
Fixing Latent Unsound Abstract Operators in the
eBPF Verifier of the Linux Kernel

Matan Shachnai⋆, Harishankar Vishwanathan⋆,
Srinivas Narayana, and Santosh Nagarakatte

Rutgers University, USA
{m.shachnai, harishankar.vishwanathan,

srinivas.narayana,santosh.nagarakatte}@rutgers.edu

Abstract. This paper describes our experience deploying automated
verification techniques for proving the correctness of value tracking com-
ponents of the eBPF verifier in the Linux Kernel over the last four years.
The eBPF verifier uses abstract interpretation with multiple abstract
domains for value tracking. The eBPF verifier uses non-standard ap-
proaches for refining the results from multiple abstract domains, which
necessitated us to design new techniques to show their correctness. Dur-
ing this process, we also discovered that some of the abstract operators
are unsound in isolation. The unsoundness of these operators are eventu-
ally corrected by a shared refinement operator. The presence of interme-
diate “latent” unsound abstract operators makes the task of verification
harder. We describe our patches to the Linux kernel, which have been
upstreamed, that fix these latent errors and make the abstract operators
correct in isolation, which enables faster automated verification.

Keywords: Abstract interpretation · Kernel extensions · eBPF

1 Introduction

Extending the functionality of the Linux kernel with user-augmented function-
ality is necessary in many contexts including cloud-native environments for ob-
servability, security [15, 37], telemetry, and load balancing [14]. The Extended
Berkeley Packet Filter (eBPF) ecosystem is a collection of tools and techniques
to extend the functionality of the Linux operating system kernel with safety as-
surances. Specifically, the eBPF ecosystem consists of a domain-specific language
and an in-kernel register virtual machine with a 64-bit instruction set. A salient
feature of this ecosystem is the eBPF verifier. The eBPF verifier is a static an-
alyzer that checks whether a program is safe to execute within the Linux kernel
using abstract interpretation. The eBPF verifier checks that the program termi-
nates after executing a finite number of instructions, accesses to the memory
locations are safe, and the program only accesses a subset of kernel memory and
functions. Once the program is deemed safe by the verifier, the eBPF programs
⋆ Equal contribution.

2 M. Shachnai et al.

are Just-in-Time (JIT) compiled to the native machine. Today, there are many
applications and companies that use eBPF to instrument the Linux operating
system running on production systems, implementing novel features for network-
ing, storage, security, and performance monitoring [6, 14–16,20,37,39,55,57].

The eBPF verifier employs abstract interpretation [33] to reason about pro-
gram safety. Arguably, the eBPF verifier is the world’s most widely used abstract
interpreter, running on billions of devices worldwide. Unlike typical uses of ab-
stract interpretation where the analysis is done in an offline setting, the eBPF
verifier performs abstract interpretation in a live production setting. Hence,
along with correctness of the analysis, its performance is also extremely im-
portant. The abstract interpreter, the accompanying abstract domains, and the
various algorithms are implemented in an efficient manner in the eBPF verifier.
Given that the eBPF verifier is executed in a production kernel, any bug in the
verifier creates a huge attack surface for exploits [43, 44, 52, 54] and vulnerabili-
ties [2, 5, 7–13,24–27,35,40–42].

The core components of the eBPF verifier are the mechanisms used to track
the values of program variables which are subsequently used to access memory.
The eBPF verifier uses five abstract domains to track the values of variables
(i.e., value tracking). Four of them are variants of the interval domain. The other
is a bitwise domain named tnum [45, 47, 53, 61]. The eBPF verifier implements
abstract operators for each of these domains efficiently. Conventionally, results
from multiple abstract domains are combined using sound composition of sound
abstract operators using modular reduced products [31]. The eBPF verifier in the
Linux kernel combines the results from the various abstract domains in a non-
modular fashion; it mixes up the implementation of abstract operators in one
domain with reduction operators that combine information across domains [63].
The Linux kernel developers previously did not provide any soundness guarantees
for these operators in the eBPF verifier.

Our efforts to push automated formal methods to verify the Linux ker-
nel’s eBPF verifier. Over the last few years, we have been using automated
verification methods to check the correctness of various individual abstract do-
mains and their composition in the eBPF verifier. Initially, we formalized the
tnum abstract domain [61] which is efficiently implemented with fast operations
in the Linux eBPF verifier. We also proposed a new abstract multiplication al-
gorithm that is provably sound and is faster than previous algorithms [61]. The
Linux kernel developers were more interested in the formal proofs of correctness
when compared to performance from our new algorithm. Our algorithm is now
incorporated in the Linux kernel since v5.14 [19].

Subsequently, we focused our efforts on proving the correctness of abstract
interpretation algorithms for the entire value tracking analysis that includes
the combination of the tnum domain and the interval domains. Our prototype,
Agni [63], automatically checks the soundness of value tracking performed by
the eBPF verifier. Agni automatically generates logical formulae representing
the semantics of the abstract operator from eBPF verifier’s C code (instead of
manually writing them). We developed the correctness specification for value

Fixing Unsoundness in the eBPF Verifier 3

tracking given that eBPF verifier combines abstract operators for individual
domains with refinement operations that combine information across domains.
We used the Agni prototype [22,62] to automatically check the soundness of 16
kernel versions starting from v4.14 to v5.19. During this process, we discovered
27 previously unknown bugs, which have been subsequently fixed by unrelated
patches.

Of particular note were six abstract operators (corresponding to the instruc-
tions bpf_and, bpf_and_32, bpf_or, bpf_or_32, bpf_xor, bpf_xor_32) in the latest
version of the eBPF verifier (i.e., v5.19 when Agni was initially released) that
we found to be unsound. We observed that the eBPF verifier, in addition to per-
forming non-modular refinements, uses a shared refinement operator, at the tail
end of every abstract operator. This shared operator effectively preconditions
input abstract values to all abstract operators. As a result, this prevents sound-
ness issues from being manifested by any concrete eBPF program. However, we
were still concerned that this “latent” unsoundness can cause potential issues in
the future with changes to the shared refinement operator. Finally, the issue of
latent unsoundness could not be overlooked when we could not verify the sound-
ness of the abstract operators in the latest Linux kernels (v6.3 or later). A few
kernel developers have been using the Agni prototype to check the correctness
of the latest commits pertaining to value tracking [1, 17, 18]. Starting around
v6.3, commits that make significant changes to the shared refinement operator
caused our Agni prototype to take a very long time to complete verification (e.g.,
verification time increased to weeks from a magnitude of hours) and would not
even complete for the latest version of the kernel (v6.8).

Novel contributions in this paper. To address the runtime issue, we want
to split the task of verifying the entire abstract operator into smaller tasks and
then compose them. To compose these smaller verification tasks, it is necessary
to remove the latent unsoundness. Hence, we analyze the counterexamples gen-
erated by Agni and develop patches that remove the latent unsoundness from
the six operators. By fixing the latent unsoundness, we are able to split the veri-
fication task, effectively achieving significant speedup in the verification process.
We are now able to verify all the latest kernels including the latest version v6.8.
The patches that make the six abstract operators sound have been accepted by
the Linux kernel developers in the bpf-next kernel tree and are scheduled to be
upstreamed to mainline.

Overall, this paper makes the following contributions.
1. We design a divide-and-conquer verification approach that allows us to scale

verification to more complex refinement operators in the latest kernels (§3).
Unlike [63], this approach does not suffer verification timeouts.

