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Abstract
Posit is a recently proposed alternative to the !oating point
representation (FP). It provides tapered accuracy. Given a
"xed number of bits, the posit representation can provide
better precision for some numbers compared to FP, which has
generated signi"cant interest in numerous domains. Being a
representation with tapered accuracy, it can introduce high
rounding errors for numbers outside the above golden zone.
Programmers currently lack tools to detect and debug errors
while programming with posits.

This paper presents PositDebug, a compile-time instru-
mentation that performs shadow execution with high pre-
cision values to detect various errors in computation using
posits. To assist the programmer in debugging the reported
error, PositDebug also provides directed acyclic graphs of
instructions, which are likely responsible for the error. A
contribution of this paper is the design of the metadata per
memory location for shadow execution that enables produc-
tive debugging of errors with long-running programs. We
have used PositDebug to detect and debug errors in various
numerical applications written using posits. To demonstrate
that these ideas are applicable even for FP programs, we have
built a shadow execution framework for FP programs that is
an order of magnitude faster than Herbgrind.

CCS Concepts: • Software and its engineering → Soft-
ware maintenance tools.
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1 Introduction
Representing real numbers is important in a variety of do-
mains. The !oating point (FP) representation is a widely used
approximation of reals using a "nite number of bits [1, 20].
Being an approximation, not every real value can be exactly
represented in the FP representation. It has to be rounded
to the nearest value according to the rounding mode. The
IEEE standard represents a !oating point number in the form:
(−1)s ×M × 2E , where s determines the sign of the number,
signi"candM is a fractional binary number ranging either
between [1, 2) or [0, 1), and exponent E multiplies the value
with a power of 2. Further, there are numerous exceptional
values (i.e., NaNs and in"nities).

Bugs in programs using FP have resulted in numerous
mishaps with catastrophic consequences [52, 53, 56]. Hence,
there is a large body of work on reasoning about the cor-
rectness and the accuracy of !oating point programs [2–
4, 7, 8, 12, 15, 17, 19, 22, 23, 28, 36, 37, 42, 43, 55, 58–62, 66].
Further, good FP performance is paramount in many appli-
cation domains like machine learning and scienti"c comput-
ing. Given the need for varying performance and precision
trade-o#s, many accelerators for machine learning use non-
standardized custom representations as replacements for
FP [5, 11, 24, 29, 31, 33, 39, 40, 57, 63, 64]. There is active in-
terest to explore new representations for better performance,
!exible precision, and dynamic range.

Posit is a recently proposed stand-in replacement for FP by
John Gustafson [26, 27]. Posit is a hardware friendly version
of unums (universal numbers) [25]. A number in the posit
representation consists of a sign bit, regime bits, optional
exponent bits, and optional fraction bits. In a 〈n, es〉-posit
representation, there aren-bits in total and at most es-bits for
the exponent. Regime bits encode the super-exponent. When
a minimum number of regime bits are needed to represent
the number (i.e., 2), the remaining bits can be used to in-
crease precision, which provides tapered accuracy (Section 2
provides a detailed background).
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Promise of posits. The posit representation provides two
notable advantages compared to FP. (1) Given the same num-
ber of bits, posits can provide higher precision than FP for a
range of numbers. It provides variable precision with tapered
accuracy [45]. (2) An n-bit posit can represent more distinct
values than the FP representation with the same number of
bits. In contrast to FP, the posit representation has only one
zero, one value to represent exceptions, and a single round-
ing mode. Initial research has demonstrated the promise of
posits in high performance computing [27]. For example,
the sigmoid function, which is commonly used in neural
networks, can be approximated by bitwise operations: right
shift of the posit bit-string by two bits after a negation of the
sign bit [27]. There is excitement and interest in exploring
posit as an alternative to FP in many domains [27, 31]. Fur-
ther, there are ASIC and FPGA-based hardware proposals
for posit arithmetic [30].
Challenges of programming with posits. Although

posit provides better precision for a range of numbers with ta-
pered accuracy, large and small numbers lose precision [13].
When such numbers are involved in subtraction, catastrophic
cancellations are often common. Further, posit avoids over-
!ows (under!ows) by saturating all computations to the
largest (or the smallest) possible posit value, which can pro-
duce counter-intuitive results when porting code using FP
to use posits.
PositDebug. This paper proposes PositDebug, a com-

piler instrumentation that performs shadow execution to de-
tect numerical errors in applications using posits. To detect
numerical errors, it performs shadow execution with high-
precision values. Every variable and memory location that
stores a posit value is shadowed with a high-precision value
in shadow memory. Whenever a program performs a posit
arithmetic operation, a similar operation is performed in the
shadow execution with higher precision on the operands
from shadow memory. PositDebug detects numerical errors
that are ampli"ed due to posit’s tapered accuracy: exceptions,
cancellation, loss of precision, unexpected branch outcomes,
and wrong outputs.

To enable the programmer to debug the error, PositDebug
also provides a directed acyclic graph (DAG) of instructions
in the set of active functions (i.e., in the backtrace) that are
responsible for the error. To provide such DAGs on an er-
ror, PositDebug has to maintain additional metadata with
each memory location. A key contribution of this paper is
the design of the metadata for each memory location and
each temporary variable. PositDebug maintains a constant
amount of metadata per memory location, which enables
execution with long-running applications.
FPSanitizer. To show the generality of our approach,

we have built FPSanitizer, a shadow execution framework
for !oating point programs. It uses the same metadata or-
ganization and design as PositDebug but works with FP
programs. In contrast to Herbgrind [59] that crashes with

sign bit regime bits exponent bits if any fraction bits if any

s e1    e2    …    ees f1    f2    f3    …r   …    r    r

Figure 1. The posit bit-string for the 〈n, es〉 con"guration to
represent "nite non-zero values, where n is the number of
bits and es is the maximum number of exponent bits.

large applications, FPSanitizer is able to successfully run
them. Even with smaller applications that can execute with
Herbgrind, FPSanitizer is more than 10× faster.
We have used the prototypes of PositDebug and FP-

Sanitizer to detect and debug errors in both posit and FP
applications. We initially developed PositDebug to help
us in our e#ort to develop a math library for posits using
the CORDIC (Coordinate Rotation Digital Computer) algo-
rithm [65]. PositDebug’s feedback helped us debug and
eventually "x numerical errors in our math library imple-
mentation and also in many other programs. PositDebug’s
shadow execution that uses the Multiple Precision Floating-
Point Reliable (MPFR) library with 256 bits of precision ex-
periences a performance overhead of 12.3× compared to a
software-only posit program without shadow execution. FP-
Sanitizer’s shadow execution detects numerical errors and
provides DAGs to isolate the likely root cause of errors with
111× overhead compared to a program that uses hardware
FP operations without any shadow execution.

2 Background on Posits
Posit is a recently proposed alternative to the IEEE-754 FP
representation [26, 27]. There are two notable advantages
with the posit representation compared to FP. Given the
same number of bits, posit can represent numbers with a
wider dynamic range and also provide higher precision for a
certain range of values. An n-bit posit can represent more
distinct values than FP.

