑅 𝑏) +𝑅 (𝑎 ∗𝑅 𝛿𝑏) +𝑅 (𝑏 ∗𝑅 𝛿𝑎) +𝑅 (𝛿𝑎 ∗𝑅 𝛿𝑏)

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 190. Publication date: October 2022.

190:8 Sangeeta Chowdhary and Santosh Nagarakatte

Simplifying and ignoring the second order error terms (i.e., 𝛿𝑎 ∗𝑅 𝛿𝐵), we can perform the

computation on the error terms using FP operations as shown below.

𝛿𝑥 = fma(𝑎, 𝑏,−𝑥) + 𝑎 ∗ 𝛿𝑏 + 𝑏 ∗ 𝛿𝑎

By computing the operations on the error terms with FP operations, we will not be considering

small amounts of rounding error in the computation on error terms, which is acceptable for

debugging with shadow execution.

Computing and propagating the rounding error of the FP division operation. Similar to

multiplication, computing the rounding error for the FP division operation can accomplished using

the fused multiply-add operation.

𝑥 = 𝑎/𝑏, 𝛿𝑥 = fma(𝑥, 𝑏,−𝑎)

The above rounding error can be exactly computed using the fused multiply-add operation

provided 𝑒𝑏 + 𝑒𝑥 ≥ 𝑒min + 𝑝 − 1, where 𝑒𝑏 , 𝑒𝑥 , and 𝑒𝑚𝑖𝑛 are the exponents of 𝑏, 𝑥 , and the mini-

mum exponent in the representation, respectively. Here, 𝑝 is the amount of precision of the FP

representation.

When the operands have some error ((𝑎, 𝛿𝑎), (𝑏, 𝛿𝑏)), we want to compute (𝑎 +𝑅 𝛿𝑎)/𝑅 (𝑏 +𝑅 𝛿𝑏).

𝑥 +𝑅 𝛿𝑥 = (𝑎 +𝑅 𝛿𝑎)/𝑅 (𝑏 +𝑅 𝛿𝑏)

After rearranging the terms,

𝛿𝑥 = ((𝑎 +𝑅 𝛿𝑎)/𝑅 (𝑏 +𝑅 𝛿𝑏)) −𝑅 𝑥 = ((𝑎 +𝑅 𝛿𝑎) −𝑅 (𝑥 ∗𝑅 𝑏) −𝑅 (𝑥 ∗𝑅 𝛿𝑏))/𝑅 (𝑏 +𝑅 𝛿𝑏)

After performing the computation of 𝑥 ∗𝑅 𝑏 −𝑅 𝑎 using the fused multiply-add operation and the

rest of the computation on error terms using FP operations, the propagated error for division is

𝛿𝑥 = (𝛿𝑎 − fma(𝑥, 𝑏,−𝑎) − 𝑥 ∗ 𝛿𝑏)/(𝑏 + 𝛿𝑏)

Computing and propagating the error for square root. Similar to FP multiplication and

division, the rounding error of a correctly rounded FP square root operation can be computed with

the fused multiply-add operation as follows,

𝑥 =

√
𝑎, 𝛿𝑥 = fma(−𝑥, 𝑥, 𝑎)

The rounding error 𝑎 − 𝑥2 is exactly representable with p bits of precision if 2𝑒𝑥 ≥ 𝑒𝑚𝑖𝑛 + 𝑝 − 1,
where 𝑒𝑥 is the exponent of 𝑥 [Boldo and Daumas 2003; Muller et al. 2018].

When the operand has error (i.e., (𝑎, 𝛿𝑎)), then we want to compute 𝑥 +𝑅 𝛿𝑥 =

√
𝑎 +𝑅 𝛿𝑎 . After

squaring both sides, rearranging the terms after ignoring the second order error term (𝛿2𝑥) and

computing (𝑎 − 𝑥2) with fused multiply-add , and performing the computation with FP operations,

we have

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 190. Publication date: October 2022.

Fast Shadow Execution for Debugging Numerical Errors using Error Free Transformations 190:9

𝛿𝑥 = (𝛿𝑎 + fma(−𝑥, 𝑥, 𝑎))/2𝑥

When we compute the error with the above formula for the square root operation, we also handle

the case where 𝑥 = 0 separately to avoid divide-by-zero exceptions in the computation of the error.

3 THE EFTSANITIZER APPROACH

Our goal is to develop an approach that is useful for detecting and debugging numerical errors in

long-running programs during late stages of testing. To accomplish this goal, we need the resulting

approach to have the following attributes. First, it should detect a wide range of errors such as

exceptions (due to NaNs and infinities), cancellations where a large fraction (or all) of the bits

are wrong, slow convergences, and/or significant rounding errors. Second, it should enable the

debugging of reported errors with an execution trace that illustrates the propagation of errors.

Third, we want to be able to debug the program from an arbitrary point of the execution. This is

necessary with scientific simulation experiments that typically run for days. Finally, it must have

low performance and memory overhead.

Error free transformations for shadow execution. This paper proposes EFTSanitizer,

which is the first approach that performs inlined lock-step shadow execution with error free

transformations (EFTs) as the oracle. Using error free transformations, EFTSanitizer computes

the propagated rounding error with hardware supported FP operations. This use of hardware FP

operationsmakes EFTSanitizer significantly faster compared to prior shadow execution tools [Benz

et al. 2012; Chowdhary et al. 2020a; Sanchez-Stern et al. 2018].

EFTSanitizer is a compile-time instrumentation framework that automatically adds code after

each FP operation to compute and propagate the error using EFTs. EFTSanitizer maintains this

propagated rounding error for both variables in memory and in registers. For operations that do not

have EFTs available (e.g., elementary functions), we use corresponding high-precision operations

from the MPFR library [Fousse et al. 2007] to compute the error. In the case of elementary functions,

the user can configure EFTSanitizer to use correctly rounded elementary functions [Aanjaneya

et al. 2022; Daramy-Loirat et al. 2006; Lim et al. 2020, 2021; Lim and Nagarakatte 2021a,b,c, 2022;

Muller 2016] to compute the error, which improves performance.

Debug information to illustrate the propagation of rounding errors. The propagation

and accumulation of rounding errors with a sequence of operations causes exceptions and wrong

results in programs. Hence, EFTSanitizer provides a dynamic trace of instructions represented as

a directed acyclic graph that demonstrates the propagation of errors. Prior research on shadow

execution such as FPSanitizer [Chowdhary et al. 2020a] and Herbgrind [Sanchez-Stern et al. 2018]

also provide DAGs to assist debugging. However, the DAG information is lost after function calls

and multiple iterations of a loop with FPSanitizer. Similarly, the Herbgrind’s metadata to produce

DAGs grows linearly with the number of dynamic instructions and the program crashes with

out-of-memory errors for almost all programs beyond unit tests.

In contrast, the directed acyclic graphs reported by EFTSanitizer span multiple functions and

provides information about functions that have already completed execution (i.e., no longer in

the set of active stack frames) and also across multiple iterations of the same loop. We develop

novel methods to manage the metadata for FP values in registers and in memory to generate such

DAGs while having low performance/memory overheads. Figure 3 compares the DAGs generated

by EFTSanitizer and FPSanitizer for a sample program for illustration.

Selective shadow execution. Developers of many long-running scientific applications prefer to

test and debug numerical errors in specific parts of the application rather than the entire execution.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 190. Publication date: October 2022.

190:10 Sangeeta Chowdhary and Santosh Nagarakatte

DAG with FPSanitizer DAG with EFTSanitizer

#4 Add

R = 0.50133999

C = 0.50133997

Err = 2.27E-8

a = 0.5f b = 0.0013f

#5 Sub

R = 0.5

C = 0.4999

Err = 2.98E-8

b = 0.0013f

#6 Sub

R = 0

C = -2.9802E-8

Err = 2.98E-8

a = 0.5f

#7 Mul

R = 0

C = -5.9604

Err = 5.96

2.0E+8

(a)
(c)

#6 Sub

R = 0

C = -2.9802E-8

#7 Mul

R = 0

C = -5.9604

2.0E+8

(b)

1 float compute(float a, float b){

2 return (((a + b) - b) - a);

3 }

4 int main(){

5 float a = 0.5f;

6 float b = 0.0013f;

7 float c = compute(a, b);

8 float d = c * 200000000.0f;

9 printf("d:%e\n", d);

10 }

(a)

Fig. 3. (a) A sample program to illustrate differences in the DAGs generated by EFTSanitizer and our prior

work FPSanitizer [Chowdhary et al. 2020a] for the variable 𝑑 after executing line 8. Here, 0.013 is not exactly

representable as a 32-bit float. This rounding error is amplified by other operations. (b) The DAG generated

by FPSanitizer where the DAG information is lost after the function call to compute completes. (c) The DAG

generated by EFTSanitizer. Each node in DAG reports the operation, oracle real value (R), computed value

(C), and the error for that node. The oracle real value is computed as the sum of the error and the computed

value with FP arithmetic in EFTSanitizer. The oracle real value is computed using the high-precision MPFR

library in FPSanitizer.

EFTSanitizer supports such selective shadow execution, which requires us to distinguish memory

locations that have been previously accessed by the shadow execution and those that have not been

previously accessed by the shadow execution. To distinguish such cases and facilitate such selective

shadow execution, we maintain the floating-point value in the metadata along with the error. On a

memory access, we check if the FP value produced in the program and the FP value in the metadata

for the load instruction are identical. If they are identical, then the memory location was previously

written by the shadow execution. Otherwise, we start tracking the rounding error from that point

in time. This support for selective shadow execution enables EFTSanitizer to not only debug

entire executions but also small fragments of a large program. It also helps in interacting with

third-party libraries that cannot be recompiled with EFTSanitizer.

In summary, the use of EFTs as an oracle, the design of the metadata to provide rich traces of

instructions to highlight the accumulation of rounding errors, and selective shadow execution

enables EFTSanitizer to detect errors with long-running applications.

3.1 Metadata Design and Organization of the Metadata Space

Given that EFTSanitizer performs compile-time instrumentation, the FP values are resident either

in memory locations or in registers/temporaries. To perform inlined shadow execution, we need

to store the propagated error and some additional information with each memory location and

temporaries (stack allocated variables or registers) that hold an FP value. The lifetime of the FP

values in memory locations and in temporaries are different. Hence, we design different metadata

spaces for FP values in memory and for those in temporaries.

