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This paper describes our experience developing polynomial approximations for trigonometric func-
tions that produce correctly rounded results for multiple representations and rounding modes using
the RLIBM approach. A key challenge with trigonometric functions concerns range reduction with
π , which reduces a given input in the domain of a 32-bit float to a small domain. Any rounding error
in the value of π is amplified during range reduction, which can result in wrong results. We describe
our experience implementing fast range reduction techniques that maintain a large number of bits of
π both with floating-point and integer computations. The resulting implementations for trigonomet-
ric functions are fast and produce correctly rounded results for all inputs for multiple representations
up to 32-bits with a single implementation.

1 Introduction

Scientific computing extensively uses elementary functions (e.g., ex) provided by math libraries. Pro-
ducing correctly rounded results for all inputs for elementary functions is challenging (i.e., table-maker’s
dilemma [14]). Hence, mainstream math libraries do not produce correct results for all inputs. The lack
of correctly rounded math libraries can make the application non-portable and can cause reproducibility
issues. An application can produce totally different results on two different machines.

A common approach to develop math libraries is to generate minimax polynomial approximations [7,
20], which minimize the maximum error across all inputs with respect to the real value. Eventually, the
real coefficients of the generated polynomial are rounded to a hardware supported FP representation [6,
5]. By using polynomial approximations with sufficiently large degrees, such minimax approaches can
generate correctly rounded elementary functions for a single representation [9].

As an alternative, our RLIBM project [19, 17, 18, 1] makes a case for approximating the correctly
rounded result directly rather than the real value of an elementary function. The RLIBM project uses the
MPFR high-precision math library [12] as the oracle and focuses on generating efficient implementations
given the oracle result. Once the oracle correctly rounded result for a given input is known, the main
insight in the RLIBM project is that there is an interval of real values around the correctly rounded result
such that producing any real value in this interval rounds to the correctly rounded result. With the RLIBM

approach, the freedom available to the polynomial generation step is larger than the freedom available
with minimax methods (i.e., it is 1 units in the last place, ULP, for all inputs). In contrast, minimax
methods have significantly smaller freedom when the real-valued output of an elementary function is
very close to the rounding boundary (e.g., midpoint of two FP values with round to nearest modes) [15,
29]. Using the interval around the correctly rounded result, the RLIBM project structures the task of
generating a polynomial of degree d that produces correctly rounded results for all inputs as a linear
program (LP) (i.e., a system of linear inequalities). It uses an LP solver to identify the coefficients [1, 2].

With the increased use of custom formats [23, 28], the RLIBM project proposes a novel idea to
generate a single polynomial approximation that produces correctly rounded results for multiple rep-
resentations and rounding modes [19], which can serve as a reference library. To generate correctly
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rounded results for FP representations with up to n-bits that have E-bits for the exponent, the key insight
is to generate a polynomial approximation that produces correctly rounded results for a representation
with (n+ 2)-bits with the round-to-odd rounding mode [19]. When such a result is double rounded to
the target representation, it produces correct results for representations with k bits, where E +2≤ k ≤ n,
and for all standard rounding modes.

We have been trying to generate fast correctly rounded trigonometric functions with the RLIBM

approach for a few years. We were not successful earlier because we did not know how to perform both
correct and efficient range reduction for these functions. The excellent reference on elementary functions
by Muller [21] describes algorithms for range reduction for trigonometric functions. However, naïvely
implementing these algorithms can slow down resulting implementations by 2-3× when compared to
final fast implementations that we describe in this paper. Further, it is necessary to compute with a large
number of digits of π efficiently. When we maintained an insufficient number of bits of π , numerical
errors in range reduction performed with double precision often resulted in conflicting constraints in the
linear program generated with the RLIBM approach.