2.1 The Posit Representation

A posit bit-string consists of a sign bit, regime bits, exponent
bits, and fraction bits. The number of bits used for the regime,
the exponent, and the fraction can vary depending on the
number being represented. The regime is a super-exponent
that is used to increase the dynamic range of the represen-
tation. In contrast, the IEEE-754 FP format consists of three
parts: a sign bit, a "xed number of bits for the exponent and
the fraction.
Decoding a posit bit-string. The posit environment is

de"ned by a tuple of numbers, 〈n, es〉 where n is the total
number of bits and es is the maximum number of bits to
represent the exponent. Figure 1 depicts the format of a posit
bit-string. The "rst bit, s, of a posit number represents the
sign. If s = 0, then it is a positive number. If s = 1, then it is
a negative number, in which case we have to compute the
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two’s complement of the bit-string before decoding the rest
of the bits.
The next set of bits represents the regime. The length

of the regime, m, can be 2 ≤ m ≤ n − 1. The regime bits
consist of consecutive 1’s (or 0’s). It is terminated either by
an opposite bit 0 (or a 1) or when there are no more bits left
(when all n − 1 bits are used to represent the regime).

If there are any remaining bits after the regime bits, the
next x bits represent the exponent, where x =min{n − 1 −
m, es}. If x < es , the exponent bits are extended to length es
by appending (es − x ) 0’s at the end. The last remaining bits
after the exponent bits belong to the fraction.
Value of a posit bit-string. The sign of a posit number

is determined using the sign bit: (−1)s . Let r be the number
of consecutive 1 or 0 bits without the terminating opposite
bit inm. Let k be:

k =




−r if regime bits are 0’s

r − 1 if regime bits are 1’s
(1)

Also, let useed be:

useed = 22
es

(2)

Abstractly, useed is a super-exponent. The exponent e is
de"ned as the unsigned integer of the exponent bits. Note
that the maximum value of 2e is 22

es−1
=

useed
2 . The value of

the fractional part f is calculated similar to IEEE-754 normal
values:

f = 1 +

(

f raction

2<# of fraction bits>

)

(3)

Finally, the value that a posit bit-string represents is:

(−1)s × useedk × 2e × f (4)

Let us consider a 〈8, 1〉-posit con"guration, where there
are 8-bits in total and at most 1-bit used for the exponent. The
useed is 22

1
= 4. Consider the posit bit-string: 01101101. The

sign bit is 0 and hence, it is a positive number. The regime is
110. The exponent is 1. The fractional part is 1 + 5/8. Hence,
the value of the number is (−1)0 ∗ 41 ∗ 21 ∗ (1 + 5/8) = 13.

Special values. There are two bit-patterns that do not
follow the above rules. First, a bit-string of all 0’s represents
the number 0. Second, a bit-string that consists of a 1 followed
by all 0’s represents the Not-a-Real value (NaR).

Unique feature of posits. The posit representation pro-
vides tapered accuracy [45] using the Rice-Golomb encod-
ing [21, 41]. The number of bits for the regime, the exponent,
and the fraction can vary. Hence, posit can represent (1) a
wider range of numbers by using more bits for the regime,
which is a super-exponent and (2) provide higher precision
in the interval [ 1

useed ,useed] by using more bits for the frac-
tion. Large numbers or numbers extremely close to 0 can
be represented by increasing the number of regime bits at
the cost of losing precision. In contrast, numbers close to
1, which use a minimal number of regime bits (i.e., 2-bits),

int RootCount(){
  a = 1.83090..E16;
  b = 3.24664..E12;
  c = 1.439239..E8;
  t1 = b * b;
  t2 = 4.0 * a * c;
  t3 = t1 - t2;
  if (t3 > 0.0) 

   return 2;
  else if (t3 == 0.0) 

   return 1;
  else return 0;
}

Posit Value

1.830..E16
3.246..E12
1.4392..E8
1.057..E25
1.057..E25

0.0

# frac.
 bits
14
17
21
7
7

N/A

1.83090..E16
3.24664..E12
1.439239..E8
1.05406..E25
1.05404..E25
2.40507..E20

Exact Value

False

True

True

 False

BF

BF

1  2

Error 
Type

CC
LP

WR

LP

Figure 2. A program to compute the number of roots for the
equation ax2 + bx + c . For each instruction, we report the
result of the posit operation, the number of available fraction
bits for the resulting posit value, the exact value if computed
in an ideal environment, and the type of posit error: loss of
precision (LP), catastrophic cancellation (CC), branch !ips
(BF), and wrong results (WR).

provide higher precision by allocating a large number of bits
to represent the fraction.
A 〈32, 2〉-posit con"guration can represent all positive

and negative numbers in the interval [ 1
220 , 2

20] with same
or better precision than a 32-bit !oat, which is the golden
zone for this posit con"guration [13]. To avoid over!ows and
under!ows, all values saturate at maxpos and minpos, where
maxpos and minpos represent the largest and the smallest
value representable in the posit con"guration, respectively.

Fused operations with posits. The posit speci"cation
mandates the use of fused operations with higher precision
using the quire data type, which is a high-precision accumu-
lator [34, 35]. The posit standard de"nes several multiply-
accumulator instructions using the quire data type (e.g., fused
sum, fused dot-product). The size of the quire is determined
by the posit con"guration. It should be large enough to sup-
port the computation ofmaxpos2+minpos2 without any loss
of precision.

2.2 Numerical Errors with Posits

The posit representation su#ers from rounding error similar
to FP, when a value is not exactly representable. However,
some rounding errors can be ampli"ed due to the loss of
precision bits for numbers that lie outside the golden zone.
Further, tapered accuracy with posits necessitates novel nu-
merical analysis.
Catastrophic cancellation. Similar to FP, a posit con-

"guration can experience catastrophic cancellation when
two similar but inexact (rounded) values are subtracted from
each other. Such two operands have the same bit-patterns in
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the most signi"cant digits and are canceled out. The result
primarily depends on the inexact bits, amplifying the error
of the operands.
Loss of precision bits. Posit enables variable precision

with the use of regime bits, which increases the dynamic
range. However, it also reduces the available precision bits.
Posit values lose precision bits when the magnitude of the
value increases towards maxpos or decreases towards minpos.

Posit’s tapered accuracy by default ensures that values
closer to maxpos and minpos can only be represented with
a small number of precision bits. Additionally, the result of
all basic operations (+, −, ×, and ÷) can lose precision bits
depending on the magnitude of the result when compared to
the operands, which can create issues similar to catastrophic
cancellation. In FP, operations with denormalized values
show such behavior.
Illustration of cancellation.Consider the posit program

in Figure 2. Given three inputs a, b, and c , the function
RootCount computes the number of roots for the equation
ax2 + bx + c . Mathematically, the quadratic equation with
the coe$cients

a = 1.8309067625725952 × 1016

b = 3.24664295424 × 1012

c = 1.43923904 × 108

has two roots, since b2 − 4ac = 2.40507138275350151168 ×
1020 > 0. However, a 〈32, 2〉-posit evaluation of RootCount
produces t3 = 0.0 and returns 1. The same computation with
a 32-bit !oat evaluates t3 = 2.40960594462831017984 × 1020

and returns 2. There are two sources of error that contribute
to this behavior. The intermediate result of b2 and 4ac pro-
duces large values, 1.05406904723162347339776 × 1025 and
1.0540449965177959383826432× 1025, respectively. The posit
con"guration has only 8 bits of precision in that range. Both
values are rounded to 1.057810092162800527867904 × 1025.
Hence, subtraction experiences catastrophic cancellation,
ultimately resulting in 0.