Organization of the metadata space. We store metadata for FP values in memory in shadow

memory, which is organized as a hash map. The lookup of the metadata is performed using the

address of the memory access. For temporaries with FP values, we maintain the metadata in a small

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 190. Publication date: October 2022.

Fast Shadow Execution for Debugging Numerical Errors using Error Free Transformations 190:11

Error

(A) Dynamic trace of instructions with

their timestamps and static identifiers

P = 1.0

Q = 1.7E+308

R = P + Q

T1

T2

T3

ID1

ID2

ID3

(B) Metadata entries for temporaries after the

execution of instruction with ID3

FP Value OP1 OP2 ID
Time

-stamp

0.0 1.0 - - ID1 T1

0.0 1.7E+308 ID2- - T2

1.0 1.7E+308 ID3 T3

Fig. 4. The metadata maintained with each temporary (and also with each memory location). (A) We show

the dynamic trace of the executed instructions with the timestamp of the execution and the static identifier of

the instruction. (B) We show the temporary metadata entries after the execution of instruction with ID3 (i.e.,

R = P + Q). Here, we show pointers in the metadata space with arrows from the field to their corresponding

metadata entries.

circular queue, which we call the temporary metadata space. Given a temporary that has an FP

value, we need to maintain the mapping between the temporary and its corresponding entry in the

temporary metadata space. We maintain a runtime map, which we call the last writer map, that

maps the temporary that holds an FP value to its entry in the temporary metadata space.

One requirement on any such map is that we do not want this runtime map to grow proportional

to the number of dynamic instructions. In the context of shadow execution, we observe that we

just need to know the last writer to a temporary for establishing dataflow from the definition of

the temporary to its use. We use the static instruction identifier generated by the compiler for the

temporary to index into the last writer map.

What should we store in each metadata entry? To detect numerical errors, we store the

propagated rounding error that is computed using error free transformations. We use the 64-bit

double format to store the propagated rounding error. To facilitate selective shadow execution,

we store the FP value generated by the program in the metadata entry. To produce a directed

acyclic graph that highlights the accumulation of rounding error, we also store the pointers to the

temporary metadata space entries of the operands. As the temporary metadata space entries can be

reused, we store a monotonically increasing timestamp in the metadata entry to detect instances of

reuse of the temporary metadata entries. We also store the compiler generated static instruction

identifier of the instruction producing the FP value in the metadata entry to help debugging.

Figure 4 illustrates the information maintained with each metadata entry. When EFTSanitizer

finds an instruction that exceeds the error threshold set by the user or observes an exceptional

condition, it produces a DAG of instructions that shows error propagation by following the pointers

to the operands in the metadata space.

Reusing the entries of the temporarymetadata space. The number of temporaries generated

at runtime by the program is proportional to the number of dynamic instructions. To keep the

memory usage bounded for the temporary metadata space, we use a circular queue of a fixed

size (i.e., say 𝑘 entries). When the queue becomes full, the next instruction that produces an FP

value as the temporary uses the slot of the next entry in the queue (i.e., the entry which was

previously used for the oldest instruction in the temporary metadata space). Given the reuse of the

temporary metadata space entries, the DAG generated to highlight the propagation of rounding

error has at most 𝑘 entries, where 𝑘 is the size of the circular queue used for the temporary metadata

space. Unlike prior work such as FPSanitizer [Chowdhary et al. 2020a], the metadata entries can

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 190. Publication date: October 2022.

190:12 Sangeeta Chowdhary and Santosh Nagarakatte

(A) static program

C = 1.0;

for (i = 0; i < 2; i ++){

 A = 1.0;

 B = 1.7E+308;

 T = A+B;

 C = C + T;

}

ID1

ID2

ID3

ID4

ID5

C = 1.0;

A = 1.0;

B = 1.7E+308;

T = A+B;

C = C + T;

A = 1.0

B = 1.7E+308

T = A+ B

C = C + T

ID1

ID2

ID3

ID4

ID5

ID2

ID3

ID4

ID5

(B) dynamic trace of FP operations

Error FP Value OP1 OP2 ID

Time

-stamp

0.0 1.0 - - ID1 T1

0.0 1.0 ID2- - T2

0.0 1.7E+308 ID3 T3

1.0 1.7E+308 addr2 addr3 ID4 T4

2.0 1.7E+308 ID5addr1 addr4 T5

0.0 1.0 ID2 T6

T1

T2

T3

T4

T5

T6

T7

T8

T9

addr1

addr2

addr3

addr4

addr5

addr6

(C) temporary metadata space at time T6

- -

- -

last writer run-time map

<ID, (addr, ts)>

ID1

ID2

ID3

ID4

ID5

<addr1, T1>

<addr6, T6>

<addr3, T3>

<addr4, T4>

<addr5, T5>

Error FP Value OP1 OP2 ID

Time

-stamp

0.0 1.7E+308 - - ID3 T7

0.0 1.0 ID2- - T2

0.0 1.7E+308 ID3 T3

1.0 1.7E+308 addr2 addr3 ID4 T4

2.0 1.7E+308 ID5addr1 addr4 T5

0.0 1.0 ID2 T6

addr1

addr2

addr3

addr4

addr5

addr6

(D) temporary metadata space at time T7

- -

- -

last writer run-time map

<ID, (addr, ts)>

ID1

ID2

ID3

ID4

ID5

<addr1, T1>

<addr6, T6>

<addr1, T7>

<addr4, T4>

<addr5, T5>

Error FP Value OP1 OP2 ID

Time

-stamp

0.0 1.7E+308 - - ID3 T7

1.0 1.7E+308 ID4addr6 addr1 T8

0.0 1.7E+308 ID3 T3

1.0 1.7E+308 addr2 addr3 ID4 T4

2.0 1.7E+308 ID5addr1 addr4 T5

0.0 1.0 ID2 T6

addr1

addr2

addr3

addr4

addr5

addr6

(E) temporary metadata space at time T8

- -

- -

last writer run-time map

<ID, (addr, ts)>

ID1

ID2

ID3

ID4

ID5

<addr1, T1>

<addr6, T6>

<addr1, T7>

<addr2, T8>

<addr5, T5>

Error FP Value OP1 OP2 ID

Time

-stamp

0.0 1.7E+308 - - ID3 T7

1.0 1.7E+308 ID4addr6 addr1 T8

2.0 1.7E+308 ID5 T9

1.0 1.7E+308 addr2 addr3 ID4 T4

2.0 1.7E+308 ID5addr1 addr4 T5

0.0 1.0 ID2 T6

addr1

addr2

addr3

addr4

addr5

addr6

(F) temporary metadata space at time T9

addr5 addr2

- -

last writer run-time map

<ID, (addr, ts)>

ID1

ID2

ID3

ID4

ID5

<addr1, T1>

<addr6, T6>

<addr1, T7>

<addr2, T8>

<addr3, T9>

(G) DAG generated for ID5 at time T9

Time Identifier Dynamic instruction

addr3

addr2

addr5
addr4

addr1

addr6

Error: 2, ID5

Error: 1.0, ID5

Error: 1.0, ID4 Error: 0.0, ID2

Error: 0.0, ID3

Error: 1.0, ID4

Fig. 5. Illustration to highlight the reuse of the temporary metadata space entries. We assume the there are

only 6 entries in the temporary metadata space for this illustration. (A) An example program with loops. (B)

Dynamic execution trace of the program in (A). We present the static instruction identifier and the time at

which the program is executed. Multiple dynamic instances of the same instruction will have the identifier.

(C) The snapshot of the temporary metadata space at time T6. We also show the last writer runtime map

that maps a static instruction to its temporary metadata entry and the timestamp at which it was written.

(D) Snapshot of the temporary metadata space after the operation B=1.7E+308 at time T7. The changes to the

temporary metadata entries are highlighted in bold. (E) Temporary metadata space after the operation T=A+B

at time T8. (F) Temporary metadata space after the operation C= C+T at time T9. (G) The DAG generated

for the instruction with ID5 at time T9. From the last writer’s map, it is mapped to addr3. When we follow

the operand nodes while creating the DAG entries, we check if the operand’s timestamp is greater than the

current instruction’s timestamp. If so, we do not print that node. For example, when we access the metadata

entry at addr4 that was written at time T4, it operands are at addr2 and addr3. The timestamp of metadata

entry at addr2 is greater than T4 because of the reuse of temporary metadata space entries. Hence, we do not

print the operands of the entry at addr4.

span function calls that have already completed execution and multiple loop iterations, which

significantly helps in the task of debugging numerical errors.

Given that the metadata entries in the temporary metadata space can be reused, we need a

mechanism to map a temporary to its metadata entry. Subsequently when we generate the DAG

on observing significant rounding error, we need to stop following the pointers to the operands

when the metadata entries are reused. We use a map, which we call last writer runtime map, that

maps a static instruction that produces a temporary to its metadata entry and the timestamp of

the instruction when it was written. Multiple dynamic instances of the same static instruction

can be present in the temporary metadata space. They will be linked as the operands of the other

temporary metadata space entries. It is important to note that the last writer runtime map only

maintains information about the last writer for a given static instruction.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 190. Publication date: October 2022.

Fast Shadow Execution for Debugging Numerical Errors using Error Free Transformations 190:13

When an instruction with compiler generated static identifier ID produces a temporary, a new

entry for the instruction is created in the temporary metadata space.We add the address of the newly

created metadata entry and the current timestamp to the last writer runtime map corresponding

to ID. Next, we need to populate the operands for the newly created metadata entry. First, we

check if the metadata for the operand is still available by checking last writer runtime map to

obtain a tuple (addr, ts) for the operand, where addr is the address of the temporary metadata

entry for the operand and ts is the timestamp when the operand was written to the temporary

metadata space. Now, we check if the timestamp in the metadata entry at address addr is equal to

ts from the last writer runtime map. If so, the metadata for the operand is available. Otherwise, the

operand’s metadata is not available because the operand’s metadata entry has been reused. We use

the null value for the operand’s metadata entry. The DAG generated to highlight the propagation

of rounding errors will be limited until this operand.