The first step for generating any correctly rounded elementary function is range reduction, which re-
duces an input in the domain of floating-point (FP) to a small domain where a polynomial approximation
is feasible. A key challenge with range reduction for trigonometric functions is that one would need to
maintain a large number of bits of 1

π . Given an input x, one can perform range reduction as x′ = |x|− kπ
to produce the reduced input x′ ∈ [0,π), where k = b |x|π c. Alternatively, one can also perform a symmet-
ric range reduction x− kπ using k = [ x

π ], where [ x
π ] computes the nearest integer when x

π is rounded, to
obtain x′ ∈ [−π

2 ,
π
2 ]. If such range reduction is applied using just 64-bits of 1

π , the reduced input will have
no accurate bits when x is a large number.

This paper describes our experience exploring efficient range reduction techniques for trigonometric
functions, which is performed using a combination of FP and integer operations, for generating a sin-
gle polynomial approximation that produces correct results for all inputs with multiple representations
and rounding modes. Although the core algorithms for range reduction of trigonometric functions are
well-known [24, 21, 22, 11, 27, 9, 10, 26, 16, 8], the challenge is in efficiently implementing them with
sufficient accuracy to produce correctly rounded results for all inputs. We observe that efficient range
reduction is as important or more important than low-degree polynomial approximations for trigonomet-
ric functions. We describe the algorithms and evaluate the performance implications of various range
reduction techniques. We believe this exposition will help future implementers of math libraries. Using
these range reduction techniques, we have implemented correctly rounded trigonometric functions where
a single implementation produces correctly rounded results for multiple representations from 10-bits to
32-bits for all the standard rounding modes. It is faster or similar in performance compared to main-
stream libraries and other correctly rounded libraries. Our integer-based range reduction improves the
performance by 19% when compared to our FP-based strategy. In summary, the efficient range reduction
methods described in this paper enabled us to generate correct and fast trigonometric functions after
multiple years of trying to use the RLIBM approach for these functions.

2 Background on the RLIBM Approach

The RLIBM approach [17, 18, 19, 1] assumes the existence of an oracle that provides correctly rounded
results (e.g., the MPFR library) and focuses on generating efficient implementations. Given the oracle
result, the RLIBM project makes a case for approximating the correctly rounded result rather than the
real value of an elementary function. Typically, the implementation of a correctly rounded function for
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Figure 1 (A) The rounding interval of a correctly rounded result v2. (B) The round-to-odd mode
illustrated with a 34-bit FP representation. (C) Intuition on why the round-to-odd result has the
same rounding bit, sticky bit, and truncated value (v1) as rounding a real value directly to a target
representation.
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Ci’s) of a polynomial that satisfies these inequalities. Hence, the RLibm project frames the157

problem of generating correct elementary functions as a linear program and uses an LP solver158

to solve it.159
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[≠1, 1]) are important. This step is called range reduction. The original input x is range162
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result for xÕ, which is then output compensated to compute the final correctly rounded164

output for x. Both range reduction and output compensation happen in the double precision165

representation and can experience numerical errors, which should not a�ect the generation166

of correctly rounded results. Thus, it is necessary to deduce intervals for the reduced domain167
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Figure 1: (A) The rounding interval of a correctly rounded result v2. (B) The linear inequality generated with the
RLIBM approach to produce the correctly rounded result for an input x given the rounding interval [l,h].

(A) Round to odd-mode with a 34-bit FP (B) Why round-to-odd mode makes double rounding innocuous 

Figure 2: (A) Illustration of round-to-odd rounding mode with a 34-bit FP representation. (B) Intuition on why
double rounding is innocuous with the round-to-odd mode. Rounding the round-to-odd result to a target represen-
tation has the same truncated value, rounding bit, and sticky bit as rounding that real value directly to the given
target representation.

a 32-bit float representation uses the 64-bit double precision representation internally. After a correctly
rounded result for a 32-bit float input is available using an oracle, the RLIBM project observes that there
is an interval of values in the double precision representation around the correctly rounded result such
that any value in that interval rounds to the correctly rounded value (see Figure 1(A)). This interval is
called the rounding interval. The rounding interval is represented as [l,h], where l is the lower bound
and h is the upper bound. When the goal is to generate a polynomial of degree d with d + 1 terms, the
rounding interval implies a linear constraint on the result of the polynomial evaluation for a given input x
as shown in Figure 1(B). A 32-bit representation has 232 inputs and the RLIBM project generates a system
of linear inequalities corresponding to the 32-bit inputs and their respective rounding intervals. Now, the
task of generating a correctly rounded function boils down to the task of identifying the coefficients (i.e.,
Ci’s) of a polynomial that satisfies these inequalities. Hence, the RLIBM project frames the problem of
generating correct elementary functions as a linear program and uses an LP solver to solve it.

