
Automatic Equivalence Checking for Assembly

Implementations of Cryptography Libraries

Jay P. Lim

Department of Computer Science

Rutgers University

Piscataway, USA

jpl169@cs.rutgers.edu

Santosh Nagarakatte

Department of Computer Science

Rutgers University

Piscataway, USA

santosh.nagarakatte@cs.rutgers.edu

Abstract—This paper presents an approach and a tool, CASM-
VERIFY, to automatically check the equivalence of highly opti-
mized assembly implementations of cryptographic algorithms.
The key idea of this paper is to decompose the equivalence
checking problem into several small sub-problems using a com-
bination of concrete and symbolic evaluation. Given a reference
and an optimized implementation, CASM-VERIFY concretely
executes the two implementations on randomly generated in-
puts and identifies likely equivalent variables. Subsequently, it
uses symbolic verification using an SMT solver to determine
whether the identified variables are indeed equivalent. Further,
it decomposes the original query into small sub-queries using a
collection of optimizations for memory accesses. These techniques
enable CASM-VERIFY to verify the equivalence of assembly
implementations (e.g., x86 and SSE) of various algorithms such
as SHA-256, ChaCha20, and AES-128 for a message block.

Index Terms—Formal verification, Cryptography

I. INTRODUCTION

Mainstream libraries for cryptography (e.g., OpenSSL and

BoringSSL) implement Transport Layer Security (TLS) and

Secure Socket Layer (SSL) protocols for secure communi-

cation. These protocols use a wide range of cryptographic

algorithms such as symmetric key ciphers, public-key ciphers,

and hash functions. They are highly optimized given that

these components are performance critical. These libraries

have several thousand lines of manually optimized assembly

code for high performance. Further, the implementations of

these algorithms utilize a wide range of optimizations: (1)

heavy unrolling of loops to avoid branch penalty, (2) carefully

crafted use of vector instructions, (3) use of instructions to

avoid side-channels, and (4) optimizations to ensure constant-

time execution. The end-result is that the implementation looks

drastically different from the specification.

Although these systems undergo intensive testing, bugs are

pretty common as testing does not guarantee the absence of er-

rors for all inputs. Recently, OSS-Fuzz [1] and numerous other

projects have found bugs in implementations of OpenSSL.

For example, OSS-Fuzz found a carry propagation bug [2]

in the Curve25519 implementation of OpenSSL in May 2017.

Surprisingly, this bug was present since OpenSSL 1.0.2.

As these libraries are widely used, checking the correctness

of the optimized code with respect to a reference standard is

important. A promising method to attain this goal is to im-

plement verified cryptographic algorithms using programming

languages or program logics developed with program verifi-

cation in consideration [3], [4], [5], [6], [7]. Recent projects

have successfully implemented correct TLS protocols [8], [9]

and ciphers [10], [11], [12]. Correct by construction approach

is an ideal approach to implement new algorithms. However,

there is a huge corpus of existing implementations that have

been hand-optimized for various architectures. The SAW [13]

and Axe [14] projects verify the correctness of cryptographic

algorithms written in high-level languages such as Java or C.

Unfortunately, there is a disconnect between the high-level

language implementations and the hand-optimized assembly

used by mainstream libraries.

Alternatively, checking the equivalence of general-purpose

programs is a well-studied problem. A common approach

for checking the equivalence of two programs with different

loop structure is to unroll the loops and identify straight-line

program segments that are equivalent by observing branch

conditions [15] or by observing program states during con-

crete executions [16]. Subsequently, they generate symbolic

expressions for the straight-line fragments and solve the con-

straints between them using a Satisfiability Modulo Theory

(SMT) solver. These techniques are ineffective in the con-

text of assembly implementations of cryptographic algorithms

because the implementation can be thousands of instructions

long. Automated verification with an SMT solver would not

terminate as the resulting symbolic expressions are too com-

plex. One way to address this challenge is to manually annotate

intermediate variables that should be equivalent between the

optimized implementation and the reference implementation

and prove the equivalence of the implementations composi-

tionally. However, requiring the users to annotate possibly

equivalent variables is likely infeasible in our context, because

there can be thousands of such variables. In the context of

hardware verification, SAT sweeping was used to identify

equivalent nodes in circuit boards and to optimize equivalent

nodes [17]. We adapt this idea to the context of cryptographic

algorithms with memory operations.

This paper presents a set of techniques and a tool, CASM-

VERIFY
1, to automatically verify the two assembly imple-

1Artifact available at: https://doi.org/10.5281/zenodo.2229779

978-1-7281-1436-1/19/$31.00 c© 2019 IEEE CGO 2019, Washington, DC, USA
Research Papers

37

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.5281/zenodo.2229779

mentations or an assembly and a reference implementation of

cryptographic algorithms. Our key idea is to leverage a combi-

nation of concrete execution and symbolic evaluation coupled

with query decomposition optimizations to reduce the large

verification condition into smaller sub-problems. Given two

implementations, CASM-VERIFY constructs directed acyclic

graphs (DAG) for them and identifies likely equivalent vari-

ables by concretely evaluating the DAGs with random inputs.

Subsequently, it checks whether these likely variables are

indeed equivalent by constructing symbolic expressions in

terms of the leaf nodes. When two nodes are indeed equivalent,

it merges the nodes in the DAG. We propose a sound, yet

fast equivalence checking method when the two nodes have

common descendants (see Section III-D), which we call quick

check optimization. We propose novel optimizations of mem-

ory read operations by leveraging equivalence information

from the DAGs and by converting memory accesses to nested

if-then-else nodes (see Section IV).

Our prototype, CASM-VERIFY, is open source and is pub-

licly available [18]. We have used CASM-VERIFY to verify

various assembly implementations of SHA-256, ChaCha20,

and AES-128 from OpenSSL are equivalent to the reference

implementation that we developed based on the official spec-

ification. CASM-VERIFY can also check the equivalence of

two different assembly implementations (e.g., x86 vs SSE). We

have also discovered a possible ambiguity in the specification

of ChaCha20. Our experiments show that CASM-VERIFY

is effective in detecting incorrect incremental changes to

assembly implementations of cryptographic algorithms.

II. HIGH LEVEL SKETCH OF OUR APPROACH

Our goal is to automatically show the equivalence of two

implementations of cryptographic algorithms. Our approach is

tailored to cryptographic algorithms that use loops with static

loop counts, subtle bit-manipulation operations, and look-up

tables. We support two scenarios: (1) the user provides a ref-

erence implementation in our tool’s domain specific language

and an optimized implementation and (2) the user provides two

distinct x86 implementations of a cryptographic algorithm.

In both scenarios, the user also provides a precondition and

a postcondition that relate the input variables and the output

variables, respectively. The precondition specifies equivalent

input variables in the two implementations. The postcondition

identifies the output variables that must be equivalent for the

two implementations to be equivalent.

Challenges with existing equivalence checking tech-

niques. Although automated equivalence checking is a widely

studied area [19], [15], [20], [16], [21], [22], [23], [24], [25],

[26], [27], [28], the problem is challenging in the context of

cryptographic algorithms for the following reasons: (1) each

implementation has thousands of hand-optimized instructions,

(2) different ciphers use memory to store lookup tables and

keys, and (3) existing code does not provide information about

equivalent intermediate variables. Hence, existing approaches

that encode the equivalence as constraints in first-order logic

and use SMT solvers do not terminate (Section V).

(a)

(c)

(d)(b)

var1 = (a >>> 13) ^ (a >>> 9)
var2 = ((a&b) ^ (~a & c)
result = var1 + var2

Implementation 1

S1:
S2:
S3:

movl
rorl
xorl
rorl
xorl
andl
xorl
addl

eax, edx
edx, $4
eax, edx
edx, $9
ecx, ebx
eax, ebx
ecx, ebx
edx, ebx

Implementation 2

I1:
I2:
I3:
I4:
I5:
I6:
I7:
I8:

a == eax
b == ebx
c == ecx

Precondition

R1:
R2:
R3:

result == ebx

Postcondition

O1:

Fig. 1. An example to illustrate our approach with two implementations.
(a) An implementation in CASM-VERIFY’s domain specific language. (b)
Another implementation in x86. (c) Precondition relates input variables in
the two implementations. (d) Postcondition identifies the outputs that need to
be equivalent.

Modular decomposition with our approach. Our ap-

proach also relies on SMT solvers to reason about the equiv-

alence of two implementations. We create directed acyclic

graph (DAG) representations of the entire implementations.

When the program has loops, we unroll them because the loop

trip-counts are statically known especially with cryptographic

algorithms. Essentially, our problem is to show the equivalence

of two sets of large DAGs (i.e., one for the reference and the

other for the optimized implementation).

Our key idea is to decompose the large formula that encodes

the equivalence of two implementations into smaller sub-

formulae and check the equivalence of these two implemen-

tations using these sub-formulae. To decompose the formula,

we need to identify intermediate equivalent nodes. We address

the challenge of identifying intermediate equivalent variables

for modular decomposition by using a combination of concrete

execution and a subsequent symbolic verification. We use con-

crete execution to identify likely equivalent variables inspired

by prior approaches to invariant generation [29], [16]. It prunes

the space of variables that we need to explore. Verification

condition generation using symbolic evaluation checks if these

likely equivalent variables are indeed equivalent, providing

soundness.