The use of monotonically increasing timestamps and the last writer runtime map that maps a

temporary to its metadata entry enables us to keep the temporary metadata space bounded (i.e., by

reusing entries) and still provide DAGs proportional to the number of entries in the temporary

metadata space.

Further when we print the DAG to highlight the propagation of errors, we follow the operands

of an instruction 𝐼 when the timestamp in the metadata entry of the operands is smaller than

the timestamp of instruction 𝐼 . This idea of using timestamps in the metadata and the last writer

runtime map is inspired by the lock-and-key approach for detecting temporal memory safety

errors in CETS [Nagarakatte 2012; Nagarakatte et al. 2010]. Rather than maintaining explicit lock

locations and keys, we accomplish the detection of metadata reuse with timestamps and the last

writer runtime map. Unlike CETS, this decision to detect reuse with timestamps and the last

writer runtime map ensures that size of the runtime map is proportional to the number of static

instructions in the program rather than number of dynamic instructions (number of active memory

allocations in the case of CETS).

3.2 Metadata Propagation

We now describe when the metadata is created and how it is propagated with various FP operations,

load/store operations, and function calls. We show the added instrumentation in the shaded region

in the code snippets below.

Initialization with compile-time constants.When the program generates a new temporary

and initializes it with a constant, we create a new temporary metadata space entry. The temporary

metadata space is internally represented as a circular queue implemented in an array. It just wraps

around after reaching the end of the array. We add the address of the new metadata entry and

the timestamp to the last writer runtime map corresponding to the compiler generated identifier

associated with this instruction. Compile-time constants are assumed to have zero error. Hence, we

initialize the rounding error as zero. We set the FP value in the metadata entry to the initialized

constant. We also set the operands in the metadata entry to null.

double x = 1.0; // instruction with compiler generated identifier x_id

x_meta = allocate_temporary_metadata_space_entry();

x_meta -> error = 0.0;

x_meta -> fpvalue = 1.0;

x_meta -> operand1 = null;

x_meta -> operand2 = null;

x_meta -> id = x_id;

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 190. Publication date: October 2022.

190:14 Sangeeta Chowdhary and Santosh Nagarakatte

x_meta->timestamp = timestamp++;

last_writer_map.insert(x_id, <x_meta, x_meta->timestamp>);

FP Operations. Given that EFTSanitizer operates on the intermediate representation of the

compiler, all FP operations are either binary operations or unary operations. Further, memory

accesses happen with explicit load and store instructions. When an FP operation produces a value

in a temporary, we first allocate a new metadata entry in the temporary metadata space. We retrieve

the metadata of the operands by looking up the last writer runtime map. The metadata entries of

the operands might have been reused. Hence, we check if the timestamp in the last writer runtime

map matches the timestamp at the metadata entry. If so, the metadata entries are valid. Otherwise,

we do not have information about the operands. In such cases, we assume that the operands do not

have any error. We also set the operands in the metadata entry for the current operation as shown

below.

When the operand’s metadata entries have not been reused, we read the error from the metadata

entries for the operands and compute the propagated rounding error using error free transformations

as described in Section 2.2. We use PropSumError in the listing below to compute the propagated

rounding error after addition. For operations without corresponding EFTs, we use the high-precision

computation using the MPFR library to compute the error.

double z = x + y; // with identifer z_id and operand identifiers x_id and y_id

z_meta = allocate_temporary_metadata_space_entry();

<x_meta, x_ts> = last_writer_map(x_id);

<y_meta, y_ts> = last_writer_map(y_id);

// check if x and y metadata entries are valid

z_meta->op1 = (x_meta->timestamp != x_ts) ? NULL: x_meta;

z_meta->op2 = (y_meta->timestamp != y_ts) ? NULL: y_meta;

x_error = (x_meta->timestamp != x_ts) ? 0.0: x_meta->error;

y_error = (y_meta->timestamp != y_ts) ? 0.0: y_meta->error;

z_meta-> error = PropSumError(x, x_error, y, y_error);

z_meta->fpvalue = z;

z_meta->id = z_id;

z_meta->timestamp = timestamp++;

last_writer_map.insert(z_id, <z_meta, z_meta->timestamp>);

Handling stores of FP values to memory.When we store a FP value to a memory, we need

to propagate the metadata to memory locations. Each memory location that holds an FP value

is shadowed with metadata in shadow memory. We first obtain the temporary metadata space

entry of the FP operand that is being stored to memory. We check if the temporary metadata entry

is still valid. If so, we copy the temporary metadata space entry to a shadow memory location

corresponding to the address where the FP value is being stored.

x = y; // x's type is double and y's type is double with ID: y_id

<y_meta, y_ts> = last_writer_map(y_id);

shadow_addr = shadow_memory(x);

memcpy(shadow_addr, y_meta, SIZE);

timestamp++;

Here, SIZE is the size of the metadata space entry.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 190. Publication date: October 2022.

Fast Shadow Execution for Debugging Numerical Errors using Error Free Transformations 190:15

Error

Illustration of the support for selective Shadow Execution on the load of an FP value: double y = *x

FP Value OP1 OP2 ID Time

-stamp

… … … … … …

2.0 1.7E+308 IDKaddr1 addr2 TN

… … … …

1.7E+308

Memory Shadow Memory

x shadow(x)

Error FP Value OP1 OP2 ID Time

-stamp

… … … … … …

0.0 0.0 IDKaddr1 addr2 TN

… … … …

1.7E+308

Memory Shadow Memory

x shadow(x)

(A) Shadow memory corresponding to address x previously written by the shadow execution (B) Shadow memory for address x previously not accessed by the shadow execution

==
!=

Fig. 6. Illustration of the support for selective shadow execution in EFTSanitizer. When the program loads

an FP value load from an address 𝑥 , we check if the FP value in the metadata entry in the shadow memory

corresponding to address 𝑥 is equal to the FP value produced by the program. (A) If the shadow execution

has previously written to the metadata entry, then the FP values in the program and in the metadata entry

will match. (B) When the shadow memory for the location has not been previously updated (i.e., it happened

in uninstrumented code), the FP values produced by the program and the one in shadow memory will not

match. We consider the value not to have any error and start error propagation from that point.

Handling the load of an FP value from memory. On every load operation that loads an FP

value, we read the metadata from shadow memory corresponding to the address where the FP

value is being loaded. Since we want to enable selective shadow execution from an arbitrary point

in time, the metadata in the shadow memory corresponding to the address may not have been

written previously by the shadow execution. As we store the FP value previously produced by the

program in the metadata entry, we check if the FP value in the metadata entry and the one produced

by the program match. If so, the shadow memory entry was previously written by the shadow

execution and we copy the metadata entry from shadow memory to the temporary metadata space

(i.e., with memcpy). If the FP value in shadow memory and the FP value produced by the program

do not match, then we create a new temporary metadata space entry, initialize the error to 0.0,

and initialize the FP value with the value produced by the program. Figure 6 illustrates the check

performed to support selective shadow execution from an arbitrary point in the execution.

y = *x // where x's type is double * and y's identifier is y_id

y_meta = allocate_temporary_metadata_space_entry();

shadow_addr = shadow_memory(x);

if(shadow_addr->fpvalue == y){ //check for selective shadow execution

memcpy(y_meta, shadow_addr, SIZE);

}

else{

y_meta-> error = 0.0;

y_meta-> fpvalue = y;

y_meta->op1 = null;

y_meta->op2 = null;

}

y_meta->id = y_id;

y_meta->timestamp = timestamp++;

last_writer_map.insert(y_id, <y_meta, y_meta->timestamp>);

Metadata propagation with function arguments and returns.We use a shadow stack to

propagate the metadata for arguments and return values. Our compiler adds instrumentation

at the call site to add metadata entries for arguments in the shadow stack. The compiler adds

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 190. Publication date: October 2022.

190:16 Sangeeta Chowdhary and Santosh Nagarakatte

instrumentation in the beginning of the callee to retrieve the metadata for the arguments. Similarly,

the compiler also adds instrumentation to propagate the metadata for return values. This method

of propagating the metadata for arguments and return values using the shadow stack enables us to

handle both regular function calls and calls through function pointers (i.e., indirect calls).

3.3 Error Reporting and Debugging Interface

Most FP instructions have some rounding error. They do not change the program’s output. When a

variable (𝑥) is marked by the user as a variable of interest, EFTSanitizer checks if the FP value

produced by the programwhen added to the error (𝛿𝑥) in themetadata for the variable 𝑥 significantly

differs from the value produced by the program. In essence, if 𝑥 + 𝛿𝑥 is significantly different from

𝑥 while using FP arithmetic operations, we report it to the user. Recall, 𝑥 + 𝛿𝑥 in FP arithmetic is

equal to 𝑥 while rounding a primitive operation. The user provides the threshold for an error to be

considered significant. By default, EFTSanitizer reports errors where all bits (both fraction and

exponent bits) between 𝑥 and 𝑥 + 𝛿𝑥 are different. In such cases, EFTSanitizer generates a DAG to

highlight the propagation of the error.

When FP values are used in branches, EFTSanitizer checks if adding the error to the FP value

changes the result of the branch predicate and reports such branch divergences along with the

respective DAGs to the user. Finally, EFTSanitizer checks the FP value to determine if it is a special

value such as a NaN or an infinity. EFTSanitizer provides the DAG for the first instance where

such NaNs or infinities occur because any operation on a NaN results in a NaN.

To debug interactively using debuggers such as gdb, EFTSanitizer provides publicly exported

auxiliary functions that can be used by the user to examine the metadata with breakpoints and

watchpoints.

Illustrative example.We illustrate the propagation of metadata with a simple example where all

operations are performed with temporaries in Figure 5. To illustrate reuse, we show the temporary

metadata space with 6 entries. We show the updates to the timestamp and the last writer runtime

map after adding each instruction.

4 PROTOTYPE AND IMPLEMENTATION

Prototype. We built a prototype of EFTSanitizer as a module pass of the LLVM-10 compiler

infrastructure. EFTSanitizer takes as input C/C++ programs and generates the LLVM intermediate

representation (IR) of the input program using the Clang++ frontend. The instrumentation is

performed over the LLVM IR. All instrumentation for the computation of error using EFTs, metadata

propagation, and metadata creation is inlined by EFTSanitizer’s compiler instrumentation to

reduce the overhead of function calls. The snippets of code that are not inlined correspond to the

initial creation of shadow memory and temporary metadata space, which is done with calls to

the mmap function in the runtime. EFTSanitizer uses a module pass rather than a function pass

because we need to provide unique compile-time identifiers to all instructions in the program. We

can support separate compilation by providing a unique starting identifier for each translation unit.