2. We investigate and report on the fundamental reasons for the latent un-
soundness in the eBPF verifier’s abstract operators. We propose fixes to
make the abstract operators sound. These fixes have been accepted by ker-
nel developers and have made their way into mainline Linux kernels (§4).

3. To support the significant code changes made to the eBPF verifier’s refine-
ment operators since v6.3, we re-engineered Agni in collaboration with the

4 M. Shachnai et al.

kernel developers. This involved supporting new LLVM constructs in trans-
lating the C source code to verification conditions (§5).

4. Overall, this paper offers a case study on the effort (conceptual and engi-
neering) required to push formal methods research to practical settings (§6).

2 Background

We first describe the various abstract domains along with the abstract operators
that the eBPF verifier uses for value tracking. Next, we describe the soundness
specification that Agni uses to verify the soundness of the abstract operators.
Finally, we describe our experience with verifying changing abstract operators
across several kernel versions.

2.1 Abstract Interpretation in the eBPF Verifier

The eBPF verifier uses five abstract domains for value tracking: four of them
are interval domains (i.e., unsigned 64-bit (u64), unsigned 32-bit (u32), signed
64-bit (s64), signed 32-bit (s32)), and the fifth is a bitwise domain (called the
tristate number, or tnum domain [51, 61]). Although the eBPF verifier is exten-
sively tested, there was no formal specification for either the abstract domains
or the operators before our prior work [61,63].

1 def abstract_u64_add (in1, in2):
2 if (in1.u64_min + in2.u64_min < in2.u64_min ||
3 in1.u64_max + in2.u64_max < in2.u64_max):
4 out.u64_min = 0;
5 out.u64_max = UINT64_MAX;
6 else
7 out.u64_min = in1.u64_min + in2.u64_min
8 out.u64_max = in1.u64_max + in2.u64_max
9 return out

Fig. 1: Abstract addition in the u64 domain on
a bpf_add operation. Here, in1 and in2 are the
abstract state maintained for two operands in-
put to bpf_add. UINT64_MAX is the largest rep-
resentable unsigned 64-bit integer.

The interval domains. The u64

abstract domain is an interval do-
main that tracks an upper and
lower bound of a 64-bit register
when interpreted as an unsigned
64-bit value, across executions of
the eBPF program. The u64 ab-
stract domain formally is Au64 ≜
{[x, y] | (x, y ∈ Z+

64) ∧ (x ≤u64 y)},
where Z+

64 is the set of 64-bit non-
negative integers, and ≤u64 repre-
sents a 64-bit unsigned comparison.
The C code of the eBPF verifier
maintains a tuple of unsigned 64-
bit integers (u64_min, u64_max) for tracking the upper and lower bound of each
register that appears in the eBPF program. The concretization function is
γu64([x, y]) ≜ {z | (z ∈ Z+

64) ∧ (x ≤u64 z ≤u64 y)}. The abstraction function
is αu64(c) ≜ [minu64(c),maxu64(c)], where c is a member of the powerset of Z+

64,
and minu64(·) and maxu64(·) compute the minimum and maximum over a finite
set c where each element of c is interpreted as a 64-bit unsigned value. The other
three interval domains, the signed 64-bit domain (s64), the unsigned 32-bit do-
main (u32), and the signed 32-bit domain (s32) are similarly implemented using
the corresponding signed or unsigned arithmetic over the respective bitwidth.

Fixing Unsoundness in the eBPF Verifier 5

An abstract operator captures the computation of concrete operations over
program variables in the abstract domain. Figure 1 provides the pseudo code
in the eBPF verifier for abstract u64 addition. It has two input abstract states
in1 and in2 corresponding to the inputs to the bpf_add instruction. It checks if
the addition operation causes integer overflow, then sets the resulting bounds to
the set of all integers in the u64 domain (i.e., it loses precision). Otherwise, the
bounds are updated as shown in the figure similar to interval arithmetic [32].

The tristate numbers (tnum) domain . This abstract domain in the eBPF
verifier is similar to bitwise domains in abstract interpretation literature [45,47,
53]. The goal of this domain is to track whether a bit of a given register is a
known 0, a known 1 or unknown across executions of the program. The eBPF
verifier implements this domain with a tuple of two unsigned 64-bit integers
(v,m). If a particular bit of m is 1 then the value of that bit of the register is
unknown. If a particular bit of m is 0 then the value of that bit of the register is
equal to v’s value for that particular bit.

Combining information from multiple domains. The eBPF verifier imple-
ments abstract operators for each abstract domain corresponding to each arith-
metic and logic (ALU) instruction and each jump instruction in the eBPF in-
struction set. Consider two abstract domains with sets of abstract values A1,A2.
For a fixed concrete operator f :C→C, suppose the abstractions of f in the two
domains respectively are g1 and g2 (g1:A1 →A1, and g2:A2 →A2) Depending
on f , the precisions of g1 and g2 may vary significantly. Therefore, the benefit
of using multiple abstract domains is that it allows combining information from
different domains which may improve precision.

Intuitively, the eBPF verifier aims to make the abstract value in one do-
main more precise using information available in an abstract value in a different
domain. This is typically done by using a separate refinement operator [34].
The eBPF verifier combines both the abstract operator and refinement steps.
Consider the following refinement that happens in the abstract operator corre-
sponding to bpf_and in the eBPF verifier. Here, in1 and in2 are input abstract
states that encapsulate all the five domains, and out is the output abstract state
that is being calculated. Prior to this snippet, using information purely from the
input tnum domains, out.tnum.v has already been calculated.

out.u64_min = out.tnum.v;
out.u64_max = min(in1.u64_max, in2.u64_max);

In this abstract operator for the u64 domain, the lower bound, u64_min, is
computed using the output tnum information (i.e., out.tnum.v), which is a refine-
ment operation. The upper bound, u64_max, is computed using the input u64
information, which is a traditional abstraction operation. Hence, an abstract
operator in the eBPF verifier performs refinement along with the abstract oper-
ation. Hence, reasoning about the correctness of these abstract operators using
traditional methods prevalent in the literature such as modular reduced products
is not possible.

6 M. Shachnai et al.

concrete
inputs

abstract
operator

shared
refinement
operator

abstract
output state

concrete
operator

concrete
output

x i1 x i2 a i1 a i2

opg

sro

(from
eBPF
verifier C
source
code)

absg

xo

ao

abstract
input states

concrete
inputs

abstract
operator

shared
refinement
operator

abstract
output state

concrete
operator

concrete
output

x i1 x i2 b i1 b i2

opg

sro

(from
eBPF
verifier C
source
code)

absg

xo

ao

preconditioned
abstract
input states

sro sro

a i1 a i2 abstract
input states

f

f

Fig. 2: Our approach to check both general soundness (left) and preconditioned sound-
ness with the shared refinement operator (sro). Here, f is the concrete eBPF operation
and absg is the the abstract operator from the source code in the Linux eBPF verifier.
The dotted arrows indicate that a concrete value is a member of the abstract state
(e.g., xi

1 is a member of the abstract state ai
1).

2.2 Soundness Specification for eBPF Verifier’s Abstract Operators.

We provide a quick overview of our method to check soundness of an abstract
operator. A detailed treatment can be found in our CAV paper [63]. Given
a concrete eBPF operation f :C × C→C over the concrete domain C and an
abstract operator g:A × A→A over abstract states A, the operator g is sound
if ∀a1, a2 ∈ A : f(γ(a1), γ(a2)) ⊑C γ(g(a1, a2)).