Illustration. We illustrate our approach with a simple

pedantic example in Figure 1, where we want to check

the equivalence of two implementations in Figure 1(a) and

Figure 1(b), which we call P1 and P2, respectively. The

assembly implementation in Figure 1(b) optimizes the com-

putation of var1 (line S1 in Figure 1(a)) by computing

((a ≫ 4) ⊕ a) ≫ 9 (lines I1-I4), and var2 (line S2) by

computing ((b ⊕ c) & a) ⊕ c (lines I5-I7), where ≫ is the

rotate right operation and ⊕ is the exclusive-or operation.

Our tool, CASM-VERIFY, creates a DAG for both P1

and P2, which is shown in Figure 2. Our tool handles flag

registers and instructions operating on operands with different

bit-widths. To ease exposition, we restrict ourselves to the

pedantic example in Figure 2.

Equivalence checking. The goal of equivalence checking

is to verify that the output nodes of P1 and P2 are equivalent.

A common method for equivalence checking is to generate

38

13 9

a

4

9

b c

ADD

O1

ADD

O2

XOR

T6

XOR

T7

ROR

T1

ROR

T2

AND

T3

AND

T5

NOT

T4

ROR

T13

XOR

T12

XOR

T11

AND

T10

ROR

T9

XOR

T8

eax ebx ecx

DAG of P1 DAG of P2

Fig. 2. DAG representations of the two implementations. A leaf node is
either an input variable or a concrete constant. All other nodes represent
intermediate variables used to calculate the output. If the program has multiple
output variables, then the DAGs can have multiple root nodes. The node O1

represents the output variable of P1 (i.e., result in Figure 1(a)) and the
node O2 represents the output variable of P2 (i.e., ebx in Figure 1(b)). All
intermediate nodes represent an operation on the child nodes. For example,
T6 is computed as T1⊕ T2, where ⊕ is exclusive-or operation.

verification conditions by symbolic evaluation of the DAGs

in a particular first-order theory. The verification conditions

encode the root nodes based on the leaf nodes.
The precondition for our example is:

((a = eax) ∧ (b = ebx) ∧ (c = ecx)) (Pre)

The verification conditions for O1 and O2 are:

((a ≫ 13)⊕ (a ≫ 9)) + ((a& b)⊕ (¬a& c)) (EQ1)

(((eax ≫ 4)⊕ eax) ≫ 9)+(((ebx⊕ ecx)& eax)⊕ ecx) (EQ2)

The next step is to create a verification condition to check
the equivalence of two DAGs.

∀a,b,c,eax,ebx,ecx, P re =⇒ (EQ1 = EQ2)

Typically SMT solvers are used to check the validity of the

above formula. If the negation of the above formula is unsat,

then the original formula is valid for all inputs. However, in

the context of our domain, SMT solvers do not terminate with

an answer or run out of memory because each DAG contains

thousands of nodes.

Query Decomposition. Our contribution is a collection of

techniques to decompose the problem of checking the equiv-

alence of the above formula into smaller sub queries, which

can be easily checked by an SMT solver. First, we create an

alternative, yet equivalent formula by moving the verification

conditions for the intermediate nodes to the premise, which

is shown below. The left hand side of the =⇒ is a

conjunction of precondition and the encoding of each node

n ∈ (P1 ∪ P2). The right hand side specifies which variables

should be equivalent.

∀a,b,c,eax,ebx,ecx, (Pre ∧ (T1 = a ≫ 13) ∧ (T2 = a ≫ 9)∧

(T3 = a& b) ∧ (T4 = ¬a) ∧ (T5 = T4 & c) ∧ (T6 = T1⊕ T2)∧

(T7 = T3⊕ T5) ∧ (T8 = ebx⊕ ecx) ∧ (T9 = eax ≫ 4)∧

(T10 = eax& T8) ∧ (T11 = T9⊕ eax) ∧ (T12 = T10⊕ ecx)∧

(T13 = T11 ≫ 9) ∧ (O1 = T6 + T7) ∧ (O2 = T13 + T12))

=⇒ (O1 = O2) (EQ3)

The EQ3 query can be easily constructed from the DAGs

and enables easier debugging.

Second, our tool automatically finds equivalent intermediate

nodes to perform query decomposition. For example, if we

can deduce that T6 = T13 and T7 = T12, we can easily

prove the equivalence of O1 and O2 in Figure 2. CASM-

VERIFY identifies likely equivalent nodes in P1 and P2 by

concretely executing the respective DAGs with random inputs

generated using the SMT solver (i.e., models that satisfy

the precondition). CASM-VERIFY subsequently verifies that

these likely equivalent nodes are indeed equivalent by generat-

ing verification conditions for their equivalence. The nodes are

checked in reverse topological order (i.e., nodes that are closer

to the leaf nodes are checked first). When CASM-VERIFY

proves the equivalence of intermediate nodes, it merges the

two nodes in the DAG (see Figure 4). The verification of

subsequent nodes use the merged DAG.

Third, we propose a technique to accelerate the equivalence

checking with the merged DAG. When we are checking the

equivalence of two nodes that have common descendants,

we construct a query that ignores the entire sub-tree under

the common descendant (i.e., the node can take any value).

The operations in the sub-tree under the common descendant

constrains the range of values seen by the common descendant.

Our optimization ensures that the two nodes are equivalent for

all values of the common descendant. Hence, our technique

is sound (i.e., when our technique states two nodes are

equivalent, they are indeed equivalent for all inputs). If we

cannot show equivalence when the common descendants are

unconstrained, we construct a verification condition where

only the input variables are unconstrained (i.e., similar to

EQ3). Section III-D provides a detailed algorithm.

Fourth, we propose optimizations to reduce the size of

the query in the presence of memory operations. When the

program uses memory locations, the memory operations create

a chain of nodes. We propose a limited form of Ackermanniza-

tion, which converts operations from theory of arrays into a

set of nested if-then-else expressions (see Section IV for more

details). These optimizations enable us to show the equivalence

of large programs.

III. QUERY DECOMPOSITION FOR EQUIVALENCE

Given two implementations, CASM-VERIFY performs au-

tomatic equivalence checking by simplifying the queries given

to the SMT solver. First, it identifies likely equivalent nodes

with concrete execution using random inputs. Second, it

constructs queries to check whether the identified nodes are

39

indeed equivalent for all inputs. Third, it simplifies the DAG

by merging equivalent nodes and generates simpler queries to

prove the postcondition.

A. Identifying Likely Equivalent Nodes

To enable query decomposition, we need to identify in-

termediate nodes in the DAG that are equivalent. We can

subsequently simplify the DAG by merging equivalent nodes.

Requiring the user to provide such information is typically

infeasible because there are thousands of intermediate nodes.

Sample input generation using counter-example guided

enumeration. Inspired by data-driven approaches for gener-

ating likely invariants [29], [16], CASM-VERIFY generates

random inputs for the leaf nodes in the DAG using the

SMT solver. Since any such random input has to satisfy

the precondition, CASM-VERIFY asks the SMT solver for

a model that satisfies the precondition. A single input is

typically not sufficient to identify likely equivalent nodes.

Hence, CASM-VERIFY uses counter-example guided model

enumeration iteratively to generate multiple random inputs that

satisfy the precondition. Initially, any input that satisfies the

precondition is used. In the subsequent iterations, CASM-

VERIFY asks the SMT solver to provide models that satisfy

the precondition and are distinct from the previous random

inputs generated.

Once a set of sample inputs is generated, CASM-VERIFY

evaluates the DAG using the concrete values for the leaf nodes.

It groups all intermediate nodes that produce identical values

for all inputs in the sample set of inputs as likely equivalent

nodes. The likely equivalent nodes are indistinguishable from

each other with respect to the set of sample inputs (i.e.,

they may not be equivalent for other inputs). Using concrete

execution quickly prunes the set of intermediate nodes that we

need to check using expensive SMT solver queries.

B. DAG Simplification for Equivalence Checking

Once we identify likely equivalent nodes, the next step is

to check if these nodes are indeed equivalent. If they are

equivalent, then we merge the two nodes in the DAG, which

reduces the number of nodes and produces simpler formulae

for the verification of subsequent nodes. Figure 3 provides our

algorithm to prove the postcondition given the DAG, the set of

likely equivalent nodes, and the precondition. It returns true

if the postcondition is valid (i.e., the two implementations are

equivalent) and false, otherwise.

DAG simplification in reverse topological order. When

we check the equivalence of nodes and simplify the DAG, we

perform it in the reverse topological order. We check nodes

that are closer to leaves first and subsequently explore nodes

that are farther away. This approach ensures that most of the

descendants of a node are already merged when a node close

to the root is encountered. We assign a rank to each node,

which indicates the maximum distance of the node from the

descendant leaf nodes.