The LLVM IR is in static single assignment form, which partly helps the identification of the last

writer (i.e., definition) for any variable. When the FP value is involved in a PHI node, we define

corresponding PHI nodes that maintain the pointer to the temporary metadata space entry.

By default, we handle elementary functions, which is provided by math libraries, using the

corresponding versions from the MPFR library [Fousse et al. 2007]. Similarly, we use the MPFR

versions of the operation for LLVM’s intrinsics. The user can configure EFTSanitizer with a

command-line option to use correctly rounded functions from the RLIBM project [Aanjaneya

et al. 2022; Lim et al. 2020, 2021; Lim and Nagarakatte 2021a,b,c, 2022] for the float type, CR-

LIBM [Daramy et al. 2003; Daramy-Loirat et al. 2006] for the double type, and glibc’s libraries for

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 190. Publication date: October 2022.

Fast Shadow Execution for Debugging Numerical Errors using Error Free Transformations 190:17

the double-double type when the corresponding functions are available. Using correctly rounded

elementary functions improves performance.

EFTSanitizer is open source and is publicly available [Chowdhary and Nagarakatte 2022a,b].

Shadow memory, shadow stack, and temporary metadata space. We organize the shadow

memory in EFTSanitizer as a best effort hash map (i.e., a direct mapped cache) with 64 million

entries (i.e., 64* 1024*1024 entries). Further, shadow memory is allocated with the mmap system call.

We use MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE flags, which just creates virtual memory

mappings without reserving physical memory on Linux. Hence, the program experiences memory

overhead only when it touches memory. Each metadata entry is 56 bytes as shown in Figure 4. The

hash map is indexed by the memory address of the FP value. If two addresses map to the same

entry in shadow memory (i.e., a collision), the old entry will be overwritten with the new entry

similar to a direct-mapped cache. Hence, it is a best-effort hash map.

In contrast to shadow memory, the temporary metadata space is organized as a circular queue

implemented with an array. By default, it has 64 entries. Hence, the number of dynamic instructions

in the directed acyclic graph is at most 64. The next slot to use (e.g., to allocate a new entry in

the temporary metadata space) is implemented as an increment operation modulo the size of the

temporary metadata space.

We use a shadow stack of 16 entries to pass metadata for arguments and return values. We

have not seen functions with more than 16 arguments in our evaluation. If necessary, these can

be customized with a large size by the user. The shadow stack also detects implicit casts from FP

values to integers and vice versa through incorrect function signatures.

5 EXPERIMENTAL EVALUATION

This section presents the results of our experimental evaluation.We attempt to answer two questions.

First, is EFTSanitizer effective in the task of debugging numerical errors? Second, is EFTSanitizer

efficient compared to other state-of-the-art tools?

Methodology. To measure the effectiveness of EFTSanitizer in detecting numerical errors, we

use a collection of 46 tests with known numerical errors from correctness test suites of FPSanitizer

and Herbgrind. For these test suites, we compared the results with FPSanitizer and Herbgrind.

These tests are 50-100 lines of code, which can be executed by all three tools. We also developed

a suite of algorithms widely used in numerical methods (e.g., Gaussian elimination with partial

pivoting). To demonstrate the usability of EFTSanitizer with large applications and to perform

performance evaluation, we use C/C++ FP applications from the SPEC-2006 and SPEC-2017 suites,

applications from the Lawrence Livermore National Laboratory’s (LLNL) Coral benchmark suite,

and NAS-3.0 benchmarks.

We generated two versions of EFTSanitizer: (a) tracing mode of EFTSanitizer that generates

DAGs and (b) a non-tracing mode where it just detects errors but does not produce DAGs. The

difference between these two versions is the number of fields in the metadata entry. In the non-

tracing mode, the metadata entry in both the temporary metadata space and shadow memory does

not maintain information about that operands and the timestamp.

For our performance experiments, we perform shadow execution for the entire execution. EFT-

Sanitizer can also be executed with selective shadow execution where the overhead can be

significantly lower than for the entire execution.

To facilitate the comparison of EFTSanitizer with FPSanitizer, we use the publicly available

version of FPSanitizer [Chowdhary et al. 2020b]. The publicly available version of FPSanitizer

did not support C++ applications. We added C++ support to FPSanitizer, which enabled us to

compare FPSanitizer and EFTSanitizer with C++ applications. We configured FPSanitizer to

use 128-bits of precision for the MPFR value in our experiments. We chose 128-bits because the

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 190. Publication date: October 2022.

190:18 Sangeeta Chowdhary and Santosh Nagarakatte

Table 1. Summary of our experiments to detect and debug numerical errors in various scientific computing

applications and NAS Parallel Benchmarks 3.0 [NAS 2022] with EFTSanitizer. The table reports the various

kinds of errors that EFTSanitizer detects for these applications (high rounding error, NaNs, infinities-Inf,

and divergences in branch outcomes). We report the number of dynamic instances of such error and the

unique static program locations that correspond to these dynamic instances. We also report the overall

performance overhead of EFTSanitizer to detect and generate DAGs for these applications when compared

to an uninstrumented program. In these experiements, we report high rounding error when the FP value

produced by the program has 45-bits in error when compared to the sum of the FP value and the propagated

rounding error in shadow execution.

Benchmark
Rounding Errors Inf NaN Branch Flips

Overhead
Dyn. Stat. Dyn. Stat. Dyn. Stat. Dyn. Stat.

HPCG 147 4 0 0 0 0 118 3 14.95×
Laghos 0 0 40800 2 0 0 553 1 2.42×

Quicksilver 0 0 0 0 0 0 0 0 9.06×
LULESH 285246131 3 0 0 138 1 373615808 33 23.69×
Kripke 0 0 0 0 0 0 0 0 1.05×
AMG 0 0 5 5 0 0 0 0 2.57×

NAS BT 20 4 0 0 0 0 10 4 33.79×
NAS CG 31 3 0 0 0 0 1 1 13.62×
NAS EP 2 2 0 0 0 0 0 0 3.58×
NAS FT 2 2 0 0 0 0 0 0 16.13×
NAS IS 0 0 4 4 0 0 0 0 7.97×
NAS LU 26 5 0 0 0 0 11 3 45.86×
NAS MG 96 2 0 0 0 0 0 0 11.58×
NAS SP 89020284 4 0 0 0 0 1041064223 15 15.42×

effective data type size with both FPSanitizer and EFTSanitizerwill be identical. In EFTSanitizer,

we use double precision both for the FP value and the error in the metadata (i.e., 64 + 64 = 128-

bits). Herbgrind crashed with out-of-memory errors on almost all the applications used for the

performance experiments. Hence, we do not report Herbgrind for the performance experiments.

Our experiments are performed on a 2.10GHz Intel Xeon Gold 6230R machine with 192GB

of RAM running Ubuntu 20.04.4. We measure the wall clock execution time of the application

with shadow execution frameworks and with the uninstrumented application. We repeated the

experiments multiple times to minimize the noise in the performance experiments. We report the

number of bits of the result that are erroneous compared to the oracle, which is a double precision

value. For example, when we say 52-bits of error in the rest of evaluation, the FP value represented

in double precision and the sum of the FP value and the propagated rounding error in double

precision differ in the least significant 52-bits (i.e., all precision bits are wrong).

5.1 Effectiveness in Detecting and Debugging Numerical Errors

Evaluation with existing correctness suites. When we evaluated EFTSanitizer with the

correctness suite with 46 C/C++micro-benchmarks, it detected all errors in these micro-benchmarks

without false positives. Among these 46 micro-benchmarks, 21 of them have some numerical errors

(i.e., 19 of them have high rounding error where all the precision bits are wrong, 2 of them produce

infinities, and the rest do not have any numerical error). This experiment with micro-benchmarks

shows that EFTSanitizer detects numerical errors similar to existing shadow execution tools.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 190. Publication date: October 2022.

Fast Shadow Execution for Debugging Numerical Errors using Error Free Transformations 190:19

#258 FDIV

C = 62.61

E = -316.8

BE = 63

#255 FSUB

C = 1315.01

E = -6653.16

BE = 63

#249 FSUB

C = 1317.118

E = -6653.16

BE = 63

#252 FMUL

C = 2.1

BE = 26

#243 FSUB

C = 1317.118

E = -6653.16

BE = 63

#37 Constant

C = 153.1

E = 0

BE = 0

#240 FMUL

C = -1164.018

E = -6653.16

BE = 53

#54 Constant

C = 130

E = 0

BE = 0

#236 FDIV

C = -8.953

E = -51.17

BE = 53
#233 FSUB

C = 4.26

E = 24.37

BE = 53

#49 FSUB

C = -0.476

E = 9.0826e-08

BE = 30

#227 FSUB

C = 754.96

E = 24.370889

BE = 47

#230 FMUL

C = 750.70

E = -1.563e-05

BE = 27

#64 FSUB

C = 754.96

E = -1.339e-05

BE = 26

#224 FMUL

C = 0

E = 24.3709

BE = 62

#54 Constant

C = 1300.0

E = 0

BE = 0

#220 FDIV

C = 0

E = 5.1415e-08

BE = 61
#217 FSUB

C = 0

E = 0.0002522

BE = 61

#142 FSUB

C = 4832.0

E = 75.048372

BE = 46

#82 FSUB

C = 3.9816e+08

E = 0

BE = 0

#140 FMUL

C = 3.9815e+08

E = 75.0483729

BE = 30
#246 FSUB

C = 0

E = 0

BE = 0

#54 Constant

C = 21.0

E = 0

BE = 0

Fig. 7. The DAG generated by EFTSanitizer for debugging the root cause of the error for the case study with

GEPP. Each DAG node show the instruction opcode, computed value, propagated rounding error with EFTs,

and the number of bits in error in the computed value in comparison to the shadow execution. The node #258

(FDIV) produces the observed wrong result. The root cause of this error is caused by instruction at node #142

(FSUB).