We represent the fact that a concrete value x ∈ C is contained in the con-
cretization of the abstract a ∈ A with the formula memA(x, a). For example for
the s64 domain, mems64(x, a) ≜ (a.min ≤s64 x) ∧ (x ≤s64 a.max). The input-
output relationship of the abstract operator obtained from the verifier’s source
code is represented as ao = absg(a

i
1, a

i
2), where ai1 and ai2 are input abstract

values and ao is the output abstract value. The abstract operator absg corre-
sponding to the concrete operation f is sound when the formula in Equation 1
is valid.

∀xi
1, xi

2 ∈ C, ai1, a
i
2 ∈ A : memA(x

i
1, a

i
1) ∧memA(x

i
2, a

i
2) ∧

xo = f(xi
1, x

i
2) ∧ ao = absg(a

i
1, a

i
2) ⇒ memA(x

o, ao) (1)

We adapt the above soundness condition to account for five abstract do-
mains used by the eBPF verifier. We demonstrate it with two abstract domains
A1 and A2 where abstract values ai11 and ai21 are in domain A1, and abstract
values ai12 and ai22 are in domain A2. The concrete input xi

1 must be contained
in the concretization of the abstract values in domain A1. Hence, we assert

Fixing Unsoundness in the eBPF Verifier 7

memA1
(xi

1, a
i
11) ∧ memA2

(xi
1, a

i
12). We apply the same reasoning for xi

2. The
input-output relationship of the abstract operator from the eBPF verifier source
code for two domains can be represented as {ao1, ao2} = absg(a

i
11, a

i
12, a

i
21, a

i
22).

The abstract operator is sound if the concrete output is a subset of the concretiza-
tions of the abstract outputs in each domain, i.e., memA1

(xo, ao1)∧memA2
(xo, ao2).

The formula to check soundness with two abstract domains is shown below in
Equation 2.

∀xi
1, xi

2 ∈ C, ai11, ai21 ∈ A1, ai12, ai22 ∈ A2 :

memA1(x
i
1, a

i
11) ∧memA2(x

i
1, a

i
12) ∧memA1

(xi
2, a

i
21) ∧memA2

(xi
2, a

i
22)∧

xo = f(xi
1, x

i
2) ∧ {ao1, ao2} = absg(a

i
11, a

i
12, a

i
21, a

i
22)

⇒ (memA1(x
o, ao1) ∧memA2(x

o, ao2)) (2)

2.3 eBPF Verifier’s Input Preconditioning.

On checking various versions of the Linux eBPF verifier with the above speci-
fication, our Agni prototype discovered that some of the abstract operators are
indeed unsound. To get the attention of kernel developers, we had to determine if
this unsoundness can actually manifest with any concrete eBPF program. During
this exploration, we discovered that every abstract operator in the eBPF veri-
fier performs a shared suffix of refinement operations at the end (see Figure 2).
The purpose of this shared refinement operator is to combine information from
all abstract domains. The encoding absg obtained from the source code already
includes this shared refinement operator.

We discovered that the soundness specification above allowed any valid input
abstract state for the abstract operator. In contrast, the input abstract state
for any abstract operator is either the initial state (i.e., any concrete value or
a singleton known concrete value) or the output abstract state produced by
another abstract operator, which is preconditioned by the shared refinement
operator! Hence, we refined our soundness specification to precondition the input
abstract states based on this shared refinement operator (see [63]).

2.4 Experience Checking Various Kernel Versions.

Using the preconditioned soundness specification, we were able to check the
soundness of 23 versions of the eBPF verifier starting from v4.14 to v6.3. In
this process, we rediscovered numerous bugs, which were known to the devel-
opers with documented CVEs. Some of them were already fixed by the kernel
developers accidentally in unrelated patches. Table 2 reports the time taken for
verifying all abstract operators on average for various kernel versions.

Until kernel v5.19, we could check the soundness of these operators in a few
hours. The verification time starting from v5.19 increased to 36 hours. Starting
from v6.4, our queries to the SMT solver would timeout after running for a few

8 M. Shachnai et al.

concrete
inputs

 abstract
operator

shared
refinement
operator

abstract
output state

concrete
operator

concrete
output

x i1 x i2 a i1 a i2

opg

(from
eBPF
verifier C
source
code)

xo ao

abstract
input states

a i

ao

concrete
input

x i1

abstract
output state

sro

(from
eBPF
verifier C
source
code)

abstract
input state

Fig. 3: Our divide and conquer ap-
proach decouples the abstract operator
(⟨opg⟩) and the shared refinement op-
erator (⟨sro⟩) into two separate verifi-
cation conditions which we can verify,
both are extracted from kernel source
code. Since the shared refinement does
not relate any concrete operation, its
concrete input and output is the same.
The dotted arrow indicates that the
concrete value is a member of the ab-
stract state (e.g., xi

1 is a member of the
abstract state ai

1).

weeks. We observed that there were multiple updates to the shared refined op-
erator, which increased its complexity, and is the likely cause of timeouts. While
many of our verification queries resulted in timeouts (i.e. abstract operators for
bpf_sub and bpf_and), we did find that six abstract operators—bpf_and, bpf_or,
bpf_xor, bpf_and_32, bpf_or_32, and bpf_xor_32—were unsound using our general
soundness specification.

At this point we faced two significant problems; (1) our verification methodol-
ogy was too slow to see wider adoption, and (2) some of these abstract operators
were unsound when using our general soundness specification. To tackle the first
problem, we wanted to explore a divide and conquer strategy that would allow
us to split the abstract operator into smaller parts which we could verify.

3 A Divide and Conquer Approach for Verification

Intuitively, an abstract operator in the verifier can be considered as a composi-
tion of two sub-operators, ⟨absg⟩ = ⟨opg⟩·⟨sro⟩, where ⟨opg⟩ is executed followed
by ⟨sro⟩. Here ⟨opg⟩ represents the unique part of the abstract operator that up-
dates abstract domains according to the specific operator (i.e. addition, multipli-
cation, bitwise-and, bitwise-right-shift, etc.) and ⟨sro⟩ represents the refinement
operator that is shared across all abstract operators (i.e. the shared refinement
operator). Starting from v6.4, our verification paradigm [63]—generating a sin-
gle large verification condition for ⟨opg⟩ · ⟨sro⟩—was no longer viable since it
would take weeks for the verification process to finish. Hence we needed a new
approach for faster verification.

The compositional nature of abstract operators in the verifier presented an
opportunity for quicker verification. Our key insight here, depicted in Figure 3,
is that we could decouple ⟨opg⟩ and ⟨sro⟩ and generate verification conditions
for them, then prove their correctness separately.