To simplify the DAG, the algorithm in Figure 3 identifies

a representative node that has the lowest rank for each likely

1 Function CheckEquivalent(P , E , I , pre, post):

2 R = GetRepresentatives(E)
3 L ←

⋃

s∈E

s−R

4 L ← SortByRank(L)
5 foreach u ∈ L do

6 Q← {v | v ∈ R, ∃s∈E u ∈ s and v ∈ s}
7 foreach v ∈ Q do

8 MemoryOpt(u, I , pre)

9 MemoryOpt(v, I , pre)

10 r ← QuickCheckEQ(u, v, I , pre)

11 if ¬r then r ← CheckEQ(u, v, I , pre)

12 if r then Merge(u, v); break

13 end

14 if ¬r then R ← R∪ {u}
15 end

16 foreach (x, y) ∈ post do

17 if x 6= y then return false

18 end

19 return true

20 Function CheckEQ(u, v, I , pre):

21 Ψ← {u, v}∪Descendant(u)∪Descendant(v)

22 Φ←
∧
ψ∈Ψ

Encode(ψ)

23 ε← ∀I(pre ∧ Φ) =⇒ (u = v)
24 r ← CheckSat(¬ε)
25 return r = unsat

Fig. 3. Algorithm to check the postcondition given the unified DAG P , the set
of sets of likely equivalent nodes E , the set of input variables I , the precon-
dition pre, and the postcondition post. It returns true if the postcondition
is satisfied and false otherwise. GetRepresentative(E) returns a set of
nodes, where each node is a node from a set of likely equivalent nodes that
has the lowest rank. SortByRank(L) returns a sorted list by rank. Merge(u,
v) merges the two nodes u and v in the DAG. Descendant(u) returns a
set of descendant nodes of u. CheckSat(¬ε) checks the satisfiability of the
equation ¬ε using the SMT solver. MemoryOpt and QuickCheckEQ are
optimizations described in Section IV and Section III-D, respectively.

equivalent set. These nodes are aggregated in the set R. Figure

3 maintains the invariant that any two nodes of R are not

equivalent to each other. The algorithm in Figure 3 maintains

all other nodes in the DAG as set L (line 3), which is also

sorted by their rank. Subsequently, it checks if a node in L is

equivalent to a representative node (lines 5-15).

If the two nodes are equivalent, then it merges u and v in

the DAG. The merge operation changes all parent nodes of u

to point to v (line 12). This change is also reflected in the post-

condition. If u appears in the post condition, it is replaced by

v. If u is not equivalent to v, we add u to R, and examine the

next node in L (line 14). Before checking equivalence, we also

perform optimization of memory accesses (see Section IV).

Illustration. Let’s consider the case where the likely equiv-

alent sets from concrete execution with sample inputs for the

implementations in Figure 1 are: {a, eax}, {b, ebx}, {c, ecx},
{T6, T13}, {T7, T12}, and {O1, O2}. The resulting R and

L sets are:

R = {a, b, c, T6, T7, O1}

40

13

9

a

4

9

b c

ADD

O1

ADD

O2

XOR

T6

XOR

T7

ROR

T1

ROR

T2

AND

T3

AND

T5

NOT

T4

ROR

T13

XOR

T12

XOR

T11

AND

T10

ROR

T9

XOR

T8

(a)

13

9

a

4

9

b c

ADD

O1

ADD

O2

XOR

T6

XOR

T7

ROR

T1

ROR

T2

AND

T3

AND

T5

NOT

T4

ROR

T13

XOR

T12

XOR

T11

AND

T10

ROR

T9

XOR

T8

(b)

13

9

a

4

9

b c

ADD

O1

ADD

O2

XOR

T6

XOR

T7

ROR

T1

ROR

T2

AND

T3

AND

T5

NOT

T4

ROR

T13

XOR

T12

XOR

T11

AND

T10

ROR

T9

XOR

T8

(c)

Fig. 4. (a) The resulting DAG after merging three sets of equivalent leaf nodes {eax, a}, {ebx, b}, and {ecx, c} from Figure 2. (b) After verifying the
equivalence of T6 and T13, the parent node of T13 points to T6 instead. (c) After verifying the equivalence of T7 and T12, the parent node of T12 points
to T7.

L = {eax, ebx, ecx, T13, T12, O2}

Here, eax and a are in the likely equivalent set and have

the same rank. We chose a to be in R and eax in L. They

are equivalent based on the precondition. The two nodes are

merged in the DAG. Figure 4(a) presents the DAG after merg-

ing the following equivalent nodes: {eax, a}, {ebx, b}, and

{ecx, c}. Figure 4(b) and Figure 4(c) present the DAG after

verifying the equivalence and merging of nodes {T6, T13}
and {T7, T12}, respectively.

C. Verifying the Equivalence of Two Nodes

The algorithm in Figure 3 verifies the equivalence of two

nodes u and v using the CheckEQ function. It first constructs

a set Ψ that consists of u, v, and all descendant nodes of u and

v in the DAG (line 21 in Figure 3). Subsequently, it creates

a constraint for each node using the Encode() function and

creates a conjunction. The Encode(ψ) function returns true

if ψ is a leaf node. If ψ is an intermediate node or a root node,

Encode(ψ) yields the symbolic expression for the value of

ψ in terms of its child nodes.

Therefore, Φ is a conjunction of predicates that collectively

evaluates the value of u and v in terms of the leaf nodes. For

example, when we are trying to verify the equivalence of T6
and T13 in Figure 4(a), we would produce:

Ψ ={T1, T2, T6, T9, T11, T13, 4, 9, 13, a}

Φ =(T1 = a ≫ 13) ∧ (T2 = a ≫ 9) ∧ (T6 = T1⊕ T2)∧

(T9 = a ≫ 4) ∧ (T11 = a⊕ T9) ∧ (T13 = a ≫ 9)

We check equivalence by checking the validity of the

formula for all valuations of the input variables when the

precondition is satisfied. For verifying the equivalence of T6
and T13, we prove the validity of the following formula:

ε = ∀a,eax,b,ebx,c,ecx(pre ∧ Φ) =⇒ (T6 = T13)

Query simplification due to node merges. When we

discover a pair of equivalent nodes, the parents of the two

nodes point to one sub-tree under them. The query to check

the validity of the formula will not use a large number of

nodes in the original DAG. Since Figure 4(c) is the DAG

obtained after merging equivalent nodes, the formula to check

the equivalence of O1 and O2 will not include symbolic

expressions corresponding to the nodes T8, T9, . . . , and T13.

Verifying the postcondition. Once all equivalent nodes are

merged, verifying the postcondition is straightforward. The

postcondition states the pairs of output nodes that should be

equivalent. If they are equivalent, then our algorithm would

have merged these nodes and the postcondition is trivially sat-

isfied. Otherwise, the two output variables in the postcondition

would be distinct. Hence, the algorithm in Figure 3 checks if

all the output nodes have been merged.

D. Quick Check Equivalence

The process of identifying and merging equivalent nodes in

the algorithm in Figure 3 reduces the complexity of queries

sent to the SMT solver. To verify the equivalence of two nodes,

it encodes constraints in terms of the leaf nodes. The validity

of such a formula confirms that the two nodes are equivalent. If

the formula is not valid, then we can conclusively say that the

two nodes are not equivalent. However, the above approach

can still generate a formula with many predicates when the

path from a node of interest to a leaf node involves many

intermediate nodes.

We propose an optimization that verifies the equivalence

of two nodes, u and v, much more quickly when they have

common descendants. In contrast to the algorithm in Figure 3

that constructs the symbolic expression for a node in terms

of leaf nodes, we propose to construct a new query based

on common descendants. With our optimization, the SMT

query only evaluates the values in terms of the nodes that

are descendants of both u and v. The common descendant

nodes are treated as unconstrained variables, similar to the leaf

nodes in the validity check. Our approach is inspired by SAT

sweeping in the context of propositional logic solvers [17]. We

extend the technique to the context of SMT solvers with large

DAGs and memory operations. The entire sub-trees under the

41

1 Function QuickCheckEQ(u, v, I , pre):

2 Ψ← {u, v}∪Descendant(u)∪Descendant(v)

3 Υ← (Descendant(u) ∩ Descendant(v))
4 Ψ← Ψ−Υ
5 Φ←

∧
ψ∈Ψ

Encode(ψ)

6 ε← ∀I,Υ(pre ∧ Φ) =⇒ (u = v)
7 r ← CheckSat(¬ε)
8 return r = unsat

Fig. 5. The QuickCheckEQ algorithm verifies the equivalence of u and
v by universally quantifying the common descendant nodes of u and v. If
QuickCheckEQ returns true, then u and v are equivalent. If it returns false,
then we cannot conclude whether u and v are equivalent or not.

c d

XOR
T7

AND

T4 AND

T6

NOT

T5

XOR

T10

AND

T9

XOR

T8

ADD

T3

a b

AND

T1

NOT

T2

Fig. 6. An example DAG to illustrate the usefulness of QuickCheck

optimization. We want to check the equivalence of T7 and T10. T3, c, and
d are common descendants of both T7 and T10. The symbolic expression to
check equivalence of T7 and T10 can be written in terms of T3, c, and d.

common descendants are not used for verification condition

generation (see Figure 5). Hence, the queries are much smaller

and can be solved quickly by SMT solvers.

When our optimization QuickCheckEQ states that two

nodes are equivalent, they are indeed equivalent because we

have shown their equivalence for any value of the common

descendant node. The sub-tree under this node only constrains

the values that the node can produce. When our optimization

cannot prove the equivalence of two nodes, we cannot conclu-

sively state that they are not equivalent. We have to resort to

the default CheckEQ function that constructs the verification

condition using the leaf nodes.

Illustration. We illustrate the query simplification with our

quick check optimization. Consider the DAG in Figure 6. Let

us consider the case where we want to show the equivalence

of T7 and T10. The validity check with our quick check

optimization is:

∀T3,c,d((T4 = T3 & c) ∧ (T5 = ¬T3) ∧ (T6 = T5 & d)∧

(T7 = T4⊕ T6) ∧ (T8 = c⊕ d) ∧ (T9 = T3 & T8)∧

(T10 = T9⊕ d)) =⇒ (T7 = T10)

Note that the above formula generated by our quick check

optimization universally quantifies the common descendant T3
and the input variables that are used in the formula. It does

not use any node in the sub-tree under T3.