An equivalent expression for b2−4ac reduces the dynamic
range of the intermediate result, which increases the number
of available fraction bits:

(

b − 2
√
a
√
c
) (

b + 2
√
a
√
c
)

Square root is an interesting operation with posits. For all
x ∈ R+,x ! 1, either 1 <

√
x < x or x <

√
x < 1. Hence,

√
x

is always closer to 1 than x is to 1:

%%%
√
x − 1%%% < |x − 1|

Hence,
√
x has at least the same number of precision bits as x .

Moreover, if the posit bit-string of x uses r bits for the regime,
then

√
x uses at most * r2 + regime bits. A 〈32, 2〉-posit evalua-

tion of the above equation results in 2.17902164370694078464×
1020, which provides the best result with posits.

Saturation with maxpos and minpos. Unlike FP, posit
values do not over!ow or under!ow. Any positive posit value
greater than maxpos is rounded to maxpos and any positive
value less than minpos (excluding 0) is rounded to minpos.
Posit operations silently hide over!ows (or under!ows). It
can produce results with large errors. Such computation will
result in∞ or 0 with FP, which can produce exceptions later
in the program.
Di!erent observable results. Similar to FP computa-

tion, numerical errors with posits can cause a program to
produce di#erent branch outcomes compared to the ideal ex-
ecution. Figure 2 illustrates this behavior. Similar to branch
conditions, the programs can also produce a wrong integer
on posit-to-integer casts or wrong system call arguments
due to rounding errors.

2.3 Metrics for Measuring Error

Unit in the last place (ULP) is a commonly used metric to
measure error with normal values in FP computation. ULP
is de"ned as the value of the last precision bit in a given
FP value: 2e−p+1 where e is the exponent of the value and
p is the precision of the given FP representation. The er-
ror in ULPs is also commonly interpreted as the number
of distinct FP values between the computed result and the
ideal result [46]. The relative error is typically expressed as
ULP error with FP’s normal values. The relative error corre-
sponding to 1 ULP error in FP’s normal values is bounded
by [2−p , 2−p+1] [20]. For example, in a 32-bit !oat, relative
error of 1 ULP is bounded by [2−24, 2−23] regardless of the
magnitude of the value. Hence, it is commonly used to de-
scribe the precision limitation of a particular representation.
For example, a 64-bit double normal value with a relative
error of 2−23 has ≈ 229 ULP error, indicating that the value is
away from an accurately rounded value.
ULP error with posits. Measuring error with ULPs is

not ideal for posits because of tapered accuracy (similar to
denormal values in FP). An ULP of a posit value is 2e−p+1,
which is similar to FP, except that p depends on the mag-
nitude of the posit value due to tapered precision. Hence,
the relative error corresponding to 1 ULP error in posits can
vary widely depending on the magnitude of the number.

Consider the 〈32, 2〉-posit con"guration where the small-
est positive representable value is 2−120 and the next smallest
representable value is 2−116. Suppose that a posit computa-
tion produced the value 2−116 where the ideal value is 2−120.
In this case, the result has 1 ULP error. However, the relative
error is |2

−120−2−116 |
2−120 = 15. Similarly, the relative error of 1 ULP

for posit values near 1 is bounded by 2−27. The relative error
represented in ULPs can widely vary for posits. Reporting 1
ULP error when a posit application has a relative error of 15
can be confusing to the users.

To address this issue, one approach is to measure the error
in the posit value using the ULP error of a FP representation
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that can represent all posit numbers as normal values. For
example, every value in a 〈32, 2〉-posit con"guration can be
represented exactly as a normal value in the double data type.
We can measure the ULP error of the double representation,
which can be used to compare errors in posit computations.

3 PositDebug

The objective of our approach is to enable programmers to
e#ectively detect numerical errors in posit applications and
provide support for debugging them. To detect numerical
errors with posit applications, our idea is to perform shadow
execution with high-precision computation (e.g., Multiple
Precision Floating-Point Reliable Library (MPFR) [16]). In
contrast to prior work [4, 59], PositDebug is a compile-
time transformation that maintains a constant amount of
metadata per memory location while performing shadow
execution, which enables users to debug large programs.

Our goals with PositDebug are to (1) detect instances of
numerical error such as cancellation, branch !ips, incorrect
results, and exceptions, (2) produce a directed acyclic graph
(DAG) of instructions from the set of active functions (i.e.,
backtrace) on a numerical error to provide concrete feedback
to the user, and (3) enable debugging with debuggers (i.e.,
gdb) with low-performance overheads.

3.1 High-Level Sketch

PositDebug is a compile-time transformation that instru-
ments posit operations for shadow execution with higher-
precision. Each memory location that stores a posit value is
shadowed with an MPFR value in shadowmemory and every
temporary with a posit value is shadowed with an MPFR
value on the stack. On every posit operation, the shadow
execution retrieves the corresponding high precision values
and computes the result in high-precision. When the error
in the result exceeds a threshold or the result is used with
branches/integer casts/system calls, PositDebug detects the
error and also reports a DAG of instructions, which is likely
responsible for the error, in the set of active stack frames at
that instant to the user.
When the program and its shadow execution di#er with

respect to branch outcomes (i.e., branch !ip), the shadow
execution follows the original program’s execution. After a
branch !ip, the shadow execution uses the program’s posit
values to re-initialize the metadata entries in shadow mem-
ory and on the stack, which enables PositDebug to provide
useful feedback for subsequent operations after a branch !ip.

PositDebug exports a few functions that the programmer
can use to diagnose the error with debuggers (i.e., gdb). It
allows the user to insert a conditional breakpoint depending
on the amount of the error and obtain a DAG of dependent
instructions. The nodes of the DAG are results of other bi-
nary/unary operations in the set of active functions at that

(a) Metadata in shadow memory

Real 
value

Pointer to 
temporary’s 
metadata

Lock KeyInstIdPosit
value

(b) Metadata for temporaries

Real 
value

Pointer to 
Operand1’s 
metadata

Lock Key
Pointer to 

Operand2’s 
metadata

InstIdPosit
Value

Time-
stamp

Figure 3. Metadata for (a) each posit value in shadow mem-
ory and (b) each posit temporary on the stack. Metadata in
shadow memory maintains a pointer to the metadata of the
temporary that previously wrote to the memory location. It
has the lock and key information to check the validity of the
metadata pointer for temporaries. Metadata in shadow mem-
ory also stores the real value, instruction identi"er, and the
posit value to detect errors when the pointer to temporary’s
metadata is not valid.

instant. The root of this DAG is the instruction experiencing
an error that exceeds the threshold.

The primary challenge lies in designing the metadata for
memory locations and temporaries for shadow execution.
Although we present the key ideas in the context of posits,
PositDebug can easily be re-purposed to debug and diagnose
numerical errors with FP programs. We have also built a
similar shadow execution framework for FP programs, which
we call FPSanitizer [9].