Fixing Unsoundness in the eBPF Verifier 9

Soundness specification for ⟨opg⟩. Our primary strategy for proving the
correctness of the latest abstract operators in the eBPF verifier is to split the
task into smaller subtasks and individually verify their correctness. The sound-
ness specification for opg is similar to the one in Equation 2, except that absg
is replaced by opg such that {ao1, ao2} = opg(a

i
11, a

i
12, a

i
21, a

i
22). The formula in

Equation 3 below illustrates this minor change for two abstract domains:

∀xi
1, xi

2 ∈ C, ai11, ai21 ∈ A1, ai12, ai22 ∈ A2 :

memA1
(xi

1, a
i
11) ∧memA2

(xi
1, a

i
12) ∧memA1

(xi
2, a

i
21) ∧memA2

(xi
2, a

i
22)∧

xo = f(xi
1, x

i
2) ∧ {ao1, ao2} = opg(a

i
11, a

i
12, a

i
21, a

i
22)

⇒ (memA1
(xo, ao1) ∧memA2

(xo, ao2)) (3)

Soundness specification for ⟨sro⟩. We need to define what it means for the
shared refinement operator (i.e. sro) to be sound. We use sro(a) to denote the
abstract value that is the output of the shared refinement operator which we
extract from verifier source code. Note that sro(a) takes a single abstract input
and produces a single abstract output. Additionally, in contrast to an abstract
operator that has a corresponding concrete eBPF operator, the shared refinement
operator is not related to any concrete eBPF operation. Hence, we use an identity
function as the concrete operator in our soundness specification for sro. Given
concerete input xi that is contained in the concretization of abstract inputs ai1
and ai2, we say that shared refinement operator is sound if the concrete output
xo is contained within the concretization of resulting abstract outputs ao1 and
ao2. The formula to check the soundness of the shared refinement operator that
refines the output abstract state based on two abstract domains is shown below
in Equation 4.

∀xi ∈ C, ai1 ∈ A1, ai2 ∈ A2 : memA1
(xi, ai1) ∧memA2

(xi, ai2)∧
xo = xi ∧ {ao1, ao2} = sro(ai1, a

i
2) ⇒ (memA1

(xo, ao1) ∧memA2
(xo, ao2)) (4)

Overall, our divide and conquer verification approach produces smaller SMT
formulae for every abstract operator absg, and the single refinement operator sro.
Consequently, these formulae can be verified in a matter of minutes. However,
it requires each unique abstract operator opg to be sound so that we can reason
about the soundness of its composition with the refinement operator. Hence, we
started exploring why some operators were unsound and developed fixes that
correct these cases of unsoundness.

4 Making the eBPF Verifier’s Abstract Operators Sound

Now, our goal is to fix the unsound abstract operators, which will allow us
to individually check the soundness of the abstract operators separately from

10 M. Shachnai et al.

1 case bpf_and:
2 out.tnum = tnum_and(in1, in2);
3 out.s32, out.u32 = interval_and_32(in1, in2);
4 out.s64, out.u64 = interval_and_64(in1, in2);

(a)

1 def interval_and_64(in1, in2):
2 # ...
3 out.u64_min = in1.tnum.v;
4 out.u64_max = min(in1.u64_max,
5 in2.u64_max);
6 if (in1.s64_min < 0 ||
7 in2.s64_min < 0):
8 out.s64_min = INT64_MIN;
9 out.s64_max = INT64_MAX;

10 else:
11 out.s64_min = out.u64_min;
12 out.s64_max = out.u64_max;
13 # ...

(b)

Fig. 4: (a) An illustration of the sequence of calls that update the various abstract
domains. (b) The specific sequence of updates to the u64 and s64 domain that leads
to unsoundness in the abstract operator. Specifically, the signed domain is updated
by using the unsigned domain. However, the check on line 6 does not guarantee that
implicit casts from a 64-bit unsigned value to a 64-bit signed value (lines 11 and 12)
do not result in integer overflows.

the shared refinement operator. We use the Agni prototype [62] to just check
the abstract operator without the shared refinement operator with the general
soundness specification shown in Figure 2. Specifically, the prototype reports
that the bitwise operators, bpf_and, bpf_or, bpf_xor and their 32-bit coun-
terparts bpf_and_32, bpf_or_32, and bpf_xor_32 as unsound with the general
soundness specification. Agni’s models from SMT verification show that the out-
put abstract values for the s64 and s32 domains can be illformed (i.e. s64_min >

s64_max and s32_min > s32_max).

Figure 4a specifies the structure of the bitwise and abstract operation in
the eBPF verifier; the abstract operator updates all five abstract domains by
first updating its tnum domain using the respective tnum operation, then its 32-
bit interval domains and finally, its 64-bit interval domains. This structure is
important because the interval domains use the updated tnum domain to infer
new bounds, which is the precursor for unsoundness in the operator.

Figure 4b shows how the interval domains are updated in the eBPF verifier
for the bpf_and operator; first the lower bound of the unsigned 64-bit domain
is inferred from the value in the tnum domain (line 3). Then, the upper bound
of the output in the u64 domain (line 4) is inferred using the upper bounds of
the operands in the u64 domain. Finally, the abstract state for the s64 domain is
inferred based on the updated state from the u64 domain (lines 8-9 and 11-12).
When the lower bounds of the operands in the s64 domain are negative (line 6),
then the verifier sets the bounds to the entire range of the s64 domain, which
loses all precision (lines 8 and 9). This condition ensures that signed bounds are
inferred from the unsigned bounds only if both registers take on positive values

Fixing Unsoundness in the eBPF Verifier 11

(lines 11 and 12). However, this check is not correct and does not account for
potential signed integer overflows that may happen in lines 11 and 12.

The model from our Agni prototype indicates that the resulting abstract state
has unsound signed bounds (i.e., s64_min > s64_max). To reach such a state, the
input s64 abstract states should be positive which ensures that the else branch
is taken for the condition in line 6. Given that the u64 bounds are sound, u64_min
has to be greater than u64_max. The range of values represented by an unsigned
64-bit value is larger than a signed 64-bit value. Hence, the unsoundness occurs
when the most-significant bit (MSB) of u64_max is 1 (i.e., u64_max is greater than
or equal to 263) and the MSB of u64_min is 0 (i.e., u64_min is less than or equal
to 263 − 1). This snippet of code (line 6) is the root cause of the error.

There are three main cases that one needs to consider so that integer overflows
do not occur when an unsigned 64-bit value is assigned to a signed 64-bit value.
In the first case, u64_min ≤ u64_max ≤ 263−1. Both signed and unsigned values are
identical and positive and within their respective dynamic ranges. The current
check on line 6 in Figure 4b correctly handles this case. In the second case,
263 − 1 < u64_min ≤ u64_max. Although the value in the unsigned representation
exceeds the dynamic range of the signed 64-bit integer, both the lower bound and
the upper bound in the resulting signed 64-bit representation will be negative
values. The invariant s64_min < s64_max is still maintained. In the third case,
u64_min ≤ 263 − 1 < u64_max. When these unsigned 64-bit bounds are assigned
to signed 64-bit bounds, the s64_min bound will be positive (as u64_min is within
the signed 64-bit value’s dynamic range) and the s64_max will be negative. This
case is not handled by the check in line 6 of Figure 4b.

Our patch to fix the unsoundness in the abstract operators. Our patch
makes the abstract operator sound by correctly handling the above three cases.
Specifically, our insight is to assign the unsigned 64-bit bounds to signed 64-bit
bounds only when the invariant s64_min <= s64_max can be ensured. We replace
lines 6-12 with the following snippet in Listing 1.1.

1 if ((s64) out.u64_min <= (s64) out.u64_max):
2 out.s64_min = out.u64_min;
3 out.s64_max = out.u64_max;
4 else:
5 out.s64_min = INT64_MIN;
6 out.s64_max = INT64_MAX;

Listing 1.1: Our patch to fix the unsoundness in six of the eBPF verifier’s abstract
operators

When we checked the fixed abstract operator with the Agni prototype, it
reported that the patched operator is sound. Our corresponding patch that fixes
the unsoundness of the eBPF’s six abstract operators has been upstreamed to
the kernel [3] 1.