(a)

Code :

A[i1] = v1;

A[i2] = v2;

A[i3] = v3;

T14 = A[i4];
(d)

Aliasing Info.

i4 ≠ i3;

i4 = i2;

i4 = i1;
def

may

If

T14

v2i4=i2 v1

(e)

A0

Write

A1

Read

T14

Write

A2

Write

A3

i1 v1

i2 v2

i3 v3

i4

(b) (c)

If

T14

v3i4=i3 If

v2i4=i2 If

v1i4=i1 Read

A0 i4

Fig. 7. (a) A sample program with a sequence of memory writes followed by
a read operation. (b) The DAG representation of the implementation in (a).
(c) An equivalent DAG representation using a chain of if-then-else nodes as a
result of our optimization. (d) The aliasing relationship between index i4 and
other indices i1, i2, and i3. This information is obtained during the process of
DAG merging and equivalence checking. (e) Optimized DAG representation
of T14 using the information on aliasing relationship.

IV. SIMPLIFICATION WITH MEMORY ACCESSES

Memory accesses are common in specifications of cryp-

tographic algorithms, especially for various look-up tables.

Further, assembly implementations can also have spill code

apart from regular memory accesses. CASM-VERIFY reasons

about programs in the presence of memory accesses. CASM-

VERIFY uses the theory of arrays to generate verification

conditions for memory accesses. Hence, every write operation

creates a new array that is exactly identical to the original

array except for the index where the element is written. A

write operation to the array A0 at index i with the value v

results in the creation of a new array A1, such that A1[i] = v,

and the value of A1 is equivalent to A0 in all other indexes.

More formally,

A1 ← write(A0, i, v) =⇒ A1[j] =

{

v if j = i

A0[j] otherwise

Long paths in the DAG due to memory operations.

As a consequence of using the theory of arrays to encode

memory operations, programs that perform a series of memory

operations can have long paths in the DAG. Implementations

of cryptographic algorithms can perform hundreds of memory

read/write operations.

Consider a sequence of memory accesses shown in Fig-

ure 7(a), which writes three values, v1, v2, and v3 to the

array A at indices i1, i2, and i3, respectively. Subsequently,

it reads the value in the array at index i4 and stores it in

42

T14. The DAG representation of the sequence of accesses is

shown in Figure 7(b). The DAG representation contains four

array nodes, A0, A1, A2, and A3. A0 represents the state

of array A before executing any instruction. A1, A2, and A3
represent the states of A after executing the first, second, and

the third write operation, respectively. To reason about the

value of T14, the verification condition, by default, includes

constraints about all nodes in the DAG irrespective of the

values of the indices (i.e., i1, ...i4) or the values (v1...v4). Our

memory optimization leverages the equivalence relationship

between the index nodes to simplify the read nodes.

Optimizing memory reads in the DAG. To optimize

memory read nodes (i.e., MemoryOpt in the algorithm in

Figure 3), we first transform the DAG into a collection of

if-then-else nodes, which is a limited form of Ackermanniza-

tion [30]. It allows us to reason about array operations using a

simple bitvector theory rather than a combination of multiple

theory solvers.

Figure 7(c) presents the equivalent DAG after transforming

the memory operations into nested if-then-else nodes. In

Figure 7(b), the child of the read operation at index i4 (i.e.,

T14) is a memory write operation A3 that writes value v3 at

index i3. We convert it into an if-then-else node with three

children: comparison node (i4 = i3), value node v3 for the

if part, and nested if-then-else tree for the else part as shown

in Figure 7(c). This process is repeated until all the memory

write operations are converted into if-then-else nodes.

Using node equivalence information to prune the if-then-

else nodes. Given a DAG with if-then-else nodes, we use

the equivalence checking procedure in Figure 3 to determine

the aliasing information between the memory read and write

operations and perform dead branch elimination. If the indices

are equivalent for all inputs, we eliminate the false branch. If

the indices are distinct for every input, we remove the true

branch. If the indices may be equal for some inputs, then we

keep both branches. Based on the aliasing information inferred

from Figure 7(d), the DAG in Figure 7(c) is optimized to the

DAG in Figure 7(e).

V. EXPERIMENTAL EVALUATION

We describe our prototype, our methodology for evaluating

the equivalence of two implementations, and the effectiveness

of our tool with both existing and mutated implementations of

cryptographic algorithms.

A. Prototype

Our prototype, CASM-VERIFY, is implemented in Python

and uses the Z3 SMT solver. The implementations of cryp-

tographic algorithms can be provided either in x86 assembly

or in our tool’s domain specific language. CASM-VERIFY

provides a simple C-like imperative language to specify refer-

ence implementations. It supports common logical, arithmetic,

and bitwise operations. It also supports memory accesses as

reads/writes over an array. The DSL supports fixed iteration

loops, mathematical functions, and ternary operators, which

are common in the specification of cryptographic algorithms.

The DSL constructs have one-to-one correspondence to theory

of Bit-Vectors and theory of array operations in first-order

logic (i.e., SMT-LIB theories).

CASM-VERIFY translates the assembly implementation

to the internal DSL. CASM-VERIFY’s translator precisely

captures side-effects of each assembly instruction. CASM-

VERIFY’s translator for assembly instructions supports x86

32/64-bit modes and SSE instructions. The translator tracks

changes in the 64-bit registers, its sub-registers, 128-bit xmm

registers, flag registers, and memory. When identifying equiv-

alent nodes, CASM-VERIFY only considers the equivalence

of variables of the same size. Hence, it extracts the appropriate

bits before comparing equivalence.

CASM-VERIFY is open-source. It is publicly available at

https://github.com/rutgers-apl/CASM-Verify.

B. Applications and Methodology

We evaluated our prototype with eight different assembly

implementations of three different algorithms in OpenSSL:

x86 64 and SSE implementations of SHA-256 hashing algo-

rithm, x86 64 and SSE implementation of ChaCha20 stream

cipher, and x86 64 implementation of AES-128 encryption,

decryption, and the two key expansion implementations used

for encryption and decryption, respectively. We compared

these eight existing implementations against reference im-

plementations that we wrote in CASM-VERIFY’s DSL. We

based our reference implementation on the available stan-

dards: FIPS 180 [31] for SHA-256, Bernstein’s paper [32]

for ChaCha20, and FIPS 197 [33] for AES-128. Additionally,

we also evaluated the equivalence of x86 64 and SSE imple-

mentations of SHA-256 and ChaCha20 using our prototype.

We use a 12-hour total time limit for CASM-VERIFY and a

five minute limit for each SMT query generated by CASM-

VERIFY. If our tool experiences a time-out at any stage,

we conclude that CASM-VERIFY cannot successfully verify

the benchmark. For SHA-256 and ChaCha20 implementations

that predominantly read/write word-sized values, we model

memory using an array of 32-bit values. For AES-128 imple-

mentations, we model memory using an array of 8-bit values.

C. Effectiveness in Checking Equivalence

CASM-VERIFY was able to verify the equivalence for all

of our experiments within the time limit. DAG simplification

and optimizations are important to verify the implementa-

tions. Figure 8 reports the time taken by the existing tech-

niques (leftmost bar of each cluster) and our tool with DAG

simplification and memory access optimizations (rightmost

bar of each cluster) for the 10 different configurations in

Figure 9. Figure 8 reports that the default equivalence checking

technique times out with all applications. In contrast, we are

able to successfully verify equivalence with CASM-VERIFY.

To understand the benefit of our optimizations, we also

evaluated the applications with two additional configurations:

(1) CASM-VERIFY without quick check and memory read op-

timization (second bar from the left of each cluster in Figure 8)

43

https://github.com/rutgers-apl/CASM-Verify

100

1000

10000

43200

T
o

ta
l

T
im

e
(s

ec
)

Single query CASM-Verify without QuickCheck and MemoryOpt

CASM-Verify without MemoryOpt CASM-Verify

SHA

SHA-SSE

SHA-equiv

ChaCha

ChaCha-SSE

ChaCha-equiv

AES-enc

AES-dec

AES-key-enc

AES-key-dec

Fig. 8. Total time in seconds, presented in log scale, required to verify the correctness of various scenarios described in Figure 9. Single query represents
the configuration where the equivalence of two implementations is checked using a single query. Other three bars represent CASM-VERIFY with various
optimizatons enabled. Bars that reach 43200 seconds represent benchmark scenarios that timed out (> 12 hours).

Scenario Insts Node
Comp.

Equiv.
Nodes

Memory
Read
Opt.

Total
Time

Verif.
Time

SHA 2817 1960 1957 554 3321s 3240s

SHA-SSE 2226 3941 3938 426 2766s 2699s

ChaCha 1134 2961 2959 1775 252s 220s

ChaCha-
SSE

457 23310 23310 1728 2042s 1774s

AES-enc 488 2298 2298 0 857s 810s

AES-dec 519 2023 2023 0 634s 576s

AES-key-
enc

307 1648 1648 572 2457s 2442s

AES-key-
dec

1407 3644 3638 1004 13241s 13190s

SHA-
equiv

2817
2226

4960 4954 468 8267s 7978s

ChaCha-
equiv

1134
457

21891 21888 143 1977s 1431s

Fig. 9. Details about the equivalence checking process with various scenarios.
Each row represents a verification scenario. The first eight rows involve
verification of assembly implementations and the DSL specification from
the standard. The last two rows involve verification of two assembly imple-
mentations: x86 64 and SSE. The second column reports the number of the
instructions in the unrolled assembly implementation. Third and fourth column
report the number of nodes that CASM-VERIFY compared and verified to be
equivalent. Fifth column reports the number of read nodes that were optimized.
The last two columns report the total time taken for the entire process and
the time spent in the verification of possibly equivalent nodes.

and (2) CASM-VERIFY without memory read optimization

(third bar from the left of each cluster in Figure 8). Only 3 out

of the 10 verification scenarios completed without quick check

and memory read optimizations. Addition of quick check op-

timization with query decomposition allows CASM-VERIFY

to verify 4 out of the 10 verification scenarios. Inclusion of

memory read optimization enables CASM-VERIFY to verify

all of them, although it adds some slowdown with the AES-

key-enc scenario. We hypothesize that the cost of optimizing

memory read operations outweighs the complexity reduction

of verification condition in this scenario. In summary, our op-

timizations together enable successful automated verification

of implementations of cryptographic algorithms.