3.2 Metadata Organization

As PositDebug is a compiler instrumentation, posit val-
ues are either resident in memory or are temporaries (e.g.,
LLVM has temporaries with posit values or the values are
resident in memory that are accessed through loads/stores).
Every posit value in memory has metadata in shadow mem-
ory. Every temporary posit value has metadata on the stack.
PositDebug also uses a shadow stack to store metadata for
arguments and return values in a function call.
Minimal amount of metadata to detect errors. To de-

tect numerical errors, we need to track a high-precision value
with each posit in memory and for posit temporaries. Further
maintaining the posit value and the information about the
instruction that produced the posit value is useful to debug
the error. We maintain the posit value in the metadata for
two reasons. First, we can compute the error by comparing
it to the MPFR value. Second, we can check if the value in
memory was changed by a library function that was not
instrumented by PositDebug. In the latter case, PositDe-
bug uses the posit value from the program to initialize the
metadata entry for subsequent use. Hence, each temporary
and memory location with a posit value has to maintain at
least the MPFR value, instruction identi"er, and the posit
value.
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Constant amount ofmetadata permemory location.
Identifying a set of instructions responsible for a particular
error is useful for debugging. In contrast to prior work [59],
PositDebug tracks a constant amount of metadata for each
memory location, which enables its use with long-running
applications while providing a trace of instructions respon-
sible for the error. We observe that most errors are local and
the set of instructions responsible for the error are typically
available in the set of active functions ( i.e., backtrace) when
the error is encountered.

Based on this observation, the metadata in shadow mem-
ory maintains a pointer to the metadata for the temporary
on the stack that previously wrote to the memory location,
temporal safety metadata for that pointer, the real value,
instruction identi"er, and the posit value. If the temporary
that wrote to the memory location of interest is not available
in the set of active stack frames (i.e., when the stack frame
has been deallocated on a function return), then it would be
a memory safety error to access that temporary’s metadata
pointer. Hence, we need to maintain temporal safety meta-
data for that pointer. We use the lock-and-key metadata from
our prior work on checking temporal safety errors [47–51].

Lock-and-key metadata for temporal safety. To en-
sure temporal safety, each pointer to the metadata for a
temporary maintains a lock (address of a location) and a key
(a unique identi"er) [47–51]. On memory allocation, a new
lock is allocated and a unique identi"er is written to that
lock. Any pointer that points to the newly allocated mem-
ory inherits the lock and the key. As long as the memory
allocation is valid, the unique identi"er at the lock and the
key associated with the pointer will match. On deallocation,
the identi"er at the lock is invalidated. Any dangling pointer
will "nd that the identi"er at the lock and the key associated
with the pointer does not match.

Figure 3(a) shows the metadata in shadow memory for
each posit value in memory. When the pointer to the tempo-
rary’s metadata is invalid, PositDebug is still able to detect
numerical errors because it maintains the high-precision
value with each metadata entry. However, it will not be able
to provide a detailed trace of instructions that wrote to that
location. In this scenario, the user can set a breakpoint on the
instruction that previously wrote to the location and obtain
a trace of instructions.
Metadata for temporaries. Metadata for temporaries

with posit values are maintained on the stack. The addi-
tional stack usage is proportional to the original program’s
stack usage. Temporary posit variables either contain the
result of posit arithmetic operations or are constants. Hence,
the metadata for temporary posit values contains the high-
precision value produced in the shadow execution, actual
posit value, instruction identi"er, pointers to the metadata
for the operands, and lock-and-key metadata to ensure the
temporal safety information for the stack frame. Metadata
for each temporary gets the lock-and-key of the function

because the stack frame is allocated on function entry and
deallocated on function return.
To keep the stack usage bounded, we maintain a single

metadata entry for each static temporary in the code. When
a temporary is repeatedly updated in a loop, the metadata
corresponding to the temporary in the stack is updated.
We maintain a timestamp in the temporary’s metadata that
records when it was updated. When we report the DAG
of instructions responsible for the error, we do not report
the operands of an instruction if the operand’s metadata
timestamp is greater than the timestamp of the instruction
in consideration. Figure 3(b) illustrates the metadata for tem-
poraries.

3.3 Metadata Propagation

This section describes the creation of the metadata and its
propagation from the stack to shadow memory. Each func-
tion has a lock and a key for temporal safety, which we
refer to as func_lock and func_key. We omit the instruc-
tion identi"er, the posit value, and timestamp updates for
space reasons. The added instrumentation code is shaded.
Creation of temporary constants.When the program

creates a temporary posit variable with a constant, we create
metadata on the shadow stack that uses the concrete constant
in high-precision, inherits the function’s lock and key, and
has its operand pointers set to NULL.

posit32_t t5 = 4.0f; //instruction 5 in Figure 4

t5_tmd = get_temporary_metadata(t5);

t5_tmd->real = Real(4.0f);

t5_tmd->lock = func_lock;

t5_tmd->key = func_key;

t5_tmd->op1 = NULL;

t5_tmd->op2 = NULL;

Assignment of temporaries.When a posit value is copied
from another temporary, all "elds of themetadata for the new
temporary are also copied. Only the timestamp is updated.
Posit binary andunary operations.On binary or unary

arithmetic operations with posit values, we look up the meta-
data of the operands, compute the high-precision value with
shadow execution, and update the metadata of the result. The
result’s metadata is updated with the high-precision result,
pointers to operand’s metadata, and lock-and-key metadata
for the stack frame.

posit32_t t6 = t5 * t1; //instruction 6 in Fig 4.

t5_tmd = get_temporary_metadata(t5);

t1_tmd = get_temporary_metadata(t1);

t6_tmd = get_temporary_metadata(t6);

t6_tmd->lock = func_lock;

t6_tmd->key = func_key;

t6_tmd->real = t5_tmd->real *R t1_tmd->real;
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initial state

Dynamic execution trace
Shadow memory metadata Metadata for temporaries  on the stack

1. posit32_t t1 = *a;

2. posit32_t t2 = *b;

3. posit32_t t3 = *c;

4. posit32_t t4 = t2 * t2;

5. posit32_t t5 = 4.0

6. posit32_t t6 = t5 * t1

7. posit32_t t7 = t6 * t3;

8. posit32_t t8 = t4 - t7;

9. *res = t8;

Precision loss
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a’s memory metadata

a_md a3_md

3.2466429… x 1012
L2 K2

b’s memory metadata

b_md b3_md

1.43923904 x 108
L3 K3

c’s memory metadata

c_md c3_md

1.8309067… x 1016

L1 K1

a3’s temporary 
metadataa3_md a1_md a2_md

3.2466429… x 1012

L2 K2
b3’s temporary 

metadatab3_md b1_md b2_md

1.8309067… x 1016

L4 K4
t1’s temporary 

metadatat1_md a1_md a2_md

3.2466429… x 1012

L4 K4
t2’s temporary 

metadatat2_md b1_md b2_md

1.43923904 x 108

L4 K4
t3’s temporary 

metadatat3_md c1_md c2_md

1.0540690… x 1025

L4 K4
t4’s temporary 

metadatat4_md t2_md t2_md

4.0
L4 K4

t5’s temporary 
metadatat5_md NULL NULL
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t8’s temporary 
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Shadow execution 

Figure 4. Execution trace, program’s memory, and the content of the metadata. We show the posit value and the number
of available fraction bits after each instruction. The state of shadow memory and the metadata for temporaries on the stack
are on the right. The movement of metadata between shadow memory and the stack is shown with red arrows. Instances of
precision loss and catastrophic cancellation are highlighted in green and purple, respectively. Here, all lock and key metadata
are valid. (L4, K4) represents the lock and key for the function being executed.

t6_tmd->op1 = t5_tmd;

t6_tmd->op2 = t1_tmd;

Memory stores.When a posit value is stored to memory,
we update the shadowmemorywith the high-precision value,
pointer to the temporary’s metadata that is being stored, and
the lock and key associated with the temporary.