Detecting numerical errors in applications. Beyond micro-benchmarks, we also evaluated

EFTSanitizer by executing it with various applications from the LLNL application suite and NAS

parallel benchmarks. In this process, we detected previously unknown bugs in many applications.

Table 1 summarizes our experiments in finding numerical errors in long-running applications.

Table 1 reports the total number of dynamic and static instances with more than 45-bits of error in

the results, NaNs, infinities, differing branch outcomes, conversion errors, and total overhead we

have experienced with EFTSanitizer. Multiple instances of the dynamic instruction can be mapped

to the same static instruction. By default, EFTSanitizer generates rounding errors for variables

of interest such as return values, arguments of system calls, and input/output routines. It can be

configured to generate an error report for any FP instruction. We also identified new floating-point

exceptions (NaN/infinities) in four applications: Laghos [LLNL 2022b], Lulesh [Karlin et al. 2013],

AMG [LLNL 2022a], and NAS IS. The DAGs provided by EFTSanitizer helped us reason about the

propagation of errors and identify the potential reason for these exceptions.

Case study 1: Debugging a numerical error in Gaussian eliminationwith partial pivoting

(GEPP). In this case study, we demonstrate that we can detect and debug high rounding errors using

EFTSanitizermuch more productively than previous shadow execution tools using high-precision

computations. More importantly, we show how the DAGs reported are effective to debug the bug.

We chose this case study for illustration because it was previously used by the developers of the

CADNA tool [Cadna 2022].

Gaussian elimination (GE) is a direct method to solve a system of linear equations of form𝐴𝑥 = 𝑏.

In this method, a system of linear equations is represented by an augmented matrix [A | b] of

size 𝑁 × 𝑁 + 1, where N is the number of unknowns in the system of linear equations. In this

method, matrix A is reduced to the upper triangular matrix using row operations followed by

back-substitution. Due to rounding errors with FP arithmetic, the GE method can return wrong

results. Using partial pivoting with the GE method can reduce the rate of increase in the error. In

Gaussian elimination with partial pivoting (GEPP), the maximum absolute value in the first column,

which is called the pivot, is selected. If the first row does not have the maximum absolute value,

the row containing the pivot is swapped with the first row. This technique is shown to reduce

numerical errors. However, if the pivot is influenced by rounding error, it can also lead to wrong

results.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 190. Publication date: October 2022.

190:20 Sangeeta Chowdhary and Santosh Nagarakatte

Let us consider the code snippet below (from [Cadna 2022]).

𝐴 =

21.0 130.0 0.0 2.1

13.0 80.0 4.74𝐸 + 8 752.0

0.0 −0.4 3.9816𝐸 + 8 4.2

0.0 0.0 1.7 9𝐸 − 9

(1)

𝑏 =

153.1

849.74

7.7816

2.6𝐸 − 8

(2)

When we implement GEPP using the 32-bit float format, we get the following solution:

𝑥 =

62.62

−8.95
0.00

1.0

(3)

This solution does not match the reference output of the program. To diagnose the cause of

wrong results and to debug it, we ran the float version of this program with EFTSanitizer. It

detected the error and the DAG of instructions generated by EFTSanitizer for the 32-bit float

version corresponding to the first element of the column vector 𝑥 is shown in Figure 7. The first

element with the float version produces 62.62, which is the wrong result. The root node of the DAG

(#258 FDIV in Figure 7) has 63-bits of error. We analyzed the nodes of the DAG with significant

error. While following the nodes with significant rounding error, we identified that during the

elimination of variables, A[3][3] is computed as 4832 (i.e., node #142 in Figure 7). The error in this

computation is the primary cause of the wrong result.

In contrast to EFTSanitizer, the DAG generated by FPSanitizer is a single node because of the

loss of DAG information with loop iterations, which is not useful in debugging this error. Although

EFTSanitizer does not generate the exact real value due to the loss in precision while composing

the errors, the error information was sufficient to detect and debug this error.

Case study 2: Debugging a numerical error in Laghos. Our goal with this case study is to

show that EFTSanitizer is efficient and effective in debugging numerical errors in long-running

applications. Laghos is an application from LLNL’s CORAL suite. We discovered a divide-by-zero

error in the Laghos benchmark. We used EFTSanitizer’s exported API to debug the application

using gdb. When we ran the program with EFTSanitizer, it reported a division by zero resulting in

infinity (i.e., the root node #4872 Div in Figure 8). EFTSanitizer generated the DAG of instructions

shown in Figure 8. From analyzing the DAG and following the nodes in the DAG that have a large

number of bits in error, we identified that this error was generated in the second iteration of the

loop. The node that performs square root (#122 Sqrt in Figure 8) has produced a value of 0.0, which

results in the eventual production of infinity. The DAG in Figure 8 does not report for any child

nodes for this instruction probably due to reuse of the temporary metadata space entries. This

square root operation corresponds to laghos_solver.hpp:122, which can be obtained from the

identifier. We set a breakpoint in laghos_solver.hpp:122 and generated the DAG for the square root

operation and identified the root cause of the bug.

In contrast, the DAG generated by FPSanitizer was a single node because the DAG information

was lost across iterations. Similarly, we tested this application with FPSpy [Dinda et al. 2020]

whose tracing information was not helpful in diagnosing the root cause of this problem. The DAG

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 190. Publication date: October 2022.

Fast Shadow Execution for Debugging Numerical Errors using Error Free Transformations 190:21

#1772 FDIV

C = Inf

E = -NaN

BE = 64

#1768 FADD

C = 0.0

E = 0

BE = 0

1.0

#1759 FDIV

C = 0.0

E = 0

BE = 0

#1767 FDIV

C = 0.0

E = 0

BE = 0

#1756 FDIV

C = 3.12e-02

E = 0

BE = 0

#122 SQRT

C = 0.0

E = 0

BE = 0

#1765 FDIV

C = 0

E = 0

BE = 0

#1756 FDIV

C = 3.12e-02

E = 0

BE = 0

#5313 FMUL

C = 0.0

E = 0

BE = 0

#5311 FDIV

C = 5.60e-01

E = 0

BE = 0

0

Fig. 8. DAG of instructions generated by EFTSanitizer for the Laghos benchmark to diagnose the reason for

the infinity. The node #122 (SQRT) instruction that produces a result of 0.0 is the root cause of the error.

0X

10X

20X

30X

S
lo

w
d
o
w

n

na
b

la
gh

os

qu
ic

ks
ilv

er ar
t

am
m

p

eq
ua

ke lb
m

m
ilc

sp
hi

nx
am

g

ge
om

ea
n

3
4
X

Fig. 9. This figure reports the slowdown with EFTSanitizer in the tracing mode compared to a baseline

without any instrumentation.

generated by EFTSanitizer was helpful to debug the root cause of the error, validate the bug, and

create a reduced test case.

5.2 Performance Evaluation

Performance overhead of EFTSanitizer.We measure the total slowdown of EFTSanitizer

compared to a baseline without any instrumentation for shadow execution. Figure 9 reports the

EFTSanitizer’s slowdown in the tracingmode that produces DAGs compared to a baseline (i.e., total

height of each bar). On average, EFTSanitizer slowdowns the program by 12.3× in comparison to

an uninstrumented application. A variant of EFTSanitizer that uses correctly rounded elementary

functions instead of the MPFR math library reduces the total performance overhead from 12.3× to

11.3×. This variant detects all errors in the correctness test suite described earlier.

To understand the source of the overheads, we measured the overheads for computing the error

using EFTs, performing checks for selective shadow execution, performing metadata propagation

with load and store instructions, and copying metadata between shadowmemory and the temporary

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 190. Publication date: October 2022.

190:22 Sangeeta Chowdhary and Santosh Nagarakatte

0X

10X

20X

30X

S
p
ee

d
u
p
 o

v
er

 F
P

S
an

it
iz

er
With-Tracing Without-Tracing

na
b

la
gh

os

qu
ic

ks
ilv

er ar
t

am
m

p

eq
ua

ke lb
m

m
ilc

sp
hi

nx
am

g

ge
om

ea
n

Fig. 10. The first bar of this graph shows the speedup achieved with EFTSanitizer when compared to shadow

execution with FPSanitizerwhen tracing is enabled. The second bar of this graph shows the speedup achieved

with EFTSanitizer compared to shadow execution with FPSanitizer when tracing is disabled.

metadata space. Computing the error using EFTs for primitive FP instructions slows down the

execution by 1.71×.
For every load instruction, we compare the program’s FP value and the FP value stored in shadow

memory for selective shadow execution. If they mismatch, we reset the metadata with the FP’s

program value. Otherwise, we copy metadata from shadow memory to temporary metadata space.

These operations performed on every load instruction (i.e., check and metadata copy) introduces

5.20× slowdown. For each store instruction, we copy the metadata from temporary metadata space

to shadow memory. Handling store instructions slows down the program by 0.44×. For each FP

arithmetic instruction, we allocate the temporary metadata space entry and store the address and

the timestamp in the last writer runtime map. For each operand of an FP instruction, we load the

address of the temporary metadata space entry and the timestamp from the last writer runtime

map to access the metadata of the operands. Together, performing the metadata updates on FP

arithmetic operations introduces an additional 1.45× overhead. Handling other FP instructions such

as FPToSIInst, FPToUIInst, and function arguments/returns introduces the remaining overheads.

EFTSanitizer’s detection mode that does not produce DAGs slows down the execution by 6.55×
on average compared to an execution without any instrumentation. We measured the slowdowns

where we instrumented every FP operation in the program. EFTSanitizer’s overhead is significantly

lower when the user selects certain regions for selective shadow execution, which we found useful

to debug numerical errors in long-running applications.

Speedup of EFTSanitizer over FPSanitizer. Figure 10 shows the speedup of EFTSani-

tizer’s shadow execution when compared to FPSanitizer. We compare both EFTSanitizer and

FPSanitizer with debugging support for DAGs (i.e., tracing mode) and without support for DAGs

where it just detects errors (i.e., non-tracing mode). For each application, we report the speedup of

EFTSanitizer’s execution compared to the corresponding FPSanitizer’s execution. On average,

EFTSanitizer’s execution tracing mode that provides debugging support is 14.7× faster than

FPSanitizer’s tracing mode. When we repurpose both tools where they detect errors but do not

provide DAGs, EFTSanitizer was faster than FPSanitizer by 8.8× on average.