Figure 9 reports the statistics of our verification scenarios.

CASM-VERIFY was able to verify 8 out of 10 benchmarks

within an hour, while SHA-equiv took over two hours and

AES-key-dec took over three hours to complete. CASM-

VERIFY spent the majority of the time optimizing memory

read operations for both benchmarks, because they contain

hundreds of memory write operations. Almost all likely

equivalent nodes obtained from concrete execution were in-

deed equivalent. The difference between the third and fourth

columns in Figure 9 provides the number of likely equivalent

nodes that were not equivalent with symbolic verification.

Only 15 pairs of likely equivalent nodes were not equivalent

when we verified with symbolic expressions, which illustrate

the usefulness of concrete execution with sample inputs.

A possible specification ambiguity. While we were ver-

ifying the correctness of ChaCha20 implementation, we dis-

covered a possible ambiguity in the specification. The spec-

ification of ChaCha20 transforms a 4 × 4 matrix using 20

rounds of transformations [32]. The notion of a round in the

specification was confusing because the specification also in-

troduces the notion of double-rounds. A double round applies

two distinct round transformations. Due to this ambiguity,

we created a DSL implementation that performed 20 double

rounds. CASM-VERIFY reported that the DSL implemen-

tation was not equivalent to OpenSSL’s ChaCha20 imple-

mentation, and we promptly fixed our DSL implementation.

OpenSSL’s ChaCha20 acted as the reference implementation

that detected the bug in our specification.

D. Evaluation with Program Mutations

To test the ability of our tool to detect incorrect imple-

mentations, we injected bugs in the program using a custom-

program mutator. Figure 10 presents various kinds of program

mutations performed by our mutator to test the effectiveness

of our tool. Among these, the first class of mutations are

representative of bugs that developers make while implement-

ing the program in an assembly language. These include (1)

using a wrong but a similarly named instruction, (2) using

44

(a) Change Instruction

addl %eax, %ebx

andl %eax, %ebx

(b) Change Register

subl %esi, %ebx

subl %edi, %ebx

(c) Switch Operands

xorl %esi, %ebx

xorl %ebx, %esi

(d) Change Offset

movl %eax, 20(%rsp)

xorl %eax, 28(%rsp)

(e) Mutation 1

addl
movl

%r15d, %r12d
%eax, %r15d

addl
cmovnzl

%r15d, %r12d
%eax, %r15d

(f) Mutation 2

addl
addl

(%rbp), %r12d
%r15d, %r12d

addl
adcl

(%rbp), %r12d
%r15d, %r12d

precondition:

(%rbp) = 0x06ca6351

(g) Mutation 3

shrq
sub
subq

$7, %r10
%r10, %rbx
%r13, %rdx

shrq
sub
sbbq

$7, %r10
%r10, %rbx
%r13, %rdx

(h) Mutation 4

movl %eax, %r15d

cmovnzl
cmovzl

%eax, %r15d
%eax, %r15d

Fig. 10. Some examples of mutations injected into the program to test our
tool. (a), (b), (c), and (d) illustrate common mistakes that developers can make.
(e), (f), and (g) illustrate mutations that create bugs that are hard to detect with
testing. (h) illustrates a mutation that does not change the semantics of the
program but creates nodes that are almost equivalent but cannot be merged.

a wrong register, (3) mistakes with source and destination

operands (i.e., confusion between AT&T and Intel syntax),

and (4) use of wrong offsets with displacement addressing

mode. We created 40 distinct test cases using our mutator

with the ChaCha20 implementation. CASM-VERIFY was able

to detect that all these test cases were not equivalent to the

reference implementation. Most of them were detected during

concrete execution with random inputs for identifying likely

equivalent nodes.

Hard to find program mutations. For the second set of bug

injection experiments, we transformed the original assembly

implementations such that the implementations are correct for

most of the inputs, but incorrect for some inputs. In this

case, the concrete execution will identify output variables to

be likely equivalent, but CASM-VERIFY should detect that

they are indeed not equivalent. Figure 10(e), Figure 10(f), and

Figure 10(g) illustrate such mutations.

Figure 10(e) utilizes assembly instructions that use flag

registers. For example, we can replace a mov instruction

with a cmov instruction, particularly cmovnz instruction. The

cmovnz instruction copies the value in the source operand

to the destination operand if the zero flag is not set. This

transformation creates an implementation that is only incorrect

on inputs where %r15d+%r12d = 0.

Figure 10(f) illustrates an example that uses add with carry

(adc) instruction to create a mutant. Here, we have two

consecutive add instructions. The value stored in the memory

at address %rbp is a constant value 0x06ca6351. Therefore,

the chance of the first instruction to set the carry flag is roughly

2.7% (If %r12d > 0xf9359caf). Hence, the implementation

will be incorrect for 2.7% of all possible inputs when we

replace the second add instruction with adc.

We created a total of 42 distinct implementations with such

mutations. Most of them were not caught during concrete

execution but CASM-VERIFY still reported that they are

not equivalent in all these cases because it performs sound

symbolic verification.

Figure 10(g) reports an interesting mutation where %r10
is shifted right by 7 bits and subtracted from %rbx. The

first sub instruction will not set the carry flag provided

%rbx is greater than 257. This gives us 0.79% chance for

the first sub instruction to set the carry flag. We modified

the second sub instruction to a subtract with borrow (sbb)

instruction, which subtracts with the carry flag. However,

CASM-VERIFY reported that this new implementation is a

correct implementation. Upon further inspection, we found out

that the new implementation was indeed correct. There was a

mov instruction a few instructions above this region of code:

movq %r10,%rbx

It implies %rbx ≥ %r10 is true for all inputs. Hence, the

first sub instruction will never set the carry flag. Replacing

the second sub instruction with a sbb instruction does not

change the semantics of the program in this case.

Semantically equivalent program mutations. For the last

set of experiments, we tested the capability of our tool to verify

that the implementations are indeed correct with semantically

equivalent program mutations. Figure 10(h) illustrates one

such method where a mov instruction is replaced with a

sequence of cmovnz and cmovz instructions. Regardless

of the zero flag, the mutated program copies the value of

%eax to %r15d and is semantically equivalent to the original

program. Our tool was able to verify the equivalence of all

such semantically equivalent implementations.

VI. RELATED WORK

There is a large body of work on verifying algorithms for

cryptography and equivalence checking for general purpose

programs. We describe closely related work in this section.

Verification of existing cryptographic algorithms. There

is a large body of work that individually verifies the cor-

rectness of widely used implementations. SHA-256 [6],

HMAC/SHA-256 [7] implementation from OpenSSL, and

HMAC-DRBG [34] from mbedTLS have been verified using

Verifiable C [35] and the Coq proof assistant [36]. Chen et

al. [37] verified the core part of Curve25519 [38] written in

qhasm [39] using Boolector [40] and the Coq proof assistant.

Proving the correctness of individual implementations can

provide a strong end-to-end guarantee. In contrast to interac-

tive verification, we present a first step toward automatically

checking the equivalence of cryptographic implementations

with minimal user input.

SAW [41], [13] verifies cryptographic algorithms imple-

mented in Java and LLVM bitcode against the reference

implementation written in Cryptol [42]. SAW uses rewrite

rules, memoization, and hash-consed DAG structures to iden-

tify semantically identical terms to accelerate the verifica-

tion process. In contrast to SAW, CASM-VERIFY checks

the equivalence of cryptographic algorithms implemented in

45

assembly and uses SMT Solvers to identify equivalent nodes

automatically.

Axe [14] is another tool that verifies cryptographic algo-

rithms implemented in Java against the reference implemen-

tation written in Java or given as a mathematical specifi-

cation. Similar to CASM-VERIFY, Axe converts both im-

plementations to DAGs, uses concrete execution to identify

likely equivalent intermediate variables, formally verifies the

equivalence of these variables using STP solver [43], and

merges equivalent nodes. Axe also reduces the complexity

of the verification condition by heuristically unconstraining

intermediate variables, similar to CASM-VERIFY’s quick

check optimization. Unlike a high level language such as

Java, assembly languages have a finite number of registers

and the majority of the data (i.e. look up table, keys, and

messages) must be stored in memory. As a consequence,

reasoning about assembly implementations requires reasoning

about a long chain of memory accesses. In contrast to Axe,

CASM-VERIFY uses memory read optimization to reduce the

complexity of reasoning about memory accesses.

Correct by construction implementations of crypto-

graphic algorithms. Another method of guaranteeing cor-

rect implementations of cryptographic algorithms is to use

programming languages designed for efficient verification to

verify the implementation during development. Project Everest

uses F⋆ [3] to implement the record layer of TLS 1.2 [44]

and TLS1.3 [9] protocols, the underlying cryptographic al-

gorithms [10], and elliptic curve algorithms [45]. Vale [11]

language formalizes assembly instructions in Dafny [4] to

implement cryptographic algorithms. Implementations can be

automatically proven using the specification written in Dafny.