*res = t8 //instruction 9 in Figure 4

t8_md = get_temporary_metadata(t8);

shadow_mem(res)->real = t8_md->real;

shadow_mem(res)->tmd = t8_md;

shadow_mem(res)->lock = t8_md->lock;

shadow_mem(res)->key = t8_md-> key;

Memory loads. When a posit value is loaded from mem-
ory into a temporary, the metadata from the shadowmemory
is accessed and the temporary’s metadata is updated with
information from shadow memory. First, we check if the
temporary that previously wrote to that location is still valid

by checking the lock and the key. If so, the entire temporary
metadata of the previous writer is copied except the lock
and the key. The lock and the key of the new temporary are
initialized to the executing function’s lock and key. If the
pointer to the previous writer is invalid, we initialize the
temporary metadata similar to the assignment of a constant
value.

posit32_t t1 = *a; //instruction 1 in Figure 4

t1_md = get_temporary_metadata(t1);

t1_md->real = shadow_mem(a)->real;

t1_md->lock = func_lock;

t1_md->key = func_key;

lock = shadow_mem(a)->lock;

if(*lock == shadow_mem(a)->key){

t1_md->op1 = shadow_mem(a)->tmd->op1;

t1_md->op2 = shadow_mem(a)->tmd->op2;

}
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else {

t1_md->op1 = NULL;

t2_md->op2 = NULL;

}

Figure 4 illustrates the metadata before and after three
loads from memory (i.e., instruction 1-3). When a value is
being loaded from address a, the shadow memory of a (i.e.,
a_md) is accessed, which has a pointer to the temporary
metadata of the last writer (a3_md). The lock and key of
a3_md are L1 and K1. As it is valid, the entire contents of
a3_md are copied to the temporary metadata space for t1 (i.e.,
t1_md). The lock and key of t1_md are set to the lock and
key of the executing function (i.e., L4 and K4).

3.4 Detection and Debugging of Errors

When PositDebug detects a signi"cant error in the result
of the computation, it classi"es the cause of error into vari-
ous categories: catastrophic cancellation, loss of precision,
changes in branch outcomes, and wrong values with casts.
Catastrophic cancellation. PositDebug detects whether

any cancellation that occurred during the subtraction opera-
tion is catastrophic. When a subtraction operation cancels a
number of signi"cant digits of the operands such that every
digit of the normalized result is a#ected by the error in the
operands, it is considered to be a catastrophic cancellation.
The relative error cannot be bounded in the presence of cat-
astrophic cancellation. The computed result v and the real
result r can di#er considerably. In this scenario, if v ≥ 2r
or v ≤ r

2 , then the exponents of v and r are guaranteed to
di#er and also all the precision bits are in!uenced by error.
In PositDebug, we say that a subtraction operation ex-

periences catastrophic cancellation if (1) it experiences can-
cellation and (2) v ≥ 2r or v ≤ r

2 where v and r are the
computed and the real result, respectively. In a 64-bit FP
representation that can represent all 〈32, 2〉-posit values as
normalized FP values exactly, the result has at least ≥ 252

ULP error.
PositDebug detects whether the subtraction v1 = v2 −v3

has catastrophic cancellation using the following formula:

cbits > 0 ∧
(

v1 ≥ 2r1 ∨v1 ≤
1
2
r1

)

where r1 is the real result and cbits is de"ned as:

cbits =max {exp (v2), exp (v3)} − exp (v1)

Here, exp (v ) represents the exponent of v . If the exponent
of the result is smaller than that of the operands, then some
bits of the operand are canceled. Along with cancellation, if
the error in the "nal result is above a threshold, then it is
catastrophic cancellation.
As there is no widely accepted error threshold for cata-

strophic cancellation, the users can choose the error in our

-

×
×

×

t2
4.0

t1 t3

a1 a2b2b1 c1 c2

t1_mdt2_md t3_md

t4_md

t5_md

t6_md
t7_md

t8_md

b1_md b2_md a1_md a2_md c1_md c2_md

Figure 5. DAG generated for the catastrophic cancellation
with the operation: t8 = t4 - t7 in Figure 4.

second criteria for catastrophic cancellation using the ex-
pression:

v ≥ ϵr ∨v ≤
r

ϵ
In our de"nition, ϵ = 2. The magnitude of ϵ de"nes the
amount of error tolerance: larger ϵ widens the error tolerance
and smaller ϵ narrows it.

Loss of precision bits and saturation. PositDebug al-
lows the detection of signi"cant precision loss, which is
important with posits because of tapered precision. Posit-
Debug detects if the result of an operation has more regime
bits than the operands and reports if such precision loss is
beyond a user-speci"ed threshold. Similarly, PositDebug
reports whenever operations use maxpos and minpos as they
are cases of likely over!ows/under!ows with FP operations.

Branch outcomes and casts to integers. PositDebug
instruments branch conditions with posit values and checks
if the branch condition evaluates with a di#erent outcome
in the shadow execution. As we do not want to track meta-
data with integers, PositDebug also instruments all posit-
to-integer cast operations and reports it to the user if the
shadow execution produces a di#erent result. It is possible
that an error in posit-to-integer conversion is benign. How-
ever, the result of a posit-to-integer conversion can also be
used with operations that can in!uence the result (e.g., array
indices, pointer o#sets). PositDebug does not triage these
cases into benign or malicious. We let the user decide.

3.5 Debugging Errors with Tracing

Whenever PositDebug detects the errors mentioned above,
it provides a DAG of instructions in the set of active functions
that are responsible for the error. The temporary metadata
of the instruction experiencing the error becomes the root of
the DAG. It has information about the temporary metadata
of its operands. PositDebug checks the temporal validity of
the operand’s pointers. If they are valid and the timestamp
of the operands are lower than the timestamp of the current
instruction, those operands are recursively traversed.
In Figure 4, there is a catastrophic cancellation with the

instruction t8 = t4 - t7, which becomes the root of
the DAG. The t8’s metadata (i.e., t8_md) has pointers to
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temporary metadata of the operands: t4_md and t7_md. They
are recursively traversed. The resultant DAG reported to the
programmer is shown in Figure 5.

4 Implementation and Prototypes

We describe the implementation decisions, PositDebug pro-
totype, and the FPSanitizer prototype for FP programs.

4.1 Implementation Issues

To realize a prototype of shadow execution for large pro-
grams, we need to design mechanisms to shadow memory,
manage the lock and key metadata space, and interface with
uninstrumented code.
Shadow memory. We use a two-level trie data structure

for shadow memory. It maps every virtual address that holds
a posit value to its corresponding shadow memory address.
The "rst-level trie entries are allocated during program ini-
tialization. The second-level trie entries are allocated on
demand. Hence, the shadow memory usage is proportional
to the actual memory usage of the program. The shadow
memory entry contains a pointer to the MPFR value. The
MPFR runtime allocates high-precision values on the heap.
Management of lock and key metadata. Our lock and

key metadata ensure the temporal safety of the pointers to
various stack frames. The lock locations are organized as
a stack. On a function entry, a new key is pushed to the
top of this stack. This key is associated with any temporary
metadata that belongs to the current function. On a function
exit, the lock entry is invalidated and popped from the stack.
These lock entries can be subsequently reused. As our keys
are monotonically increasing, PositDebug accurately iden-
ti"es all valid and invalid pointers to the stack frames even
when the lock space is subsequently reused. The size of the
lock space is bounded by the number of active functions.
Interfacing with uninstrumented code. To support

large applications, we have to support interfacing with li-
braries, which is a challenging task for any dynamic mon-
itoring tool [47, 50]. Inspired by Intel MPX, we maintain
the posit value in the metadata in shadow memory. When
the program loads a posit value from program’s memory,
the corresponding metadata is loaded from shadow memory.
The posit value generated by the program and the one in the
metadata space is compared. If they do not match, we can
conclude that some library or uninstrumented function up-
dated program’s memory without updating shadow memory.
In those cases, we use the program’s posit value to initialize
the high-precision value. This approach also enables us to
incrementally use our tools with large applications.