1 https://go.rutgers.edu/90ueywub

12 M. Shachnai et al.

5 C to Logic—Supporting New LLVM Constructs

To generate verification conditions for the eBPF verifier’s abstract operators,
the first step in Agni involves extracting the semantics of an abstract operator.
For each abstract operator, Agni automatically (a) converts the eBPF verifier’s
C code into LLVM IR, (b) obtains a slice of the eBPF verifier concerned with
the particular abstract operator, and (c) converts the LLVM IR into logic in
the SMT-LIB format using our LLVMToSMT compiler pass. Due to significant
changes to the verifier’s C code, the LLVMToSMT pass had to be re-engineered.
This section discusses the details of these changes. We first begin with a refresher
of the LLVMToSMT pass, and then proceed to discuss the LLVM new constructs
that needed to be supported.

5.1 The LLVMToSMT Pass

liveOnEntry:
a: [a0, a1, a2, a3, a4]
b: [b0, b1, b2, b3, a4]

Fig. 5: Array of bitvectors for
inputs a and b modeling the
view of memory on function
entry (bitvectors in blue).

The LLVMToSMT pass encodes the semantics of
an abstract operator in the theory of bitvectors.
The eBPF verifier’s five abstract domains are en-
capsulated in a struct called reg_st. In general,
each abstract operator takes as input two reg_st

pointers (let’s say a and b), and updates the mem-
ory pointed to by them. We model each reg_st as
a tree (more simply, an array) of bitvectors. We
create an array of bitvectors on function entry,
corresponding to the input reg_st pointers a and
b. This represents the view of memory on function entry (Figure 5).

Effectively, each LLVM instruction of the abstract operator utilizes the bitvec-
tors from this array and generates formulas that uses them. On every LLVM
instruction that creates a temporary register in IR, we create a fresh bitvector
variable corresponding to that temporary register. For example, a load instruc-
tion %ld1 = load i64, i64* %gep1 might be encoded using the fresh bitvector
ld1 as (= ld1 b2), because a preceding getelementptr instruction calculated the
address of %gep1 as the 3rd member of the input reg_st b (hence, b2). Most other
instructions only operated on single value types e.g. i32, i64. Encoding them
into formulas involves asserting that a fresh bitvector equals a combination of
existing bitvectors based on the instruction’s semantics. For example, a select

instruction on single value types that looks like %x1 = select i1 %cond, i1 %x2, i1

x3%, is encoded as ite (= cond #b1) (= x1 x2) (= x1 x3)2. The store instructions
create new views of memory, by modifying existing views of memory. LLVM-
ToSMT leverages LLVM’s MemorySSA [21] pass to figure out which memory
view a store modifies. Finally, the memory view that is active when encounter-
ing the ret instruction contains the output bitvectors for the kernel’s abstract
operators.

2 In SMT-LIB #b1 is a bitvector of length 1 that is equal to the value 1

Fixing Unsoundness in the eBPF Verifier 13

42 ...
43 %sel = select i1 %is_jmp32, %reg_st* %a, %reg_st* %b
44 %gep1 = getelementptr %reg_st, %reg_st* %sel, i64 0, i32 2
45 %ld1 = load i64, i32* %gep1
46 ...
47 %gep2 = getelementptr %reg_st, %reg_st* %sel, i64 0, i32 4
48 store i64 0, i64* %gep2

Listing 1.2: Code patterns in LLVM IR emitted by clang when compiling the newer
versions of the eBPF verifier. The IR involves a select instruction on pointer types.

5.2 Supporting new LLVM constructs

Starting from kernel v6.8-rc1 major changes were introduced to the register
state bounds update logic [48], which resulted in LLVM IR code patterns that
LLVMToSMT was not able to handle. We will consider the example of IR code
patterns that involved select instructions on pointer types for the purposes of
illustration. These instruction patterns were emitted by clang when compiling
the eBPF verifier function is_branch_taken [4]. This function takes as input two
reg_st pointers corresponding to the registers involved in a jump instruction and
aims to determine statically if either the goto or the fall-through branch will
always be taken at runtime. Importantly, this function involves conditionally
swapping the two input reg_st pointers. When compiled to LLVM IR, clang
emits the IR pattern in Listing 1.2 containing a select instruction that chooses
between two reg_st pointers a and b.

Supporting loads from select on pointer types. Let’s say the array of bitvec-
tors for each input to the function a and b look like the one in Figure 5 on function
entry. The select instruction (line 43) determines which of the two input reg_sts
is indexed by the subsequent getelementptr (line 44), depending on the result of a
condition (here, is_jmp32). That is, the bitvector corresponding to the load, ld1,
should be either equal to reg_st a’s 3rd bitvector a2, or reg_st b’s 3rd bitvector
b2. Thus, such a load instruction must be encoded with the following formula:
(ite (= is_jmp32 #b1) (= ld1 a2) (= ld1 b2)).

Supporting stores from select on pointer types. A store instruction like the
one on line 47 modifies the memory view. So, we first make a copy of the bitvec-
tors in liveOnEntry to associate with new memory view that the store creates.

MemoryDef(1):
a: [a0, a1, a2, a3, tempa]
b: [b0, b1, b2, b3, tempb]

Let’s say this memory view is called
MemoryDef(1). The store will update this mem-
ory view. The store instruction stores a value
at a memory location calculated by the pre-
ceding getelementptr instruction at line 44,
which in turn could be either at reg_st a or reg_st b, depending on the pre-
ceding select instruction. To handle this, we create new bitvectors tempa and
tempb and store them at location 4 in our new bitvector arrays corresponding to
MemoryDef(1).

14 M. Shachnai et al.

Now, additionally, we need a formula that asserts that the bitvectors tempa
and tempb at the specific locations for either bitvector arrays are set according to
the result of the boolean comparison that the select was based on (i.e.is_jmp32).
That is, if the is_jmp32 is true, a[4] will be updated, else it will remain unchanged.
If is_jmp32 is false, b[4] will be updated, else it will remain unchanged. The
formula we obtain is:
(ite (= is_jmp32 #b1) (= tempa a2) (= tempa #x0000000000000000))

(ite (= is_jmp32 #b0) (= tempb b2) (= tempb #x0000000000000000)) 3

Re-engineering LLVMToSMT. In addition to the above, the changes to
the eBPF verifier in v6.8-rc1, required the handling of phi instructions in IR
that choose between pointer types, (similar to select instructions on pointer
types). Encoding such IR instructions requires tracking the dependencies be-
tween the select, phi, getelementptr, and store (and load) instructions, as illus-
trated above. This required significantly re-engineering LLVMToSMT in order
to support newer versions of the abstract operators in the eBPF verifier.

6 Experience Verifying the Sound Patched Operators

We have significantly enhanced the Agni prototype [62] incorporating the feed-
back from the Linux kernel developers. A few kernel developers are actively
using our prototype. We are actively working to integrate it as part of the CI
process. To facilitate the possible integration into the CI process, we had to
change our verification condition generator for the abstract operators directly
from the eBPF verifier’s C source code to account for new features used by the
verifier. Further, we split the verification into smaller subtasks using a divide
and conquer approach which we call the new strategy henceforth. With our new
strategy we are able to verify that the latest abstract operators for value tracking
in kernel v6.8 are sound.

eBPF Before After
Instruction Patch? Patch?
bpf_and ✗ ✓

bpf_and_32 ✗ ✓

bpf_or ✗ ✓

bpf_or_32 ✗ ✓

bpf_xor ✗ ✓

bpf_xor_32 ✗ ✓

Table 1: Verification results for latent
unsound abstract operators in kernel
v6.8 with and without our patch ap-
plied. After applying our patch these
abstract operators become sound.