Jasmin [5] is a programming language inspired by qhasm for

generating memory safe and constant-time implementations

of cryptographic algorithms. Jasmin compiler is formally

verified to preserve the safety properties. Developing verified

implementations using languages designed for verification

is desirable for implementing new algorithms. In contrast,

CASM-VERIFY is aimed towards verifying existing widely

used assembly implementations and incremental modifications

to them.

Verification of assembly code. Bedrock [46], x86proved

[47], and BoogieX86 [48] provide tools to reason about the

correctness of assembly language with complex control flows

and data structures at the cost of manual programmer effort.

We plan to explore the combination of these ideas with

CASM-VERIFY. DDEC [16] verifies the equivalence between

an x86 program and the optimized x86 program by identifying

likely correlating program points and invariants, also known as

simulation relation, using execution traces from real program

executions. Simulation relation is used to identify correlating

program fragments and generate verification conditions that

can compositionally prove the equivalence of source and target

programs. CASM-VERIFY can leverage these ideas to prove

algorithms with loops. When compared to them, CASM-

VERIFY performs significant simplification with quick check

and memory read optimizations and automatically checks the

equivalence of two implementations.

Tools from compiler verification. Translation validation

in the context of compiler verification also utilize simulation

relations or symbolic verification to check the equivalence

of the source program and the compiled program [19], [24],

[15], [20], [49], [50], [26], [27], [28]. Recently, Dahiya et

al. [20], [51] compare the graph representation of program

paths and use synthesis techniques to identify simulation

relations. CASM-VERIFY can use precondition inference

techniques [52] to identify appropriate preconditions in our

context.

Buchwald et al. [53] synthesized a set of rules for instruc-

tion selection using counterexample-guided inductive synthe-

sis techniques. They reason about one machine instruction at

a given instant of time and can efficiently model memory

by representing only the memory region that the instruction

accesses. However, CASM-VERIFY needs to reason about

multiple machine instructions, so it models memory accesses

using nested if-then-else expressions of bitvector values.

Query decomposition. Gupta et al. [23] extend the work

of Dahiya et al. [20], [51] and simplify verification conditions

by identifying all equivalent sub-expressions of the verification

condition using an SMT solver while using counter examples

to prune the search space. This technique is similar in spirit

to CASM-VERIFY. However, their approach is not sufficient

to verify implementations of cryptographic algorithms as

shown by the need for our quick check and memory read

optimizations. Feng et al. [54] verifies the equivalence of

embedded software by identifying cut-points (i.e., points with

equivalent memory state) to simplify the verification condition.

Rather than the entire memory state, CASM-VERIFY tracks

equivalence of values at a memory location.

CASM-VERIFY is inspired by SAT Sweeping [17], and

its variants [55], [56], [57], [17], which are used to check

the equivalence of circuit boards represented in And-Inverter

Graphs. Beyond these ideas, CASM-VERIFY also reasons

about memory and provides memory read optimization to

further simplify verification conditions.

Beyond equivalence checking. A number of tools have

been developed to detect side-channel vulnerabilities that

can leak secret information through memory or through

caches [58], [59], [60], [61]. Notably, ct-verif [60] verifies

that cryptographic algorithms in optimized LLVM bitcode are

constant time and Barthe et al. [61] verifies that the assembly

program compiled from CompCert [62] is constant time. We

plan to extend our tool to check such properties in the future.

VII. CONCLUSION

This paper presents a set of techniques to automatically

check the equivalence of two implementations of crypto-

graphic algorithms. We address the challenge of verifying

the validity of a large formula that encodes the equivalence

of an implementation to its reference implementation, where

each implementation can contain thousands of instructions,

46

by decomposing it into smaller formulae. We propose the

use of concrete inputs to identify likely equivalent variables

and subsequent symbolic reasoning for these likely equivalent

variables. Our optimizations for quick equivalence checks

and memory reads enable the use of CASM-VERIFY to

verify SHA-256, ChaCha20, and AES-128 from OpenSSL. We

plan to check the equivalence of implementations of various

algorithm in qhasm and incorporate reasoning about constant-

time implementations as future work.

APPENDIX

A. Abstract

CASM-VERIFY is open source and publicly available [18].

We also provide an archival link of the artifact. The artifact

contains the source code of CASM-VERIFY, all benchmarks

used for the experimental evaluation, and scripts to automat-

ically run experiments and reproduce our results. To ease

installation effort, we include a Dockerfile in the artifact that

automatically builds a Docker image containing the required

software and CASM-VERIFY.

B. Artifact Check-list (Meta-information)

• Algorithm: SAT Sweeping, Equivalence Checking, Symbolic
Evaluation, Ackermannization.

• Program: Python3 and Z3
• Data Set: All benchmarks are included in the artifact.
• Run-time Environment: Experiments were performed on ma-

cOS High Sierra. We have verified that CASM-VERIFY works
on Ubuntu as well.

• Hardware: Experiments were performed on a machine with
2.6GHz Intel Core i5 and 8GB memory. Similar hardware
should produce comparable results.

• Metrics: The included scripts report on the expected results
as well as the estimated amount of time required for each
experiment.

• Output: CASM-VERIFY outputs whether the implementation
and the reference implementation are equivalent or not. Results
are output to the console.

• Experiments: Build the Docker image, run the Docker image,
run the test scripts, and observe the results.

• How Much Time Is Needed to Prepare Workflow (Approx-
imately)?: The Docker image builds in less than 5 minutes.

• How Much Time Is Needed to Complete Experiments
(Approximately)?: All experiments described in Section V
together take approximately 45 hours.

• Publicly Available?: Yes.

C. Description

1) How Delivered: The artifact can be downloaded from the
archive at https://doi.org/10.5281/zenodo.2229779.

2) Hardware Dependencies: Our experiments were performed
on a machine with 2.6GHz Intel Core i5 with 8GB memory. Any
similar hardware should produce comparable results.

3) Software Dependencies: CASM-VERIFY is written in
Python3 and uses Z3. Both Python3 and Z3 are automatically
installed in the Docker image via Dockerfile.

D. Installation

1) Installation Using Docker: Install Docker by going to
https://docs.docker.com/install/. Select the corresponding OS system
on the left side bar under Docker CE, and follow the instructions. For
macOS users, increase the memory usage limit to 8GB by choosing
the advanced tab in preferences and adjusting the memory usage limit.

Next, download the artifact from the archive and extract it using
the following commands:

$ tar −zxvf CASM Verify.tar.gz
$ cd CASM Verify

Finally, the Docker image can be built and run using the following
commands:

$ docker build −t casmverify .
$ docker run −it casmverify

2) Installation Without Using Docker: To evaluate the artifact
without using Docker, install Python3 and Z3. In Ubuntu, this can
be done using the following commands:

$ sudo apt−get install python3 python3−pip
$ python3 −m pip install z3−solver

In macOS, use homebrew to install the required software:

$ brew install python
$ python3 −m pip install z3−solver

Then, download the archive and extract it using the following
commands:

$ tar −zxvf CASM Verify.tar.gz
$ cd CASM Verify

E. Experiment Workflow

The artifact provides separate scripts for each experiment per-
formed in Section V.

a) Test1 benchmark.sh: This script runs experiments that
check the equivalence of various assembly implementations of cryp-
tographic algorithms found in OpenSSL using CASM-VERIFY. The
result of this experiment produces Figure 9 and the right most bar of
each cluster in Figure 8. It takes approximately 10.5 hours.

b) Test2 nodeMergeOnly.sh: This script runs experiments
to perform equivalence checking using CASM-VERIFY with the
quick check and memory read optimizations disabled. The result of
this experiment produces the second bar from the left of each cluster
in Figure 8. It takes approximately 4.5 hours.

c) Test3 quickCheck.sh: This script runs experiments to per-
form equivalence checking without using CASM-VERIFY’s memory
read optimization. The result of this experiment produces the third
bar from the left of each cluster in Figure 8. This script takes
approximately 6.5 hours.

d) Test4 developMistakeBug: This script tests the ability of
CASM-VERIFY to effectively detect bugs during development. The
implementations are mutated with bugs that developers can make
while implementing an algorithm in an assembly language. This script
runs for approximately 25 minutes.

e) Test5 hardToFindBug.sh: This script tests the ability
of CASM-VERIFY to effectively detect hard to find bugs. The
implementations are mutated with various bugs that appear to be
correct for most inputs, but incorrect for some inputs. This script
runs for approximately 18.25 hours.

f) Test6 additionalEquivalenceTest.sh: This script tests the
ability of CASM-VERIFY to correctly verify the mutated implemen-
tations when the mutations preserve the semantics. This script runs
for approximately 4.5 hours.

g) Test7 naiveQuery.sh: Instead of using CASM-VERIFY,
this experiment verifies the equivalence of two implementations using
a single query. This experiment corresponds to the leftmost bar of
each cluster in Figure 8. Note that all ten benchmarks will not
complete within the time limit (12 hours).

47

https://doi.org/10.5281/zenodo.2229779
https://docs.docker.com/install/

F. Evaluation and Expected Result

The scripts print the expected outputs and the estimated amount
of time required to complete each experiment. The results can also
be compared to the data presented in Section V. Depending on the
platform and the hardware, the time taken by each experiment may
vary by a small amount.

G. Experiment Customization

The source code and the benchmarks are provided in the artifact.
The software dependencies for CASM-VERIFY—Python3 and Z3–
are available on all major operating systems: Windows, Linux, and
macOS. Hence, these experiments can be run on any of these
platforms.