4.2 PositDebug Prototype

PositDebug prototype detects numerical errors in C pro-
grams that use posits. It is publicly available [10]. As there

is no mainstream hardware support yet, we use the o$-
cial software library for posits (i.e., SoftPosit). PositDebug
consists of three components. (1) A standalone LLVM-9.0
pass to instrument a posit program with calls to our run-
time to maintain metadata, propagate metadata, and perform
shadow execution. (2) A runtime written in C++ that per-
forms shadow execution and propagates the metadata. The
runtime by default uses the MPFR library to perform high-
precision execution. It can be customized to run with any
data type. (3) A clang-based refactorer that traverses the
abstract syntax tree of a FP program and creates a posit
program that uses the SoftPosit API. Given that posit is a
stand-in replacement for FP, we wanted to experiment with
large applications and existing numerical code without man-
ually rewriting it. Although the refactorer automated most
of this translation, we had manually change indirect function
calls and global initializers in SPEC applications.
Usage. If the program already uses the SoftPosit API, the

user of PositDebug prototype will use the instrumenter
directly, link with the runtime, and generate an executable.
Otherwise, the user will use our refactorer to rewrite the
FP program to use the SoftPosit API and then use PositDe-
bug’s LLVM instrumentation to inject calls to the runtime
and generate the executable. The user sets an error and re-
porting threshold (as an environment variable) and executes
the binary. The prototype generates an overall summary of
instances of error exceeding the threshold. It also generates a
DAG of instructions for each error instance until the report-
ing threshold is met. The user of PositDebug can compile
the runtime with debugging symbols and reason about the
error using the DAG of instructions using the debugger.
Reporting error. Due to tapered accuracy with posits,

reporting relative error as posit ULP error is misleading (see
Section 2.3). We use the ULP error of the double represen-
tation to report the error because double can represent all
〈32, 2〉-posit values exactly as normal values. Hence, Posit-
Debug converts the posit value to a double, converts the
MPFR value to a double, and then computes the ULP error of
the two double values. PositDebug also reports the number
of bits with error, which is *loд2 (ulperror )+. It is important to
note that a 〈32, 2〉-posit has at most 27 fraction bits whereas
double has 52 fraction bits. Therefore, even if a 〈32, 2〉-posit
is rounded correctly, it can have up to 25 bits of error.

4.3 FPSanitizer Prototype

To show the generality of the proposed ideas, we also built
FPSanitizer, a shadow execution framework to detect nu-
merical errors in FP programs. It consists of an LLVM pass
that adds calls to our runtime and a runtime that performs
high-precision shadow execution. The metadata organiza-
tion, implementation details, and the usage mode of FPSani-
tizer are exactly identical to PositDebug. It does not sup-
port vectorization yet. The FPSanitizer prototype is also
publicly available [9].
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5 Experimental Evaluation
This section describes our experiments to evaluate Posit-
Debug and FPSanitizer’s ability to detect errors and the
performance overhead. We illustrate the usefulness of the
debugging support with case studies.
Methodology and applications. To evaluate PositDe-

bug for its ability to detect numerical errors, we use a set
of thirty two micro-benchmarks with known numerical er-
rors. This set consists of twelve C programs that use FP from
the Herbgrind suite [59] and 20 C programs written with
posits that feature commonly used numerical algorithms. We
converted FP C programs from the Herbgrind to use posits
using PositDebug’s refactorer. All these programs use the
SoftPosit library for posits.
To evaluate performance, we use all C applications from

PolyBench’s linear algebra suite, SPEC-FP-2000, and SPEC-
FP-2006. These applications are written with FP. We used
PositDebug’s refactorer to create posit versions of the ap-
plication using the SoftPosit library. We use the 〈32, 2〉-posit
con"guration for all our experiments as it is the recom-
mended type in the SoftPosit library. We ran all experiments
on an Intel Core i7-7700K machine that has four cores and
32GB of main memory. We measure the wall clock execution
time of the application with PositDebug and without any
shadow execution. As there is no publicly available hardware
implementation of posits, our baseline uses the SoftPosit li-
brary. On average, these baseline applications with posits
are 11× slower compared to the hardware FP versions.

5.1 E!ectiveness in Detecting Numerical Errors

To test the e#ectiveness in detecting errors, we ran Posit-

Debug’s shadow execution with all thirty two programs in
our test suite with numerical errors. PositDebug was able
to detect errors in all of them. Among them, the output of
28 programs have more than 35 bits of error (at most 17
exact fraction bits with posit), the output of 24 programs
are reported to have more than 45 bits of error (at most 7
exact fraction bits with posit), and the output of 18 programs
are reported to have more than 52 bits of error (all fraction
bits are wrong). PositDebug identi"ed that 18 programs
have catastrophic cancellation, 10 programs experience sig-
ni"cant loss of precision, 5 programs have branch !ips, 1
program has an incorrect integer cast, 2 programs produce
NaR values, and two programs have saturation errors. We
also observed numerical errors in six PolyBench and all the
SPEC-FP applications.
Next, we inspected the DAG reported by PositDebug.

The largest reported DAG had 12 instructions. It reported
DAGs with a single instruction for 8 programs. When we
further examined the program with the debugger, we ob-
served that the operands of the single instruction DAG were
not in the set of active functions. It was a function that had
recently completed execution. We put a breakpoint at the

return instruction of that function and we could obtain DAGs
with 4 to 8 instructions for those 8 programs. Overall, the
instructions in the DAG enabled us to understand the cause
of error.

5.2 Case Studies of Debugging with PositDebug

This section describes our experience using PositDebug to
debug and understand the cause of numerical error.

5.2.1 Posit Math Library with the CORDIC Method.
Posit still does not have an implementation of the math
library for the 〈32, 2〉-posit con"guration. Hence, program-
mers have to use the math library for FP (i.e., libm) by casting
the posit value to double, use the libm function with double,
and convert the double result back to a posit value. To build
a math library for posits, we were exploring the feasibility of
using the CORDIC (Coordinate Rotation Digital Computer)
algorithm [65], which is attractive given that it can be imple-
mented with just addition and subtraction operations. Our
initial motivation for developing PositDebug was to debug
our implementation of sin and cos function.
CORDIC is a class of iterative add-shift algorithms that

can compute sin and cos of θ ∈ [− π
2 ,

π
2 ]:

x0 =
k−1
∏

i=0

1
√
1 + 2−2i

, y0 = 0, z0 = θ

xn+1 = xn − dnyn2−n

yn+1 = yn + dnxn2
−n

zn+1 = zn − dntan−1 (2−n )

dn =




1 i f zn ≥ 0

−1 otherwise

As the total number of iterations k approaches ∞, xk =
cos (θ ) and yk = sin(θ ). The value of x0 for a given k and
the values of tan−1 (2−n ) for n ∈ [0,k − 1] are compile-time
constants. All other operands can be computed with addi-
tion, subtraction, and shift operations, which can be easily
implemented on small FPGAs and ASICs. Further, they can
be extended to compute other transcendental functions.
We implemented sin and cos functions with posits using