Our patches make the abstract op-
erators sound . We applied our fixes to
both the latest kernel version (v6.8) and
also to some of the older versions. Sub-
sequently, we tested these versions of the
eBPF verifier using the general soundness
specification in Agni. Prior to our patch,
bitwise operators (bpf_and/bpf_or/bpf_xor
and their 32-bit counterparts) were un-
sound. Table 1 shows that our patch was
able to fix the latent unsoundness in these
abstract operators. Apart from these op-
erators, other abstract operators were al-
ready sound even without the shared re-

3 In SMT-LIB #x0000000000000000 is a bitvector of length 64 equal to the value 0

Fixing Unsoundness in the eBPF Verifier 15

finement operator. Specifically our patches eliminate the need for doing sro-
preconditioned verification, which significantly improves verification time.

Improvements in verification time with our new strategy. Our divide and
conquer approach for verifying abstract operators in the eBPF verifier not only
allowed us to prove that recent versions are indeed sound with respect to value
tracking but it also significantly minimized verification runtime. Previously, when
we tried to verify these kernel versions we would encounter timeouts. Table 2
reports the time taken to verify all the abstract operators in the eBPF verifier for
value tracking. We conducted these experiments on the Cloudlab [36] framework,
using two 10-core machines with Intel Skylake CPUs running at 2.2 GHz and
192GB of RAM.

Kernel Old New
Version Strategy Strategy
4.14 ∼2.5 hrs <5 min
5.5 ∼2.5 hrs <5 min
5.9 ∼4 hrs <5 min
5.13 ∼10 hrs <5 min
5.19 ∼36 hrs <15 min
6.3 ∼36 hrs <15 min
6.4 Timeout <15 min
6.5 Timeout <15 min
6.6 Timeout <15 min
6.7 Timeout <15 min
6.8 Timeout <30 min

Table 2: Comparison of verification
runtime performance between our old
and new verification strategies. Times
indicated are for verifying all instruc-
tions in a single kernel version.

Our old strategy that performed sro-
preconditioned verification in the pres-
ence of latent unsound abstract opera-
tors was not able verify any kernel version
starting from v6.4. Further, it took signif-
icant time on kernel versions before v6.3.
Our new strategy is able to complete veri-
fication of all abstract operators in a given
version in less than 15 minutes. This re-
sult is very useful in making a case for in-
tegration into the CI process of the eBPF
verifier. Our new strategy, which requires
no latent unsoundness in the abstract op-
erators, is more robust to changes in the
verifier’s code. Kernel v6.8 introduced sig-
nificant changes to the verifier’s reduction
operator and made it significantly larger.
The Agni prototype using the old strat-
egy was seeing timeouts. In contrast, the Agni prototype with the new strategy
is able to verify all the operators of the latest eBPF verifier in less than 30 min-
utes, which also highlights the scalability and robustness of the new strategy in
handling extensive changes to the eBPF verifier.

Kernel developers are interested in using formal methods. Over the
last four years working on this project, we are grateful to continuous encourage-
ment and feedback from various Linux eBPF verifier developers. Without their
feedback, we would not have been able to upstream our patches that proposed
new algorithms for tnum multiplication [19] and made the abstract operators
sound [3]. A few of them have also been using the Agni prototype [1, 17, 18].
Our experience suggests that real world adoption of formal method tools re-
quires significant additional effort beyond the prototypes typically good enough
for a research publication. In summary, we encourage the community to develop
usable formal tools and collaborate with the eBPF verifier developers to push
them into production for real-world impact.

16 M. Shachnai et al.

7 Related Work

Our work uses and builds upon various seminal prior work on abstract interpre-
tation [30, 31, 33]. Our soundness formalization is influenced by prior work on
value tracking abstract domains [45,46,56]. When we tried to formalize the Linux
eBPF verifier’s method for combining abstract domains, we explored ideas by
Cousot on enhancing the precision of abstract domains with reduced products
and disjunctive completion domain refinements [29, 34], which has been later
improved by others [60]. A systematic survey on product abstract operators is
also available [28]. Our focus in this project has been to build on prior work so
that we can easily apply them for automatic reasoning of the eBPF verifier in
the Linux eBPF verifier.

This paper extends our previous work on Agni [63], which developed meth-
ods for automatically verifying the value tracking analysis in the eBPF verifier,
introducing sro preconditioned verification. While our prior work checked the
soundness of the eBPF verifier in Linux versions v4.14 to v5.19, it encountered
verification timeouts in newer versions and did not address the causes of latent
unsound abstract operators or propose fixes. In contrast, this paper introduces
a faster, divide-and-conquer verification approach that eliminates the need for
input preconditioning, investigates the causes of the latent unsoundness in the
abstract operators, and proposes fixes. Additionally, we extend our C-to-logic
framework to support new LLVM constructs, enabling the verification of ab-
stract operators in the latest Linux kernel version, v6.8.

This paper, along with our initial Agni prototype [63], is closely related to the
work by Bhat et al. [23], which also verifies value tracking in the eBPF verifier.
However, Bhat et al. formalize a limited set of abstract operators and do not
address the shared refinement operator or its underpinnings to soundness. Both
their work and our previous work report latent unsound operators in the eBPF
verifier. This paper, however, focuses on fixing latent unsound abstract operators
to enable fast verification, with the aim of integrating formal methods into the
continuous integration workflow of the Linux eBPF verifier.

In contrast to the Linux eBPF verifier’s approach of eBPF verification in a
live production kernel, the eBPF ecosystem in the Windows operating system
performs offline verification using extensions of the PREVAIL verifier [38] in
a secure user-mode environment. PREVAIL [38] uses relational zone abstract
domains and can potentially verify richer eBPF primitives such as loops in com-
parison to the Linux eBPF verifier’s verifier. It is unclear which of the two
approaches, the offline approach of the Windows eBPF framework or the in-
production verification in the Linux eBPF verifier, will become the dominant
approach in the future.

Beyond formal verification, there are fuzzers employed to find bugs in the
eBPF verifier. Recent work [58] generates structured eBPF programs that pass
the verifier and then checks sanitized programs for bug indicators during runtime
to discover potential verifier bugs. Beyond the verifier, there is significant work
on formalizing and finding bugs in the JIT engine of the eBPF ecosystem [49,
50,59,64,65], which is complementary to our work.

Fixing Unsoundness in the eBPF Verifier 17

8 Conclusion

The Linux eBPF verifier uses abstract interpretation to verify the safety of input
eBPF programs. Over the last four years, we have formalized various abstract
domains, operators, and their soundness. We have automatically verified the
soundness of the abstract operators by generating verification conditions directly
from C code of the Linux eBPF verifier. We have upstreamed a new abstract op-
erator for the tristate domain (tnums) and fixes to the latent unsoundness in six
abstract operators in interval domains. Making our tool usable by Linux eBPF
verifier developers through active collaboration has allowed them to explore the
feasibility of integrating our tools as part of the eBPF verifier’s continuous inte-
gration workflow. We hope that our experience encourages the formal methods
community to collaborate with Linux eBPF verifier developers for real-world
impact.

9 Acknowledgements

This paper is based upon work supported in part by the National Science Foun-
dation under FMITF-Track I Grant No. 2019302 and the Facebook Systems and
Networking Award. We thank the SAS reviewers and our shepherd, Sébastien
Bardin, for their valuable feedback and guidance. We thank Paul Chaignon for
his invaluable inputs and efforts to extend Agni. We also thank the kernel de-
velopers Andrii Nakryiko, Eduard Zingerman, Daniel Borkmann, and Alexei
Starovoitov for their feedback to our patches. We also thank CloudLab for pro-
viding the research testbed for our experiments.