Range reduction techniques that reduce the original input from the domain of a 32-bit float represen-
tation (i.e., [2−149,2128)) to a small domain (e.g., [−1,1]) are crucial to generate approximations. The
original input x is range reduced to x′. The polynomial approximation computes the result for x′. The
result is output compensated to produce the final output for x. Both range reduction and output compen-
sation are performed in the double precision representation and can have numerical errors. To account
for the numerical errors, the RLIBM project deduces intervals for the reduced domain such that the poly-
nomial evaluation over the reduced input produces correct results for the original inputs. The RLIBM

project uses the inverse of the output compensation function to infer the reduced rounding intervals.
Finally, a system of linear inequalities corresponding to the reduced inputs and the reduced rounding
intervals are solved using an LP solver iteratively to identify coefficients of a polynomial of degree d.

Multiple representations and rounding modes. The RLIBM approach described till now produces
correctly rounded results for all inputs for a single representation and a single rounding mode. There are
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four rounding modes in the standard. Further, many new representations that vary either the dynamic
range or the precision are being proposed (e.g., bfloat16, tensorfloat32, FP8). A single implementation
that provides correct results for these representations is appealing as a reference library. One approach
to generate a single approximation for multiple representations is to use a correctly rounded function
designed for a higher precision representation. Then, round the result to the target representation. How-
ever, it produces wrong results for some inputs because of double rounding errors. The first rounding
happens when the real value is rounded to produce the correctly rounded result of a higher precision
representation. The second rounding happens when that result is rounded to the target representation.

The RLIBM project has proposed a method to generate a single polynomial approximation that pro-
duces correctly rounded results for all FP representations up to n-bits [19]. The key idea is to generate
a polynomial for the (n+2)-bit representation (which has 2 additional precision bits compared to the n-
bit representation) using the round-to-odd rounding mode. The round-to-odd result with two additional
precision bits retains all necessary information to produce the correct results for any representation up to
n-bits. In the round-to-odd mode [4, 13], if a real value is exactly representable by the target representa-
tion, we represent it with that value. Otherwise, the value is rounded to an adjacent floating point value
whose bit-pattern is odd when interpreted as an integer. Figure 2(A) illustrates the round-to-odd mode.
To understand why double rounding with the round-to-odd mode produces correct results, we have to
first understand how rounding works. Typically, we need three pieces of information when rounding a
real value to an n-bit FP representation: (1) the first n-bits of the real value in the binary representation,
(2) the (n+1)th-bit known as the rounding bit, and (3) the result of the bitwise OR of all the remaining
bits, known as the sticky bit. When we round a real value to a (n+2)-bit representation using the round-to-
odd mode, the round-to-odd result precisely maintains the same three pieces of information as rounding
the real value directly to the target representation of a lower bitwidth as shown in Figure 2(B). Hence,
subsequent rounding of the round-to-odd result to a representation with less than or equal to n-bits pro-
duces the correct result. This ability to produce correctly rounded results for multiple representations and
rounding modes with a single polynomial approximation is feasible because the RLIBM project directly
approximates the correctly rounded result rather than the real value.