To understand the reason for these significant performance speedups, we measure the total

user-mode dynamic instructions executed by the application instrumented with EFTSanitizer and

FPSanitizer using Linux’s perf utility when compared to a baseline without any instrumentation.

Table 2 reports the dynamic instruction overhead with both EFTSanitizer and FPSanitizer with

the tracing modes. On average, EFTSanitizer has a dynamic instruction overhead of 14×, which
results in a performance overhead of 12.3×. In contrast, the dynamic instruction overhead with

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 190. Publication date: October 2022.

Fast Shadow Execution for Debugging Numerical Errors using Error Free Transformations 190:23

Table 2. Dynamic instruction overhead with EFTSanitizer and FPSanitizer compared to a baseline without

any instrumentation. We also report the geometric mean of the dynamic instruction overhead for both

EFTSanitizer and FPSanitizer.

Application
Instruction Overhead

EFTSanitizer FPSanitizer

nab 28× 320×
laghos 2× 12×

quicksilver 9× 152×
art 12× 153×

ammp 20× 489×
equake 19× 496×
lbm 26× 857×
milc 21× 450×
sphinx 15× 267×
amg 13× 401×

geomean 14 × 249 ×

FPSanitizer is 249× on average. FPSanitizer executes an order of magnitude more instructions

when compared to EFTSanitizer. This large instruction overhead with FPSanitizer is primarily

due to the software simulation of FP operations by the MPFR library. In contrast, EFTSanitizer’s

computation of error with error free transformations, which that uses hardware FP operations, as

the oracle provides significant speedup over FPSanitizer. In summary, EFTSanitizer is not only

faster than FPSanitizer but also provides better debugging information to diagnose and debug

errors.

6 RELATED WORK

There is a large body of prior work to detect and debug numerical errors. We focus our attention

on closely related prior work.

Static analysis techniques [Barr et al. 2013; Darulova et al. 2018; Darulova and Kuncak 2014;

de Dinechin et al. 2006; Delmas and Souyris 2007; Feliú et al. 2018; Ghorbal et al. 2012; Goubault

2001; Goubault et al. 2007; Solovyev et al. 2018; Zhang et al. 2020] use abstract interpretation or

interval arithmetic to reason about numerical errors. Most static analysis tools provide a correct

over-estimation of the rounding error that may occur in a program for the provided input ranges

for the input variables. The inaccuracy of the deduced bounds is due to the use of abstract domains

(such as intervals in the case of Gappa [de Dinechin et al. 2006] or zonotopes in the case of

Fluctuat [Goubault et al. 2007]) or due to the error expression used to bound the error. Tools such

as PRECiSA [Feliú et al. 2018] and FPTaylor [Solovyev et al. 2018] use a combination of symbolic

error expressions and global optimization techniques to compute the round-off error bounds. They

also provide formal guarantees in the form of proof certificates. In addition, PRECiSA uses abstract

interpretation techniques to reason about conditionals and iterative structures. These tools provide

more precise estimation than previous static analysis tools. Scaling these tools to large programs

with easy specifications is still an open research problem.

Dynamic analysis techniques monitor the program behavior at run time for a single input. Such

techniques compare the actual execution with some oracle. Depending on the oracle used, these

techniques can be classified into heavy-weight techniques that comprehensively detect errors and

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 190. Publication date: October 2022.

190:24 Sangeeta Chowdhary and Santosh Nagarakatte

light-weight techniques that detect specific errors. FPDebug [Benz et al. 2012], Herbgrind [Sanchez-

Stern et al. 2018], FPSanitizer [Chowdhary et al. 2020a], and PFPSanitizer [Chowdhary and

Nagarakatte 2021] are examples of approaches that use high precision computation (i.e., using

the MPFR library) as the oracle. FPDebug and Herbgrind perform binary instrumentation using

Valgrind [Nethercote and Seward 2007]. In contrast, FPSanitizer instruments programs at compile

time on the LLVM intermediate representation. Hence, it reduces the overheads compared to

FPDebug. FPSanitizer also produces DAGs but loses DAG information after a function completes

execution and with multiple iterations of a loop. PFPSanitizer requires the user to mark parts of the

shadow execution that needs to be executed in parallel. Once the user provides such annotations, it

reduces the overhead of shadow execution by running distinct parts of the shadow execution in

parallel on multiple cores.

In contrast to shadow execution, BZ [Bao and Zhang 2013] and RAIVE [Lee et al. 2015] monitor

the exponent of the operands and the result of the FP computation. Monitoring the exponents to

detect numerical errors avoids using real numbers as an oracle. RAIVE monitors if the final output

is affected by numerical errors and uses vectorization to reduce the overheads. FPSpy [Dinda et al.

2020] uses hardware condition flags and uses exception handling to detect FP errors in binaries.

FPSpy incurs huge overheads if every FP instruction is monitored. However, the use of sampling can

reduce the performance overheads. CADNA [Jézéquel and Chesneaux 2008] and Verrou [Févotte

and Lathuilière 2016] use random rounding to detect the sensitivity of the program to rounding

errors. Similarly, AtomU [Zou et al. 2019] uses condition numbers to detect numerical errors and

instability in FP applications.

Prior work on EFTs. The idea of error free transformation is rather old and has been used in the

past for compensated summation [Kahan 1965; Rump 2009], compensated Horner Scheme [Langlois

et al. 2006], and robust geometric algorithms [Shewchuk 1996].

The Fast2Sum algorithm was first used in accurate summation [Kahan 1965] in 1965. Then it

was described by Dekker [Dekker 1971] in 1971 as a technique to extend the precision. Fast2Sum

requires three floating-point instructions and one branch instruction. Hence, it can be costly due

to branch mispredictions. To avoid the branch instruction, TwoSum algorithm was introduced

in [Knuth 1997]. TwoSum requires six floating-point instructions and no comparison of operands.

Hence, TwoSum is cheaper than the Fast2Sum algorithm on modern machines. It has been shown

that Fast2Sum and TwoSum algorithms are robust if underflow occurs. Fast2Sum is immune to

overflow, and TwoSum is almost immune to overflow. For some corner cases, TwoSum can overflow

when actual computation does not [Boldo et al. 2017]. Fast2Sum and TwoSum algorithms described

in the paper work with the round-to-nearest rounding modes. Similar algorithms for different

rounding modes have also been developed [Priest 1992].

A similar algorithm for multiplication was introduced by Dekker based on Veltkamp split-

ting [Muller et al. 2018]. Veltkamp splitting algorithm splits a floating-point number into two

⌈𝑝/2⌉-bit numbers so that they can be multiplied without any error. Using Veltkamp splitting,

Dekker [Dekker 1971] proposed an algorithm to compute the error of FP multiplication in 1971.

However, Dekker’s multiplication requires 17 floating-point instructions. An alternative algorithm

2MultFMA [Muller et al. 2018] using the fma instruction computes the error of FP instruction with

just two instructions. Similarly, the error for division and the square root operations can be easily

computed using the fma instruction [Boldo and Daumas 2003].

In the context of numerical error detection, EFTs have been recently used by Shaman [Demeure

2020]. Shaman uses EFTs as an oracle and implements a C++ library using operator overloading.

SHAMAN is attractive for developing new applications and measuring their error. To use SHAMAN

with an existing application, the user will need to rewrite the program to change the types of

the variables and math functions. It will likely have higher overheads when additional debugging

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 190. Publication date: October 2022.

Fast Shadow Execution for Debugging Numerical Errors using Error Free Transformations 190:25

mechanisms are added. In contrast, EFTSanitizer does not require changing the source code and

incurs low overheads when compared to Shaman. EFTSanitizer also provides debugging support

by generating a DAG of instructions.

7 CONCLUSION

EFTSanitizer is the first approach for shadow execution that uses error free transformations as

the oracle. Given that the accumulated rounding error is computed with hardware supported FP

operations, it is significantly faster than prior approaches. The directed acyclic graph generated by

EFTSanitizer spans multiple function calls and loop iterations, which we found extremely helpful

in debugging numerical errors. EFTSanitizer includes a novel metadata management scheme that

makes the resulting tool an order of magnitude faster than the state-of-the-art, enables selective

shadow execution for arbitrary fragments of dynamic execution, and enables effective debugging

of numerical errors.

ACKNOWLEDGMENTS

We thank OOPSLA reviewers, Laura Titolo, Matan Shachnai, Harishankar Vishwanathan, and

Mridul Aanjaneya for their feedback. This material is based upon work supported in part by the

National Science Foundation under Grant No. 1908798 and Grant No. 2110861. Any opinions,

findings, and conclusions or recommendations expressed in this material are those of the authors

and do not necessarily reflect the views of the National Science Foundation.

REFERENCES

Mridul Aanjaneya, Jay P. Lim, and Santosh Nagarakatte. 2022. Progressive Polynomial Approximations for Fast Correctly

Rounded Math Libraries. In 43rd ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI’22). https://doi.org/10.1145/3519939.3523447

Tao Bao and Xiangyu Zhang. 2013. On-the-Fly Detection of Instability Problems in Floating-Point Program Execution. In

Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages &

Applications (Indianapolis, Indiana, USA) (OOPSLA ’13). Association for Computing Machinery, New York, NY, USA,

817ś832. https://doi.org/10.1145/2509136.2509526

Earl T. Barr, Thanh Vo, Vu Le, and Zhendong Su. 2013. Automatic Detection of Floating-Point Exceptions. In Proceedings of

the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Rome, Italy) (POPL ’13).

Association for Computing Machinery, New York, NY, USA, 549ś560. https://doi.org/10.1145/2429069.2429133

Florian Benz, Andreas Hildebrandt, and Sebastian Hack. 2012. A Dynamic Program Analysis to Find Floating-Point Accuracy

Problems. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design and Implementation

(Beijing, China) (PLDI ’12). Association for Computing Machinery, New York, NY, USA, 453ś462. https://doi.org/10.