CASM-VERIFY can be run with different assembly implemen-
tations. However, the user needs to provide the precondition, the
postcondition, and the reference implementation. We provide an
additional micro benchmark not used in our evaluation to showcase
this feature in test/sha2rnd directory. In order to run this benchmark,
use the following command:

$ python3 main.py −−pre test/sha2rnd/pre \
−−post test/sha2rnd/post \
−−p1 test/sha2rnd/dsl −−p1lang dsl \
−−p2 test/sha2rnd/asm −−p2lang asm

Every script we provide uses similar commands to run CASM-
VERIFY. All the benchmarks used in the experiments are located in
test directory. Note that CASM-VERIFY currently supports x86 64
assembly language with AT&T syntax. We plan to extend our support
for other architectures in the future. For more information on how
to use CASM-VERIFY, please refer to the link: https://github.com/
rutgers-apl/CASM-Verify

ACKNOWLEDGMENTS

We thank David Cash, Adarsh Yoga, Reza Soltaniyeh, Nader
Moradi, and the CGO reviewers for their feedback on this paper.
This paper is based on work supported in part by NSF CAREER
Award CCF–1453086.

REFERENCES

[1] Google. (2016) Oss-fuzz. [Online]. Available: https://github.com/google/
oss-fuzz

[2] National Vulnerability Database. (2017) CVE-2017-3732. [Online].
Available: https://nvd.nist.gov/vuln/detail/CVE-2017-3732

[3] N. Swamy, C. Hriţcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. For-
est, K. Bhargavan, C. Fournet, P.-Y. Strub, M. Kohlweiss, J.-K. Zinzin-
dohoue, and S. Zanella-Béguelin, “Dependent types and multi-monadic
effects in f*,” in Proceedings of the 43rd Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, ser.
POPL ’16. New York, NY, USA: ACM, 2016, pp. 256–270.

[4] K. R. M. Leino, “Dafny: An automatic program verifier for functional
correctness,” in Proceedings of the 16th International Conference on

Logic for Programming, Artificial Intelligence, and Reasoning, ser.
LPAR ’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 348–370.

[5] J. B. Almeida, M. Barbosa, G. Barthe, A. Blot, B. Grégoire, V. Laporte,
T. Oliveira, H. Pacheco, B. Schmidt, and P.-Y. Strub, “Jasmin: High-
assurance and high-speed cryptography,” in Proceedings of the 2017

ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’17. New York, NY, USA: ACM, 2017, pp. 1807–1823.

[6] A. W. Appel, “Verification of a cryptographic primitive: Sha-256,” ACM

Transactions on Programming Languages and Systems, vol. 37, no. 2,
pp. 7:1–7:31, Apr. 2015.

[7] L. Beringer, A. Petcher, K. Q. Ye, and A. W. Appel, “Verified correctness
and security of openssl hmac,” in Proceedings of the 24th USENIX

Conference on Security Symposium, ser. SEC’15. Berkeley, CA, USA:
USENIX Association, 2015, pp. 207–221.

[8] K. Bhargavan, C. Fournet, R. Corin, and E. Zalinescu, “Cryptographi-
cally verified implementations for tls,” in Proceedings of the 15th ACM

Conference on Computer and Communications Security, ser. CCS ’08.
New York, NY, USA: ACM, 2008, pp. 459–468.

[9] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, J. Protzenko, A. Rastogi,
N. Swamy, S. Zanella-Beguelin, K. Bhargavan, J. Pan, and J. K.
Zinzindohoué, “Implementing and proving the tls 1.3 record layer,” in
2017 IEEE Symposium on Security and Privacy (SP), ser. SP ’17, May
2017, pp. 463–482.

[10] J.-K. Zinzindohoué, K. Bhargavan, J. Protzenko, and B. Beurdouche,
“Hacl*: A verified modern cryptographic library,” in Proceedings of

the 2017 ACM SIGSAC Conference on Computer and Communications

Security, ser. CCS ’17. New York, NY, USA: ACM, 2017, pp. 1789–
1806.

[11] B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R. Lorch,
A. Rane, S. Setty, and L. Thompson, “Vale: Verifying high-performance
cryptographic assembly code,” in Proceedings of the 26th USENIX

Conference on Security Symposium, ser. USENIX ’17. Berkeley, CA,
USA: USENIX Association, 2017.

[12] A. Erbsen, J. Philipoom, J. Gross, R. Sloan, and A. Chlipala, “Simple
high-level code for cryptographic arithmetic - with proofs, without
compromises,” in IEEE Symposium on Security & Privacy 2019, ser.
S&P’19, 2019.

[13] R. Dockins, A. Foltzer, J. Hendrix, B. Huffman, D. McNamee, and
A. Tomb, “Constructing semantic models of programs with the soft-
ware analysis workbench,” in Verified Software. Theories, Tools, and

Experiments, ser. VSTTE ’16, S. Blazy and M. Chechik, Eds. Cham:
Springer International Publishing, 2016, pp. 56–72.

[14] E. W. Smith, “Axe: An automated formal equivalence checking tool for
programs,” Ph.D. dissertation, The Department of Computer Science,
Stanford University, June 2011.

[15] G. C. Necula, “Translation validation for an optimizing compiler,” in
Proceedings of the ACM SIGPLAN 2000 Conference on Programming

Language Design and Implementation, ser. PLDI ’00. New York, NY,
USA: ACM, 2000, pp. 83–94.

[16] R. Sharma, E. Schkufza, B. Churchill, and A. Aiken, “Data-driven
equivalence checking,” in Proceedings of the 2013 ACM SIGPLAN

International Conference on Object Oriented Programming Systems

Languages & Applications, ser. OOPSLA ’13. New York, NY, USA:
ACM, 2013, pp. 391–406.

[17] A. Kuehlmann, “Dynamic transition relation simplification for bounded
property checking,” in Proceedings of the 2004 IEEE/ACM International

Conference on Computer-aided Design, ser. ICCAD ’04. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 50–57.

[18] J. Lim and S. Nagarakatte. (2018) Casm-verify. [Online]. Available:
https://github.com/rutgers-apl/CASM-Verify

[19] H. Samet, “Proving the correctness of heuristically optimized code,”
Communications of the ACM, vol. 21, no. 7, pp. 570–582, Jul. 1978.

[20] M. Dahiya and S. Bansal, “Black-box equivalence checking across
compiler optimizations,” in Programming Languages and Systems, B.-
Y. E. Chang, Ed. Cham: Springer International Publishing, 2017, pp.
127–147.

[21] R. Sharma, S. Gupta, B. Hariharan, A. Aiken, P. Liang, and A. V. Nori,
“A data driven approach for algebraic loop invariants,” in Programming

Languages and Systems, ser. ESOP ’13, M. Felleisen and P. Gardner,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 574–
592.

[22] T. Nguyen, T. Antonopoulos, A. Ruef, and M. Hicks, “Counterexample-
guided approach to finding numerical invariants,” in Proceedings of the

2017 11th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE 2017. New York, NY, USA: ACM, 2017, pp. 605–615.

[23] S. Gupta, A. Saxena, A. Mahajan, and S. Bansal, “Effective use of smt
solvers for program equivalence checking through invariant-sketching
and query-decomposition,” in Theory and Applications of Satisfiability

Testing, ser. SAT ’18, O. Beyersdorff and C. M. Wintersteiger, Eds.
Cham: Springer International Publishing, 2018, pp. 365–382.

[24] J. P. Lim, V. Ganapathy, and S. Nagarakatte, “Compiler optimizations
with retrofitting transformations: Is there a semantic mismatch?” in
Proceedings of the 2017 Workshop on Programming Languages and

Analysis for Security, ser. PLAS ’17. New York, NY, USA: ACM,
2017, pp. 37–42.

[25] A. Zaks and A. Pnueli, “Covac: Compiler validation by program
analysis of the cross-product,” in Proceedings of the 15th International

Symposium on Formal Methods, ser. FM ’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 35–51.

48

https://github.com/rutgers-apl/CASM-Verify
https://github.com/rutgers-apl/CASM-Verify
https://github.com/google/oss-fuzz
https://github.com/google/oss-fuzz
https://nvd.nist.gov/vuln/detail/CVE-2017-3732
https://github.com/rutgers-apl/CASM-Verify

[26] S. Kundu, Z. Tatlock, and S. Lerner, “Proving optimizations correct
using parameterized program equivalence,” in Proceedings of the 30th

ACM SIGPLAN Conference on Programming Language Design and

Implementation, ser. PLDI ’09. New York, NY, USA: ACM, 2009,
pp. 327–337.

[27] N. P. Lopes, D. Menendez, S. Nagarakatte, and J. Regehr, “Provably
correct peephole optimizations with alive,” in Proceedings of the 36th

ACM SIGPLAN Conference on Programming Language Design and

Implementation, ser. PLDI ’15. New York, NY, USA: ACM, 2015,
pp. 22–32.

[28] D. Menendez, S. Nagarakatte, and A. Gupta, “Alive-fp: Automated
verification of floating point based peephole optimizations in llvm,” in
Proceedings of the 23rd International Symposium on Static Analysis,
ser. SAS ’16. Germany: Springer Verlag, 1 2016, pp. 317–337.

[29] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The Daikon system for dynamic detection of
likely invariants,” Science of Computer Programming, vol. 69, no. 1-3,
pp. 35–45, Dec. 2007.

[30] W. Ackermann, Solvable Cases of the Decision Problem. North-Holland
Publishing Company, 1954.