References

1. Agni’s verification of kernel 6.4 takes weeks. https://github.com/bpfverif/agni/
issues/13

2. bpf: fix incorrect sign extension in check_alu_op(). https://github.com/
torvalds/linux/commit/95a762e2c8c942780948091f8f2a4f32fce1ac6f

3. bpf, Harden and/or/xor value tracking in verifier. https://git.kernel.org/pub/
scm/linux/kernel/git/bpf/bpf-next.git/commit/?id=1f586614f3ff

4. bpf, Register bounds logic and testing improvements. https://elixir.bootlin.
com/linux/v6.8-rc1/source/kernel/bpf/verifier.c

5. bpf, x32: Fix bug with ALU64 LSH, RSH, ARSH BPF_X shift by 0. https://
github.com/torvalds/linux/commit/68a8357ec15bdce55266e9fba8b8b3b8143fa7d2

6. Cilium API-aware networking and security. https://cilium.io/
7. CVE-2017-16996 Mishandling of register truncation. https://nvd.nist.gov/vuln/

detail/CVE-2017-16996
8. CVE-2017-17852 Mishandling of 32-bit ALU ops. https://nvd.nist.gov/vuln/

detail/CVE-2017-17852
9. CVE-2017-17853 Mishandling of 32-bit ALU ops. https://nvd.nist.gov/vuln/

detail/CVE-2017-17853
10. CVE-2017-17864 Mishandled comparison between pointer and unknown data

types. https://nvd.nist.gov/vuln/detail/CVE-2017-17864

18 M. Shachnai et al.

11. CVE-2018-18445 Mishandling of 32-bit RSH op. https://nvd.nist.gov/vuln/
detail/CVE-2018-18445

12. CVE-2020-8835 Mishandling of bounds tracking for 32-bit JMPs. https://nvd.
nist.gov/vuln/detail/CVE-2020-8835

13. CVE-2021-3490 The eBPF ALU32 bounds tracking for bitwise ops (AND, OR and
XOR) in the Linux kernel did not properly update 32-bit bounds. CVE-2021-3490

14. Facebook’s Katran load balancer: Kernel XDP program. https://github.com/
facebookincubator/katran/blob/master/katran/lib/bpf/balancer_kern.c

15. Netconf 2018 day 1. https://lwn.net/Articles/757201/
16. Suricata: ebpf and xdp. https://suricata.readthedocs.io/en/latest/

capture-hardware/ebpf-xdp.html

17. workflows: CI for the verification step . https://github.com/bpfverif/agni/
commit/18b7513facda0d6f57e69c293f9a494ede683be7

18. workflows: Initial CI for the LLVM-to-SMT step . https://github.com/bpfverif/
agni/commit/a30260d2b8c4c14f356f9501c4a9dac28f768f5d

19. bpf, tnums: Provably sound, faster, and more precise algorithm for tnum_mul.
[Online, Retrieved Oct 19, 2022.] https://git.kernel.org/pub/scm/linux/kernel/
git/bpf/bpf-next.git/commit/?id=05924717ac70 (2021)

20. New GKE Dataplane V2 increases security and visibility for contain-
ers. https://cloud.google.com/blog/products/containers-kubernetes/
bringing-ebpf-and-cilium-to-google-kubernetes-engine (2021)

21. LLVM’s MemorySSA. https://llvm.org/docs/MemorySSA.html (2023)
22. Verifying the Verifier: eBPF Range Analysis Verification (Apr 2023).

https://doi.org/10.5281/zenodo.7931901
23. Bhat, S., Shacham, H.: Formal verification of the linux kernel ebpf

verifier range analysis. https://sanjit-bhat.github.io/assets/pdf/
ebpf-verifier-range-analysis22.pdf (2022)

24. Borkmann, D.: bpf: Fix scalar32_min_max_or bounds tracking. https://github.
com/torvalds/linux/commit/5b9fbeb75b6a98955f628e205ac26689bcb1383e (2020)

25. Borkmann, D.: bpf: Undo incorrect __reg_bound_offset32 handling.
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/
commit/?id=f2d67fec0b43edce8c416101cdc52e71145b5fef (2020)

26. Borkmann, D.: bpf: Fix alu32 const subreg bound tracking on bitwise opera-
tions. https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/commit/
?id=049c4e13714ecbca567b4d5f6d563f05d431c80e (2021)

27. Borkmann, D.: bpf: Fix signed_sub,add32_overflows type handling.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=bc895e8b2a64e502fbba72748d59618272052a8b (2021)

28. Cortesi, A., Costantini, G., Ferrara, P.: A Survey on Product Operators in Abstract
Interpretation. Electronic Proceedings in Theoretical Computer Science 129, 325–
336 (sep 2013). https://doi.org/10.4204/eptcs.129.19

29. Cousot, P., Cousot, R.: Higher-order abstract interpretation (and application
to comportment analysis generalizing strictness, termination, projection and
per analysis of functional languages). In: Proceedings of 1994 IEEE Inter-
national Conference on Computer Languages (ICCL’94). pp. 95–112 (1994).
https://doi.org/10.1109/ICCL.1994.288389

30. Cousot, P.: Abstract Interpretation Based Formal Methods and Future Chal-
lenges, pp. 138–156. Springer Berlin Heidelberg, Berlin, Heidelberg (2001).
https://doi.org/10.1007/3-540-44577-3_10

Fixing Unsoundness in the eBPF Verifier 19

31. Cousot, P.: Lecture 13 notes: Mit 16.399, abstract interpretation.
http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/lecture_
13-abstraction1/Cousot_MIT_2005_Course_13_4-1.pdf (2005)

32. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In:
Proceedings of the 2nd International Symposium on Programming, Paris, France.
pp. 106–130. Dunod (1976)

33. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages. p. 238–252. POPL ’77, Association for Computing Machinery, New
York, NY, USA (1977). https://doi.org/10.1145/512950.512973

34. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages. p. 269–282. POPL ’79, Association for Computing Machin-
ery, New York, NY, USA (1979). https://doi.org/10.1145/567752.567778

35. Cree, E.: bpf/verifier: fix bounds calculation on BPF_RSH. https:
//git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/
?id=4374f256ce8182019353c0c639bb8d0695b4c941 (2017)

36. Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J., Eide, E., Stoller, L.,
Hibler, M., Johnson, D., Webb, K., Akella, A., Wang, K., Ricart, G., Landwe-
ber, L., Elliott, C., Zink, M., Cecchet, E., Kar, S., Mishra, P.: The design and
operation of cloudlab. In: Proceedings of the 2019 USENIX Conference on Usenix
Annual Technical Conference. p. 1–14. USENIX ATC ’19, USENIX Association,
USA (2019)

37. Fabre, A.: L4drop: Xdp ddos mitigations. https://blog.cloudflare.com/
l4drop-xdp-ebpf-based-ddos-mitigations/

38. Gershuni, E., Amit, N., Gurfinkel, A., Narodytska, N., Navas, J.A., Rinet-
zky, N., Ryzhyk, L., Sagiv, M.: Simple and precise static analysis of untrusted
linux kernel extensions. In: Proceedings of the 40th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. p. 1069–1084.
PLDI 2019, Association for Computing Machinery, New York, NY, USA (2019).
https://doi.org/10.1145/3314221.3314590

39. Gregg, B.: Bpf performance analysis at netflix. https://www.slideshare.net/
brendangregg/reinvent-2019-bpf-performance-analysis-at-netflix