CORDIC. Our implementation performs 50 iterations. To
have high precision for compile-time constants, we precom-
puted values for the initial x0 and tan−1 values using the
MPFR library with 2000 bits of precision. Our posit imple-
mentation outperformed a similar implementation with !oat
on 97% of the inputs in the range [0, π2 ]. We observed that
there was signi"cant error for sin(θ ) when θ was close to 0
and for cos (θ ) for θ near π

2 . We wanted to debug the program
and identify the cause of error, which motivated us to build
PositDebug.
To debug our implementation, we chose a speci"c input

θ = 1.0 × 10−8. Our implementation produced sin(θ ) =
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(b) Dag of y20 reported with significant error

Error: 43

posit: -4.28037… x 10-7

real: -4.28744… x 10-7+

Error: 41

posit: 1.47931… x 10-6

real: 1.47860… x 10-6
+

Error: 14

posit:  -1.90734… x 10-6

real: -1.90734… x 10-6×

Error: 14
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Error: 0
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Cancellation

1.0 7.45058… x 10^-9

(a) Dag of z28 reported with branch flip

Error: 62

posit: 1.61526… x 10-9

real: -8.39786… x 10-10-

Error: 50
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Figure 6. (a) The DAG of z28 reported by PositDebug when the
branch !ip occurred. There is a catastrophic cancellation for the
variable used in the branch condition. (b) The DAG of y20 on the
20th iteration of CORDIC. The nodes in gray are not reported by
PositDebug. We include it to understand the source of error.

1.3162 · · · × 10−8 as the result. We used libm’s implementa-
tion and MPFR’s implementation of sin as the oracle. These
libraries do not use CORDIC but use polynomial approxima-
tion using the mini-max method. The libm implementation
with double reported 1.0000 · · · × 10−8 and the MPFR math
library with 2000 precision bits reported 1.0000 · · · × 10−8.
Hence, the relative error of our implementation of sin with
CORDIC is 0.3162 . . . .
We wanted to debug this error and "nd the source of

error for the same input. When we ran our implementation
with PositDebug, it reported that the result of the shadow
execution is sin(θ ) = 1.2455 · · · × 10−8 and the result had 48
bits of error (i.e., it has at most 4 exact fraction bits in the
〈32, 2〉-posit). It also reported that there were 4 instructions
with less than 17 exact bits and 14 branch !ips. On a branch
!ip, the shadow execution follows the execution path of the
posit program. It is probably the reason that PositDebug’s
shadow execution produces a di#erent result when compared
to the result from MPFR’s math library.

When we ran the shadow execution within the debugger
(i.e., gdb), we identi"ed that our posit implementation en-
countered a branch !ip in the 29th iteration while checking
the condition z28 ≥ 0 due to catastrophic cancellation. Hence,
d28 was assigned 1 instead of -1.

Figure 6(a) shows the DAG produced by PositDebug

for z28, the cause of branch !ip. It experiences catastrophic
cancellation with 62 bits of error (all bits are inexact). The
operands were z27 and d27 × tan−1 (2−27). The result of d27 ×
tan−1 (2−27) was exact with d27 being 1. By using gdb and
tracing zi for the previous iterations, we were able to "nd
that the operand z27 had 50 bits of error (at most 2 fraction
bits are exact). Additionally, we were able to infer that zi ’s
were slowly and constantly accumulating error. Hence, we
identi"ed that branch !ip is one reason for our posit im-
plementation to produce a di#erent result compared to the
oracle result.
Upon investigating other instructions before the branch

!ip with PositDebug and gdb, we identi"ed that the value
of y20 was incurring 43 bits of error (at most 9 exact fraction
bits) and the value of y28 had 48 bits of error (at most 4 exact
fraction bits). Figure 6(b) shows the DAG for y20. Our initial
θ is close to 0 and the value of dn changes each iteration.
The value of y, which is initially 0, is added and subtracted
with values (i.e., xn2−n ) that are gradually decreasing. Hence,
the relative error of y increases gradually each iteration. The
value of xn also changes in a similar fashion. However, it
starts with a relatively large value compared to the terms
that are being added/subtracted. Hence, the "nal x does not
exhibit much error. We are still identifying ways to rewrite
our computation to avoid the branch !ip and error accumu-
lation with y. PositDebug was helpful in understanding the
root cause of error while debugging our CORDIC implemen-
tations.

5.2.2 Computation of Integrals with Simpson’s Rule.
Simpson’s rule is an approximation algorithm to compute
the integral of a function. Given an even number of intervals,
n, an integral can be approximated by:

∫ b

a
f (x )dx ≈

∆x

3
( f (x0) + 4f (x1) + 2f (x2) + 4f (x3)

+ 2f (x4) + · · · + 4f (xn−1) + f (xn ))

where ∆x = b−a
n and xi = a + i∆x . As n approaches∞, the

result from this approximation converges to the value of the
integral.

We implemented a program to compute the integral with
the Simpson’s rule using 〈32, 2〉-posits. With n = 20, 000, 000,
we computed the integral for the following input

∫ 14223113

13223113
x2dx = 1.8840 · · · × 1020

The output of our program was 1.5372 · · · × 1017.
PositDebug reported that there were 4 instructions with

more than 55 bits of error (no exact fraction bit in the answer)
and 7 instructions with more than 35 bits of error (at most
17 exact fraction bits).

PositDebug’s DAG also indicated that three of the four
instructions with more than 55 bits of error were addition
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Figure 7. Performance overhead of PositDebug compared to a baseline that uses the SoftPosit library for various applications.
It reports PositDebug’s overhead with 512, 256, and 128 bits of precision for the shadow execution’s MPFR value.

instructions, which was accumulating the terms. When we
inspected the shadow execution with gdb, the program pro-
duced a value of 263, which has only 12 fraction bits avail-
able. All subsequent terms added to the above result were
smaller than 250 and the result was rounded down to 263.
Even though the accumulation was slowly increasing the
error, PositDebug still was able to identify the existence of
error and accurately locate the source of error.
The cause of error is the lack of available precision bits

for the accumulation operation. We replaced this accumula-
tion operation with a fused dot product that uses the quire
datatype. After this change, the benchmark produced the
value 1.8850 · · · × 1020, which is similar to the shadow exe-
cution value.

5.2.3 Root-Finding of a Quadratic Formula. The for-
mula to compute the roots of a quadratic equation is given
by:

root =
−b ±

√
b2 − 4ac
2a

When computing with FP, there are two subtractions that
can result in signi"cant error: computation of b2 − 4ac and
the computation of −b +

√
b2 − 4ac .