[31] U.S. Department of Commerce/National Institute of Standards and
Technology. (2015) Fips pub 180-4, secure hash standard (shs). [Online].
Available: https://csrc.nist.gov/publications/detail/fips/180/4/final

[32] D. J. Bernstein. (2008) Chacha, a variant of salsa20. [Online].
Available: https://cr.yp.to/papers.html#chacha

[33] U.S. Department of Commerce/National Institute of Standards and
Technology. (2001) Fips pub 197, advanced encryption standard (aes).
[Online]. Available: https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.
pdf

[34] K. Q. Ye, M. Green, N. Sanguansin, L. Beringer, A. Petcher, and A. W.
Appel, “Verified correctness and security of mbedtls hmac-drbg,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security, ser. CCS ’17. New York, NY, USA: ACM,
2017, pp. 2007–2020.

[35] A. W. Appel, “Verified software toolchain,” in Proceedings of the 20th

European Conference on Programming Languages and Systems: Part of

the Joint European Conferences on Theory and Practice of Software,
ser. ESOP’11/ETAPS’11. Berlin, Heidelberg: Springer-Verlag, 2011,
pp. 1–17.

[36] The Coq development team, The Coq proof assistant reference manual,
2015, version 8.5. [Online]. Available: https://coq.inria.fr/distrib/current/
refman/

[37] Y.-F. Chen, C.-H. Hsu, H.-H. Lin, P. Schwabe, M.-H. Tsai, B.-Y.
Wang, B.-Y. Yang, and S.-Y. Yang, “Verifying curve25519 software,”
in Proceedings of the 2014 ACM SIGSAC Conference on Computer and

Communications Security, ser. CCS ’14. New York, NY, USA: ACM,
2014, pp. 299–309.

[38] D. J. Bernstein, “Curve25519: New diffie-hellman speed records,” in
Proceedings of the 9th International Conference on Theory and Practice

of Public-Key Cryptography, ser. PKC’06. Berlin, Heidelberg: Springer-
Verlag, 2006, pp. 207–228.

[39] ——. (2007) qhasm: tools to help write high-speed software. [Online].
Available: https://cr.yp.to/qhasm.html

[40] R. Brummayer and A. Biere, “Boolector: An efficient smt solver for bit-
vectors and arrays,” in Proceedings of the 15th International Conference

on Tools and Algorithms for the Construction and Analysis of Systems:

Held As Part of the Joint European Conferences on Theory and Practice

of Software, ETAPS 2009,, ser. TACAS ’09. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 174–177.

[41] K. Carter, A. Foltzer, J. Hendrix, B. Huffman, and A. Tomb, “Saw: The
software analysis workbench,” in Proceedings of the 2013 ACM SIGAda

Annual Conference on High Integrity Language Technology, ser. HILT
’13. New York, NY, USA: ACM, 2013, pp. 15–18.

[42] Galois, Inc. (2014) Cryptol. [Online]. Available: https://cryptol.net/
[43] V. Ganesh and D. L. Dill, “A decision procedure for bit-vectors and ar-

rays,” in Proceedings of the 19th International Conference on Computer

Aided Verification, ser. CAV’07. Berlin, Heidelberg: Springer-Verlag,
2007, pp. 519–531.

[44] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P.-Y. Strub,
“Implementing tls with verified cryptographic security,” in Proceedings

of the 2013 IEEE Symposium on Security and Privacy, ser. SP ’13.
Washington, DC, USA: IEEE Computer Society, 2013, pp. 445–459.

[45] J. K. Zinzindohoué, E.-I. Bartzia, and K. Bhargavan, “A verified exten-
sible library of elliptic curves,” in 2016 IEEE 29th Computer Security

Foundations Symposium, ser. CSF ’16, June 2016, pp. 296–309.

[46] A. Chlipala, “The bedrock structured programming system: Combining
generative metaprogramming and hoare logic in an extensible program
verifier,” in Proceedings of the 18th ACM SIGPLAN International

Conference on Functional Programming, ser. ICFP ’13. New York,
NY, USA: ACM, 2013, pp. 391–402.

[47] J. B. Jensen, N. Benton, and A. Kennedy, “High-level separation logic
for low-level code,” in Proceedings of the 40th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, ser.
POPL ’13. New York, NY, USA: ACM, 2013, pp. 301–314.

[48] J. Yang and C. Hawblitzel, “Safe to the last instruction: Automated
verification of a type-safe operating system,” in Proceedings of the 31st

ACM SIGPLAN Conference on Programming Language Design and

Implementation, ser. PLDI ’10. New York, NY, USA: ACM, 2010,
pp. 99–110.

[49] J. Zhao, S. Nagarakatte, M. M. Martin, and S. Zdancewic, “Formalizing
the llvm intermediate representation for verified program transforma-
tions,” in Proceedings of the 39th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, ser. POPL ’12.
New York, NY, USA: ACM, 2012, pp. 427–440.

[50] ——, “Formal verification of ssa-based optimizations for llvm,” in
Proceedings of the 34th ACM SIGPLAN Conference on Programming

Language Design and Implementation, ser. PLDI ’13. New York, NY,
USA: ACM, 2013, pp. 175–186.

[51] M. Dahiya and S. Bansal, “Modeling undefined behaviour semantics for
checking equivalence across compiler optimizations,” in Hardware and

Software: Verification and Testing, O. Strichman and R. Tzoref-Brill,
Eds. Cham: Springer International Publishing, 2017, pp. 19–34.

[52] D. Menendez and S. Nagarakatte, “Alive-infer: Data-driven precondition
inference for peephole optimizations in llvm,” in Proceedings of the

38th ACM SIGPLAN Conference on Programming Language Design

and Implementation, ser. PLDI 2017. New York, NY, USA: ACM,
2017, pp. 49–63.

[53] S. Buchwald, A. Fried, and S. Hack, “Synthesizing an instruction
selection rule library from semantic specifications,” in Proceedings of the

2018 International Symposium on Code Generation and Optimization,
ser. CGO 2018. New York, NY, USA: ACM, 2018, pp. 300–313.

[54] X. Feng and A. J. Hu, “Cutpoints for formal equivalence verification
of embedded software,” in Proceedings of the 5th ACM International

Conference on Embedded Software, ser. EMSOFT ’05. New York, NY,
USA: ACM, 2005, pp. 307–316.

[55] D. Brand, “Verification of large synthesized designs,” in Proceedings

of the 1993 IEEE/ACM International Conference on Computer-aided

Design, ser. ICCAD ’93. Los Alamitos, CA, USA: IEEE Computer
Society Press, 1993, pp. 534–537.

[56] Q. Zhu, N. Kitchen, A. Kuehlmann, and A. Sangiovanni-Vincentelli,
“Sat sweeping with local observability don’t-cares,” in Proceedings of

the 43rd Annual Design Automation Conference, ser. DAC ’06. New
York, NY, USA: ACM, 2006, pp. 229–234.

[57] A. Kuehlmann and F. Krohm, “Equivalence checking using cuts and
heaps,” in Proceedings of the 34th Annual Design Automation Confer-

ence, ser. DAC ’97. New York, NY, USA: ACM, 1997, pp. 263–268.
[58] B. Rodrigues, F. M. Quintão Pereira, and D. F. Aranha, “Sparse

representation of implicit flows with applications to side-channel detec-
tion,” in Proceedings of the 25th International Conference on Compiler

Construction, ser. CC 2016. New York, NY, USA: ACM, 2016, pp.
110–120.

[59] A. Langley. (2010) ctgrind - checking that functions are constant time
with valgrind. [Online]. Available: https://github.com/agl/ctgrind

[60] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi,
“Verifying constant-time implementations,” in Proceedings of the 25th

USENIX Conference on Security Symposium, ser. SEC’16. Berkeley,
CA, USA: USENIX Association, 2016, pp. 53–70.

[61] G. Barthe, G. Betarte, J. Campo, C. Luna, and D. Pichardie, “System-
level non-interference for constant-time cryptography,” in Proceedings of

the 2014 ACM SIGSAC Conference on Computer and Communications

Security, ser. CCS ’14. New York, NY, USA: ACM, 2014, pp. 1267–
1279.

[62] X. Leroy, “Formal certification of a compiler back-end or: Programming
a compiler with a proof assistant,” in Conference Record of the 33rd

ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, ser. POPL ’06. New York, NY, USA: ACM, 2006, pp.
42–54.

49

https://csrc.nist.gov/publications/detail/fips/180/4/final
https://cr.yp.to/papers.html#chacha
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf
https://coq.inria.fr/distrib/current/refman/
https://coq.inria.fr/distrib/current/refman/
https://cr.yp.to/qhasm.html
https://cryptol.net/
https://github.com/agl/ctgrind

	Introduction
	High Level Sketch of our Approach
	Query Decomposition for Equivalence
	Identifying Likely Equivalent Nodes
	DAG Simplification for Equivalence Checking
	Verifying the Equivalence of Two Nodes
	Quick Check Equivalence

	Simplification with Memory Accesses
	Experimental Evaluation
	Prototype
	Applications and Methodology
	Effectiveness in Checking Equivalence
	Evaluation with Program Mutations

	Related Work
	Conclusion
	Appendix
	Abstract
	Artifact Check-list (Meta-information)
	Description
	How Delivered
	Hardware Dependencies
	Software Dependencies

	Installation
	Installation Using Docker
	Installation Without Using Docker

	Experiment Workflow
	Evaluation and Expected Result
	Experiment Customization

	References