1145/2254064.2254118

S. Boldo and Marc Daumas. 2003. Representable correcting terms for possibly underflowing floating point operations.

Proceedings - Symposium on Computer Arithmetic, 79ś 86. https://doi.org/10.1109/ARITH.2003.1207663

Sylvie Boldo, Stef Graillat, and Jean-Michel Muller. 2017. On the Robustness of the 2Sum and Fast2Sum Algorithms. ACM

Trans. Math. Softw. 44, 1, Article 4 (jul 2017), 14 pages. https://doi.org/10.1145/3054947

Cadna. 2022. The gaussian method. https://www-pequan.lip6.fr/cadna/Examples_Dir/ex6.php

Wei-Fan Chiang, Mark Baranowski, Ian Briggs, Alexey Solovyev, Ganesh Gopalakrishnan, and Zvonimir Rakamarić. 2017.

Rigorous Floating-point Mixed-precision Tuning. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles

of Programming Languages (Paris, France) (POPL 2017). ACM, New York, NY, USA, 300ś315. https://doi.org/10.1145/

3009837.3009846

Sangeeta Chowdhary, Jay P. Lim, and Santosh Nagarakatte. 2020a. Debugging and Detecting Numerical Errors in

Computation with Posits. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design

and Implementation (London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY, USA, 731ś746.

https://doi.org/10.1145/3385412.3386004

Sangeeta Chowdhary, Jay P Lim, and Santosh Nagarakatte. 2020b. FPSanitizer - A debugger to detect and diagnose numerical

errors in floating point programs. Retrieved March 23rd, 2020 from https://github.com/rutgers-apl/fpsanitizer

Sangeeta Chowdhary and Santosh Nagarakatte. 2021. Parallel Shadow Execution to Accelerate the Debugging of Numerical

Errors (ESEC/FSE 2021). Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3468264.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 190. Publication date: October 2022.

https://doi.org/10.1145/3519939.3523447
https://doi.org/10.1145/2509136.2509526
https://doi.org/10.1145/2429069.2429133
https://doi.org/10.1145/2254064.2254118
https://doi.org/10.1145/2254064.2254118
https://doi.org/10.1109/ARITH.2003.1207663
https://doi.org/10.1145/3054947
https://www-pequan.lip6.fr/cadna/Examples_Dir/ex6.php
https://doi.org/10.1145/3009837.3009846
https://doi.org/10.1145/3009837.3009846
https://doi.org/10.1145/3385412.3386004
https://github.com/rutgers-apl/fpsanitizer
https://doi.org/10.1145/3468264.3468585
https://doi.org/10.1145/3468264.3468585

190:26 Sangeeta Chowdhary and Santosh Nagarakatte

3468585

Sangeeta Chowdhary and Santosh Nagarakatte. 2022a. Artifact for Fast Shadow Execution for Debugging Numerical Errors

using Error Free Transformations. https://doi.org/10.5281/zenodo.7080559

Sangeeta Chowdhary and Santosh Nagarakatte. 2022b. EFTSantizer: Fast Shadow Execution for Debugging Numerical Errors

using Error Free Transformations. Retrieved August, 2022 from https://github.com/rutgers-apl/EFTSanitizer

Catherine Daramy, David Defour, Florent Dinechin, and Jean-Michel Muller. 2003. CR-LIBM: A correctly rounded elementary

function library. In Proceedings of SPIE Vol. 5205: Advanced Signal Processing Algorithms, Architectures, and Implementations

XIII, Vol. 5205. https://doi.org/10.1117/12.505591

Catherine Daramy-Loirat, David Defour, Florent de Dinechin, Matthieu Gallet, Nicolas Gast, Christoph Lauter, and Jean-

Michel Muller. 2006. CR-LIBM A library of correctly rounded elementary functions in double-precision. Research Report.

Laboratoire de l’Informatique du Parallélisme. https://hal-ens-lyon.archives-ouvertes.fr/ensl-01529804

Eva Darulova, Anastasiia Izycheva, Fariha Nasir, Fabian Ritter, Heiko Becker, and Robert Bastian. 2018. Daisy-framework

for analysis and optimization of numerical programs (tool paper). In International Conference on Tools and Algorithms for

the Construction and Analysis of Systems. Springer, 270ś287. https://doi.org/10.1007/978-3-319-89960-2_15

Eva Darulova and Viktor Kuncak. 2014. Sound Compilation of Reals. In Proceedings of the 41st ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (San Diego, California, USA) (POPL ’14). Association for Computing

Machinery, New York, NY, USA, 235ś248. https://doi.org/10.1145/2535838.2535874

Arnab Das, Ian Briggs, Ganesh Gopalakrishnan, Sriram Krishnamoorthy, and Pavel Panchekha. 2020. Scalable yet Rigorous

Floating-Point Error Analysis. In Proceedings of the International Conference for High Performance Computing, Networking,

Storage and Analysis (Atlanta, Georgia) (SC ’20). IEEE Press, Article 51, 14 pages. https://doi.org/10.1109/SC41405.2020.

00055

Florent de Dinechin, Christoph Quirin Lauter, and Guillaume Melquiond. 2006. Assisted verification of elementary

functions using Gappa. In Proceedings of the 2006 ACM Symposium on Applied Computing (SAC). ACM, 1318ś1322.

https://doi.org/10.1145/1141277.1141584

T. J. Dekker. 1971. A floating-point technique for extending the available precision. Numer. Math. 18, 3 (1971), 224ś242.

https://doi.org/10.1007/BF01397083

David Delmas and Jean Souyris. 2007. Astrée: From Research to Industry. In Proceedings of the 14th International Conference

on Static Analysis (Kongens Lyngby, Denmark) (SAS’07). Springer-Verlag, Berlin, Heidelberg, 437ś451. https://doi.org/

10.1007/978-3-540-74061-2_27

Nestor Demeure. 2020. Compromise between precision and performance in high-performance computing. Ph. D. Dissertation.

Université Paris-Saclay. https://tel.archives-ouvertes.fr/tel-03116750

Peter Dinda, Alex Bernat, and Conor Hetland. 2020. Spying on the Floating Point Behavior of Existing, Unmodified

Scientific Applications. In Proceedings of the 29th International Symposium on High-Performance Parallel and Distributed

Computing (Stockholm, Sweden) (HPDC ’20). Association for Computing Machinery, New York, NY, USA, 5ś16. https:

//doi.org/10.1145/3369583.3392673

Marco A Feliú, Mariano Moscato, César A Muñoz, et al. 2018. An abstract interpretation framework for the round-off

error analysis of floating-point programs. In International Conference on Verification, Model Checking, and Abstract

Interpretation. Springer, 516ś537. https://doi.org/10.1007/978-3-319-73721-8_24

François Févotte and Bruno Lathuilière. 2016. VERROU: Assessing Floating-Point Accuracy Without Recompiling. (Oct.

2016). https://hal.archives-ouvertes.fr/hal-01383417 working paper or preprint.

Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul Zimmermann. 2007. MPFR: A Multiple-

precision Binary Floating-point Library with Correct Rounding. In ACM Transactions on Mathematical Software, Vol. 33.

ACM, New York, NY, USA, Article 13. https://doi.org/10.1145/1236463.1236468

Khalil Ghorbal, Franjo Ivancic, Gogul Balakrishnan, Naoto Maeda, and Aarti Gupta. 2012. Donut Domains: Efficient

Non-convex Domains for Abstract Interpretation. In Verification, Model Checking, and Abstract Interpretation (Lecture

Notes in Computer Science, Vol. 7148). Springer, 235ś250. https://doi.org/10.1007/978-3-642-27940-9_16

David Goldberg. 1991. What Every Computer Scientist Should Know About Floating-point Arithmetic. In ACM Computing

Surveys, Vol. 23. ACM, New York, NY, USA, 5ś48. https://doi.org/10.1145/103162.103163

Eric Goubault. 2001. Static Analyses of the Precision of Floating-Point Operations. In Proceedings of the 8th International

Symposium on Static Analysis (SAS). Springer, 234ś259. https://doi.org/10.1007/3-540-47764-0_14

Eric Goubault, Sylvie Putot, Philippe Baufreton, and Jean Gassino. 2007. Static analysis of the accuracy in control systems:

Principles and experiments. In Revised Selected Papers from the 12th International Workshop on Formal Methods for

Industrial Critical Systems. Springer, 3ś20. https://doi.org/10.1007/978-3-540-79707-4_3

Nicholas J. Higham. 2002. Accuracy and Stability of Numerical Algorithms (2nd ed.). Society for Industrial and Applied

Mathematics, Philadelphia, PA, USA.

Claude-Pierre Jeannerod, Jean-Michel Muller, and Paul Zimmermann. 2018. On Various Ways to Split a Floating-Point

Number. In 2018 IEEE 25th Symposium on Computer Arithmetic (ARITH). 53ś60. https://doi.org/10.1109/ARITH.2018.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 190. Publication date: October 2022.

https://doi.org/10.1145/3468264.3468585
https://doi.org/10.1145/3468264.3468585
https://doi.org/10.1145/3468264.3468585
https://doi.org/10.5281/zenodo.7080559
https://github.com/rutgers-apl/EFTSanitizer
https://doi.org/10.1117/12.505591
https://hal-ens-lyon.archives-ouvertes.fr/ensl-01529804
https://doi.org/10.1007/978-3-319-89960-2_15
https://doi.org/10.1145/2535838.2535874
https://doi.org/10.1109/SC41405.2020.00055
https://doi.org/10.1109/SC41405.2020.00055
https://doi.org/10.1145/1141277.1141584
https://doi.org/10.1007/BF01397083
https://doi.org/10.1007/978-3-540-74061-2_27
https://doi.org/10.1007/978-3-540-74061-2_27
https://tel.archives-ouvertes.fr/tel-03116750
https://doi.org/10.1145/3369583.3392673
https://doi.org/10.1145/3369583.3392673
https://doi.org/10.1007/978-3-319-73721-8_24
https://hal.archives-ouvertes.fr/hal-01383417
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1007/978-3-642-27940-9_16
https://doi.org/10.1145/103162.103163
https://doi.org/10.1007/3-540-47764-0_14
https://doi.org/10.1007/978-3-540-79707-4_3
https://doi.org/10.1109/ARITH.2018.8464793
https://doi.org/10.1109/ARITH.2018.8464793

Fast Shadow Execution for Debugging Numerical Errors using Error Free Transformations 190:27

8464793

Fabienne Jézéquel and Jean-Marie Chesneaux. 2008. CADNA: a library for estimating round-off error propagation. Computer

Physics Communications 178, 12 (June 2008), 933ś955. https://doi.org/10.1016/j.cpc.2008.02.003

William Kahan. 1965. Pracniques: Further Remarks on Reducing Truncation Errors. In Communications of the ACM, Vol. 8.