40. Horn, J.: Arbitrary read+write via incorrect range tracking in ebpf. https://bugs.
chromium.org/p/project-zero/issues/detail?id=1454

41. Horn, J.: bpf: fix 32-bit ALU op verification. https://git.
kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
468f6eafa6c44cb2c5d8aad35e12f06c240a812a (2017)

42. Horn, J.: bpf: 32-bit RSH verification must truncate input before the
ALU op. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/commit/?id=b799207e1e1816b09e7a5920fbb2d5fcf6edd681 (2018)

43. Lucas Leong: ZDI-20-1440: An incorrect calculation bug in the linux ker-
nel eBPF verifier. https://www.zerodayinitiative.com/blog/2021/1/18/
zdi-20-1440-an-incorrect-calculation-bug-in-the-linux-kernel-ebpf-verifier

44. Manfred Paul: CVE-2020-8835: Linux kernel privi-
lege escalation via improper eBPF program verification.
https://www.zerodayinitiative.com/blog/2020/4/8/cve-2020-8835-linux-kernel-
privilege-escalation-via-improper-ebpf-program-verification

20 M. Shachnai et al.

45. Miné, A.: Abstract domains for bit-level machine integer and floating-point oper-
ations. In: WING’12 - 4th International Workshop on invariant Generation. p. 16.
Manchester, United Kingdom (Jun 2012), https://hal.science/hal-00748094

46. Miné, A.: Tutorial on static inference of numeric invariants by abstract interpre-
tation. Foundations and Trends® in Programming Languages 4(3-4), 120–372
(2017). https://doi.org/10.1561/2500000034

47. Monniaux, D.: Verification of device drivers and intelligent controllers: a case study.
In: Proceedings of the 7th ACM & IEEE international conference on Embedded
software. pp. 30–36 (2007). https://doi.org/10.1145/1289927.1289937

48. Nakryiko, A.: BPF register bounds logic and testing improvements.
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/commit/
?id=cd9c127069c0 (2023)

49. Nelson, L., Bornholt, J., Gu, R., Baumann, A., Torlak, E., Wang, X.: Scaling
symbolic evaluation for automated verification of systems code with serval. In:
Proceedings of the 27th ACM Symposium on Operating Systems Principles. p.
225–242. SOSP ’19, Association for Computing Machinery, New York, NY, USA
(2019). https://doi.org/10.1145/3341301.3359641

50. Nelson, L., Van Geffen, J., Torlak, E., Wang, X.: Specification and verification in
the field: Applying formal methods to bpf just-in-time compilers in the linux kernel.
In: Proceedings of the 14th USENIX Conference on Operating Systems Design and
Implementation. OSDI’20, USENIX Association, USA (2020)

51. Onderka, J., Ratschan, S.: Fast three-valued abstract bit-vector arithmetic. In: Ver-
ification, Model Checking, and Abstract Interpretation: 23rd International Confer-
ence, VMCAI 2022, Philadelphia, PA, USA, January 16–18, 2022, Proceedings. p.
242–262. Springer-Verlag, Berlin, Heidelberg (2022). https://doi.org/10.1007/978-
3-030-94583-1_12

52. Palmiotti, V.: Kernel pwning with eBPF: a love story. https://www.
graplsecurity.com/post/kernel-pwning-with-ebpf-a-love-story

53. Regehr, J., Duongsaa, U.: Deriving abstract transfer functions for analyzing em-
bedded software. In: Proceedings of the 2006 ACM SIGPLAN/SIGBED Confer-
ence on Language, Compilers, and Tool Support for Embedded Systems. p. 34–43.
LCTES ’06, Association for Computing Machinery, New York, NY, USA (2006).
https://doi.org/10.1145/1134650.1134657

54. Rick Larabee: eBPF and Analysis of the get-rekt-linux-hardened.c Ex-
ploit for CVE-2017-16995. https://ricklarabee.blogspot.com/2018/07/
ebpf-and-analysis-of-get-rekt-linux.html

55. Shirokov, N.V.: XDP: 1.5 years in production. Evolution and lessons learned. In:
Linux Plumbers Conference (2018)

56. Singh, G., Püschel, M., Vechev, M.: Fast polyhedra abstract domain. In: Pro-
ceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages. p. 46–59. POPL ’17, Association for Computing Machinery, New York,
NY, USA (2017). https://doi.org/10.1145/3009837.3009885

57. Starovoitov, A.: Bpf at facebook. https://kernel-recipes.org/en/2019/talks/
bpf-at-facebook/

58. Sun, H., Xu, Y., Liu, J., Shen, Y., Guan, N., Jiang, Y.: Finding cor-
rectness bugs in ebpf verifier with structured and sanitized program. In:
Proceedings of the Nineteenth European Conference on Computer Systems.
p. 689–703. EuroSys ’24, Association for Computing Machinery, New York,
NY, USA (2024). https://doi.org/10.1145/3627703.3629562, https://doi.org/10.
1145/3627703.3629562

Fixing Unsoundness in the eBPF Verifier 21

59. Van Geffen, J., Nelson, L., Dillig, I., Wang, X., Torlak, E.: Synthesizing
jit compilers for in-kernel dsls. In: Lahiri, S.K., Wang, C. (eds.) Computer
Aided Verification. pp. 564–586. Springer International Publishing, Cham (2020).
https://doi.org/10.1007/978-3-030-53291-8_29

60. Venet, A.: Abstract cofibered domains: Application to the alias analysis of un-
typed programs. In: Cousot, R., Schmidt, D.A. (eds.) Static Analysis. pp. 366–382.
Springer Berlin Heidelberg, Berlin, Heidelberg (1996). https://doi.org/10.1007/3-
540-61739-6_53

61. Vishwanathan, H., Shachnai, M., Narayana, S., Nagarakatte, S.: Sound,
precise, and fast abstract interpretation with tristate numbers. In: Pro-
ceedings of the 20th IEEE/ACM International Symposium on Code Gen-
eration and Optimization. p. 254–265. CGO ’22, IEEE Press (2022).
https://doi.org/10.1109/CGO53902.2022.9741267

62. Vishwanathan, H., Shachnai, M., Narayana, S., Nagarakatte, S.: Agni: Verifying
the Verifier (eBPF Range Analysis Verification). https://github.com/bpfverif/
ebpf-range-analysis-verification-cav23 (2023)

63. Vishwanathan, H., Shachnai, M., Narayana, S., Nagarakatte, S.: Verifying
the verifier: ebpf range analysis verification. In: Computer Aided Verification:
35th International Conference, CAV 2023, Paris, France, July 17–22, 2023,
Proceedings, Part III. p. 226–251. Springer-Verlag, Berlin, Heidelberg (2023).
https://doi.org/10.1007/978-3-031-37709-9_12

64. Wang, X., Lazar, D., Zeldovich, N., Chlipala, A., Tatlock, Z.: Jitk: A trustwor-
thy in-kernel interpreter infrastructure. In: Proceedings of the 11th USENIX Con-
ference on Operating Systems Design and Implementation. p. 33–47. OSDI’14,
USENIX Association, USA (2014)

65. Xu, Q., Wong, M.D., Wagle, T., Narayana, S., Sivaraman, A.: Synthesizing safe and
efficient kernel extensions for packet processing. In: Proceedings of the 2021 ACM
SIGCOMM 2021 Conference. p. 50–64. SIGCOMM ’21, Association for Computing
Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3452296.3472929