In the case of posits, there is additional instruction that
can cause error apart from two subtractions: division by 2a.
We identi"ed this when we ran PositDebug with our imple-
mentation of the root-"nding program with the following
inputs:

a = 1.4396470127131522076524561271071 × 10−14 (5)

b = 3.24884063720703125 × 102 (6)

c = 1.822878072832 × 1012 (7)

The roots returned by our 〈32, 2〉-posit implementation
are:

−5.29948672 × 109 (8)

−2.2566376648474624 × 1016 (9)

PositDebug reported that the "rst root had 48 bits of
error (i.e., at most 4 exact bits). The DAGs generated by
PositDebug indicated that −b had 0 bits of error,

√
b2 − 4ac

had 28 bits of error (at most 24 exact fraction bits), and
−b +

√
b2 − 4ac had 48 bits of error (at most 4 exact fraction

bits). Although the subtraction did not cause catastrophic
cancellation in this instance, the cancellation of bits in the
subtraction caused a signi"cant increase in error.
Further, PositDebug reported loss of precision with the

second root, which had 36 bits of error (at most 16 exact
fraction bits). The result of −b −

√
b2 − 4ac incurred 26 bit

of error (at most 26 exact fraction bits) and the result of
2a had 0 bits of error. However, the result of the division
lost precision bits due to an increase in regime bits, which
resulted in 36 bits of error (at most 16 exact fraction bits).
Although multiplication and division in FP does not amplify
the relative error with normal values, posit multiplication
and division can amplify the relative error. We found Posit-

Debug’s output to be helpful in both identifying the amount
of error and the cause of precision loss.

5.3 Performance Overhead with PositDebug

Figure 7 reports the performance overhead experienced by
various applications with PositDebug’s shadow execution
compared to an uninstrumented posit application. For each
benchmark, we report the slowdown of PositDebug with
three di#erent con"gurations based on the number of pre-
cision bits used for the MPFR value in the metadata: 512,
256, and 128 precision bits. The rightmost cluster of bars
(geomean) reports the geometric mean of all benchmarks for
each precision. On average, PositDebug’s shadow execution
has a slowdown of 13.6× with 512 bits of precision, 12.3×
with 256 bits of precision, and 11.4×with 128 bits of precision
compared to a baseline without any instrumentation.
As the overheads increase with an increase in precision

for the MPFR value used in the metadata, MPFR computa-
tion is one major source of overhead. The baseline software
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Figure 8. Performance slowdown of PositDebug with and without tracing for shadow execution with 256 bits of precision.
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Figure 9. FPSanitizer’s performance overhead with varying precision bits (512, 256, and 128) for the shadow execution
compared to an uninstrumented baseline application that uses hardware FP operations.

posit version of SPEC applications is signi"cantly slower
compared to the hardware FP version. Hence, the additional
overhead of PositDebug over the baseline software posit
version is small. On average, PositDebug’s overhead when
compared to a baseline with hardware FP operations is 225×,
174×, and 157× for 512, 256, and 128 precision bits for the
MPFR value, respectively.

To understand the overhead of the additional mechanisms
for tracing, we evaluate a version of PositDebug that detects
numerical errors but does not provide tracing information.
Figure 8 reports the overhead of PositDebug with and with-
out tracing support when the shadow execution is performed
with 256 bits of precision. The removal of tracing reduces the
overhead on average from 12.3× to 10.2× for PositDebug
in this con"guration. Some benchmarks with compact loops
such as durbin and gramschmidt see a signi"cant reduction
in overhead (i.e., from 58× to 41× for durbin and from 44×
to 29× for gramschmidt). Overall, we found these overheads
to be acceptable while debugging applications. An e#ective
strategy is to run PositDebug without tracing, detect the
error, and subsequently run PositDebug with tracing se-
lectively for the functions of interest rather than the entire
program, which we found useful in our experience.

5.4 Performance Overhead with FPSanitizer

Figure 9 reports the performance overhead of FPSanitizer’s
shadow execution, which uses the same metadata organiza-
tion as PositDebug, compared to an uninstrumented hard-
ware FP baseline. Similar to PositDebug, we evaluate FPSan-
itizer’s overheads with increasing precision for the shadow
execution’s MPFR value. On average, FPSanitizer’s shadow
execution has a performance overhead of 126×, 111×, and
101× with 512, 256, and 128 bits of precision, respectively.

Herbgrind [59], which is the state-of-the-art shadow exe-
cution framework for FP applications, crashed with all these
applications in our evaluation. We were able to run Herb-
grind with PolyBench applications with smaller inputs. In
these cases, we observed that FPSanitizer was more than
10× faster than Herbgrind on average.

All SPEC applications have a higher memory footprint
than PolyBench applications and have higher overhead. Ap-
plications spec_milc, spec_sphinx, and spec_lbm have a
large number of cache misses even in the baseline without
FPSanitizer. Accesses to metadata increase the memory
footprint causing more cache misses at all levels. Further, the
software high-precision computation prevents memory-level
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Figure 10. Performance slowdown of FPSanitizer with and without tracing for shadow execution with 256 bits of precision.

parallelism that overlaps misses and reduces the e#ective-
ness of the prefetcher.
Figure 10 reports the overhead with and without tracing

for FPSanitizer. On average, the performance overhead
decreases from 111× to 71×. Additional overhead with meta-
data for tracing is signi"cant for applications with a higher
memory footprint. Overall, we found FPSanitizer to be
usable with long-running SPEC applications.

6 Related Work
Posit is gaining signi"cant attention both from software
developers and hardware vendors. There is an active com-
munity that has developed various software implementa-
tions [38, 54] and FPGA implementations [30]. Posits and its
variants have been used in a wide variety of contexts: deep
neural network [6, 14, 31, 44] and weather simulation [32].
For these applications, it has been shown that posit pro-
duces more accurate results than the !oating point or the
"xed point representations while also being computationally
e$cient.
Although posits are shown to be accurate under certain

circumstances, it is prone to new types of errors. Dinechin et.
al. [13] provide an analysis of advantages, disadvantages,
and some sources of error with posits, making a case for
debugging tools for posits. Posit community is still in its
infancy and lacks debugging tools as of now. PositDebug
is the "rst tool that helps programmers debug sources of
numerical error, which includes programmers who are either
writing new applications with posits or are porting FP code
to use posits.
PositDebug is also related to prior tools for detecting

and debugging FP errors. There is a large body of tools to
analyze error in FP programs [2–4, 7, 8, 12, 15, 17–19, 22, 23,
28, 36, 37, 42, 43, 55, 58–62, 62, 66, 67]. Among them, Herb-
grind [59] and FPDebug [4] are the most closely related to
PositDebug. Both Herbgrind and FPDebug perform binary
instrumentation with Valgrind to perform shadow execution
with higher precision. FPDebug does not provide much sup-
port for debugging numerical errors. Herbgrind also stores

the error and the dynamic traces for eachmemory location in
the metadata space, analyzes the o#ending instruction that
causes a program instability, and provides expression DAGs
that could possibly be rewritten with Herbie [55]. However,
the size of the metadata space per memory location is pro-
portional to the number of dynamic FP instructions, which
restricts its use with long-running applications. PositDebug
is inspired by Herbgrind. However, it addresses the limita-
tions of Herbgrind by maintaining a constant amount of
metadata per-memory location and with compiler instru-
mentation that enables e#ective debugging with gdb in the
context of posits.

7 Conclusion

Posit is a usable approximation of real numbers with tapered
accuracy. Posit can provide higher precision than !oating
point for a certain range of values (i.e., golden zone), which
can be pivotal in some applications. Posit, like any represen-
tation with tapered accuracy, also introduces new concerns
while programming with them. PositDebug is the "rst tool
that performs shadow execution with high-precision val-
ues, detects errors, and provides DAGs of instructions that
are responsible for the error in applications using posits.
We built a shadow execution framework for !oating point
programs, FPSanitizer, using the same design, which is an
order of magnitude faster than the state-of-the-art. We found
the debugging support to be useful while implementing and
debugging a wide range of posit applications.
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