ACM, New York, NY, USA. https://doi.org/10.1145/363707.363723

Ian Karlin, Jeff Keasler, and Rob Neely. 2013. LULESH 2.0 Updates and Changes. Technical Report LLNL-TR-641973. 1ś9

pages.

Donald E. Knuth. 1997. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical Algorithms. Addison-Wesley

Longman Publishing Co., Inc., USA.

Philippe Langlois, Stef Graillat, and Nicolas Louvet. 2006. Compensated Horner Scheme. In Algebraic and Numerical

Algorithms and Computer-assisted Proofs (Dagstuhl Seminar Proceedings (DagSemProc), Vol. 5391), Bruno Buchberger,

Shin’ichi Oishi, Michael Plum, and Sigfried M. Rump (Eds.). Schloss Dagstuhl ś Leibniz-Zentrum für Informatik, Dagstuhl,

Germany. https://doi.org/10.4230/DagSemProc.05391.3

Wen-Chuan Lee, Tao Bao, Yunhui Zheng, Xiangyu Zhang, Keval Vora, and Rajiv Gupta. 2015. RAIVE: Runtime Assessment

of Floating-Point Instability by Vectorization. In Proceedings of the 2015 ACM SIGPLAN International Conference on

Object-Oriented Programming, Systems, Languages, and Applications (Pittsburgh, PA, USA) (OOPSLA 2015). Association

for Computing Machinery, New York, NY, USA, 623ś638. https://doi.org/10.1145/2814270.2814299

Jay P. Lim, Mridul Aanjaneya, John Gustafson, and Santosh Nagarakatte. 2020. A Novel Approach to Generate Correctly

Rounded Math Libraries for New Floating Point Representations. arXiv:2007.05344 Rutgers Department of Computer

Science Technical Report DCS-TR-753.

Jay P. Lim, Mridul Aanjaneya, John Gustafson, and Santosh Nagarakatte. 2021. An Approach to Generate Correctly Rounded

Math Libraries for New Floating Point Variants. Proceedings of the ACM on Programming Languages 6, POPL, Article 29

(Jan. 2021), 30 pages. https://doi.org/10.1145/3434310

Jay P. Lim and Santosh Nagarakatte. 2021a. High Performance Correctly Rounded Math Libraries for 32-bit Floating Point

Representations. In 42nd ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’21).

https://doi.org/10.1145/3453483.3454049

Jay P Lim and Santosh Nagarakatte. 2021b. RLIBM-32: High Performance Correctly Rounded Math Libraries for 32-

bit Floating Point Representations. arXiv:2104.04043 Rutgers Department of Computer Science Technical Report

DCS-TR-754.

Jay P. Lim and Santosh Nagarakatte. 2021c. RLIBM-ALL: A Novel Polynomial Approximation Method to Produce Correctly

Rounded Results for Multiple Representations and Rounding Modes. arXiv:2108.06756 [abs] Rutgers Department of

Computer Science Technical Report DCS-TR-757.

Jay P. Lim and Santosh Nagarakatte. 2022. One Polynomial Approximation to Produce Correctly Rounded Results of

an Elementary Function for Multiple Representations and Rounding Modes. Proceedings of the ACM on Programming

Languages 6, POPL, Article 3 (Jan. 2022), 28 pages. https://doi.org/10.1145/3498664

LLNL. 2022a. AMG. https://asc.llnl.gov/codes/proxy-apps/amg2013

LLNL. 2022b. High-order Lagrangian Hydrodynamics Miniapp. https://github.com/CEED/Laghos

Jean-Michel Muller. 2016. Elementary Functions: Algorithms and Implementation. Springer, 3rd edition. https://doi.org/10.

1007/978-1-4899-7983-4

Jean-Michel Muller, Nicolas Brunie, Florent de Dinechin, Claude-Pierre Jeannerod, Mioara Joldes, Vincent Lefvre, Guillaume

Melquiond, Nathalie Revol, and Serge Torres. 2018. Handbook of Floating-Point Arithmetic (2nd ed.). Birkhäuser Basel.

https://doi.org/10.1007/978-3-319-76526-6

Santosh Nagarakatte. 2012. Practical Low-Overhead Enforcement of Memory Safety for C Programs. Ph. D. Dissertation.

University of Pennsylvania.

Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Martin, and Steve Zdancewic. 2010. CETS: Compiler Enforced Temporal

Safety for C. In Proceedings of the 2010 International Symposium on Memory Management. https://doi.org/10.1145/1806651.

1806657

NAS. 2022. NAS Parallel Benchmarks 3.0. https://github.com/benchmark-subsetting/NPB3.0-omp-C

Nicholas Nethercote and Julian Seward. 2007. Valgrind: A Framework for Heavyweight Dynamic Binary Instrumentation.

In Proceedings of the 28th ACM SIGPLAN Conference on Programming Language Design and Implementation (San Diego,

California, USA) (PLDI ’07). Association for Computing Machinery, New York, NY, USA, 89ś100. https://doi.org/10.

1145/1250734.1250746

Takeshi Ogita, Siegfried Rump, and Shin’ichi Oishi. 2005. Accurate Sum and Dot Product. SIAM J. Scientific Computing 26

(01 2005), 1955ś1988. https://doi.org/10.1137/030601818

Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary Tatlock. 2015. Automatically Improving Accuracy for

Floating Point Expressions. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and

Implementation (Portland, OR, USA) (PLDI ’15). ACM, New York, NY, USA, 1ś11. https://doi.org/10.1145/2813885.2737959

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 190. Publication date: October 2022.

https://doi.org/10.1109/ARITH.2018.8464793
https://doi.org/10.1109/ARITH.2018.8464793
https://doi.org/10.1109/ARITH.2018.8464793
https://doi.org/10.1016/j.cpc.2008.02.003
https://doi.org/10.1145/363707.363723
https://doi.org/10.4230/DagSemProc.05391.3
https://doi.org/10.1145/2814270.2814299
https://arxiv.org/abs/2007.05344
https://doi.org/10.1145/3434310
https://doi.org/10.1145/3453483.3454049
https://arxiv.org/abs/2104.04043
https://arxiv.org/abs/2108.06756
https://doi.org/10.1145/3498664
https://asc.llnl.gov/codes/proxy-apps/amg2013
https://github.com/CEED/Laghos
https://doi.org/10.1007/978-1-4899-7983-4
https://doi.org/10.1007/978-1-4899-7983-4
https://doi.org/10.1007/978-3-319-76526-6
https://doi.org/10.1145/1806651.1806657
https://doi.org/10.1145/1806651.1806657
https://github.com/benchmark-subsetting/NPB3.0-omp-C
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1137/030601818
https://doi.org/10.1145/2813885.2737959

190:28 Sangeeta Chowdhary and Santosh Nagarakatte

Douglas M. Priest. 1992. On Properties of Floating Point Arithmetics: Numerical Stability and the Cost of Accurate Computations.

Ph. D. Dissertation. USA. UMI Order No. GAX93-30692.

Siegfried M. Rump. 2009. Ultimately Fast Accurate Summation. SIAM Journal on Scientific Computing 31, 5 (2009), 3466ś3502.

https://doi.org/10.1137/080738490

Alex Sanchez-Stern, Pavel Panchekha, Sorin Lerner, and Zachary Tatlock. 2018. Finding Root Causes of Floating Point

Error. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Philadelphia, PA, USA) (PLDI 2018). Association for Computing Machinery, New York, NY, USA, 256ś269. https:

//doi.org/10.1145/3192366.3192411

Jonathan Shewchuk. 1996. Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates. Discrete

and Computational Geometry 18 (07 1996). https://doi.org/10.1007/PL00009321

Alexey Solovyev, Marek S. Baranowski, Ian Briggs, Charles Jacobsen, Zvonimir Rakamarić, and Ganesh Gopalakrishnan.

2018. Rigorous Estimation of Floating-Point Round-Off Errors with Symbolic Taylor Expansions. ACM Trans. Program.

Lang. Syst. 41, 1, Article 2 (dec 2018), 39 pages. https://doi.org/10.1145/3230733

Pat H Sterbenz. 1974. Floating-point computation. Prentice-Hall, Englewood Cliffs, NJ.

US-GAO United States General Accounting Office. 1992. Patriot Missile Defense: Software Problem Led to System Failure at

Dhahran, Saudi Arabia. https://www.gao.gov/products/IMTEC-92-26

Yuhao Zhang, Luyao Ren, Liqian Chen, Yingfei Xiong, Shing-Chi Cheung, and Tao Xie. 2020. Detecting Numerical Bugs in

Neural Network Architectures. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (FSE 2020). Association for Computing Machinery, New York,

NY, USA, 826ś837. https://doi.org/10.1145/3368089.3409720

Daming Zou, Muhan Zeng, Yingfei Xiong, Zhoulai Fu, Lu Zhang, and Zhendong Su. 2019. Detecting Floating-Point Errors via

Atomic Conditions. Proc. ACM Program. Lang. 4, POPL, Article 60 (Dec. 2019), 27 pages. https://doi.org/10.1145/3371128

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 190. Publication date: October 2022.

https://doi.org/10.1137/080738490
https://doi.org/10.1145/3192366.3192411
https://doi.org/10.1145/3192366.3192411
https://doi.org/10.1007/PL00009321
https://doi.org/10.1145/3230733
https://www.gao.gov/products/IMTEC-92-26
https://doi.org/10.1145/3368089.3409720
https://doi.org/10.1145/3371128

	Abstract
	1 Introduction
	2 Background
	2.1 The Floating Point Representation
	2.2 Computing the Rounding Error with Error Free Transformations

	3 The EFTSanitizer Approach
	3.1 Metadata Design and Organization of the Metadata Space
	3.2 Metadata Propagation
	3.3 Error Reporting and Debugging Interface

	4 Prototype and Implementation
	5 Experimental Evaluation
	5.1 Effectiveness in Detecting and Debugging Numerical Errors
	5.2 Performance Evaluation

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