3 Fast Range Reduction with Sufficient Accuracy

We describe range reduction techniques and implementation choices that finally enabled us to build fast
and correct trigonometric functions with the RLIBM approach. During range reduction, the original
input x in the domain of a 32-bit float is mapped to a reduced input x′. This process involves π (i.e.,
x′ = x− kπ/2t). For large values of x, we need to maintain a large number of bits of 2t

π . We then need to
perform computation with them efficiently to identify k = [2t x

π ] and the reduced input. If we just maintain
64 precision bits, then the reduced input is either 0 (for large inputs) or significantly wrong (for other
inputs). This range reduction is extremely challenging when the goal is to produce correctly rounded
results for all inputs while providing good performance! Existing libraries make trade-offs either with
performance (e.g., Payne-Hanek implementations [24]) or correctness (e.g., GCC’s libm). Trigonometric
functions are periodic functions with a period of 2π . Hence, the range reduction produces a reduced input
x′ ∈ [− π

2t+1 ,
π

2t+1 ] given the original input x ∈ [−∞,∞] using periodicity, where t is an integer greater than
or equal to 0. Effectively,

x = x′+ kπ/2t



S. Park & S. Nagarakatte 5

To perform the above range reduction, the key task involves computing an integer k = [ x
π
2t
] = [2t x

π ]. Using

k, one can compute a reduced input in [− π
2t+1 ,

π
2t+1 ] as shown below.

r =
2tx
π
− k, x′ = x− k

π
2t =

π
2t

(
2tx
π
− k

)
=

π
2t r (1)

These identities hold when the computation is performed with real numbers. For this range reduction,
we need to perform computations involving 2t

π . Doing so requires maintaining a large number of bits of
2t

π . Without maintaining sufficient digits of 2t

π , the resulting reduced input will have very few accurate
bits. This is because most of the leading bits will be canceled when x is close to a multiple of π

2t and
the remaining bits will be influenced by rounding. This problem is extremely severe when x is a large
number. If we maintain 256

π using only 64 bits, assuming t = 8, then the reduced input will be 0 for all
inputs when 280 ≤ x. This is because all the 64 precision bits of 256

π would contribute to k, leaving no
bits available for the fractional piece r = 256x

π − k.
Range reduction for sin(x). As described above, the main objective of range reduction for sin(x)

is to transform a given input x ∈ [−∞,∞] into a reduced input x′ ∈ [− π
2t+1 ,

π
2t+1 ]. Leveraging the formula

x = k π
2t + x′ and the trigonometric property sin(a+ b) = sin(a)cos(b)+ cos(a)sin(b), we can compute

sin(x) as follows.

sin(x) =sin
(

kπ
2t + x′

)
= sin

(
kπ
2t

)
cos(x′)+ cos

(
kπ
2t

)
sin(x′) (2)

Equation 2 reduces the task of generating a polynomial approximation of sin(x) for an input x ∈
[−∞,∞] to generating approximations of sin(x′) and cos(x′) for the reduced input x′ ∈ [− π

2t+1 ,
π

2t+1 ]. Once
we choose a value for t (e.g., t = 8 and we generate a reduced input in [− π

512 ,
π

512 ]), the output compensa-
tion formula in Equation 2 requires us to precompute the tables for sin( kπ

2t ) and cos( kπ
2t ) for all possible

values of k. One issue in precomputing these tables is that the set of possible values of k can be very
large. We leverage the periodicity and symmetry of sin(x) and cos(x) to reduce the number of necessary
precomputed values.

Specifically, sin(x) = sin(x− 2mπ) and cos(x) = cos(x− 2mπ) for any integer m. Applying this
property to sin( kπ

2t ) and cos( kπ
2t ) in Equation 2 leads to a significant reduction in table sizes.

m = b k
2t+1 c, k′ = k−2t+1m (3)

sin
(

kπ
2t

)
=sin

(
kπ
2t −2mπ

)
= sin

(
k−2t+1m

2t π
)
= sin

(
k′π
2t

)
(4)

cos
(

kπ
2t

)
=cos

(
kπ
2t −2mπ

)
= cos

(
k−2t+1m

2t π
)
= cos

(
k′π
2t

)
(5)

Applying Equation 4 and Equation 5 to Equation 2, we get

sin(x) = sin
(

k′π
2t

)
cos(x′)+ cos

(
k′π
2t

)
sin(x′) (6)



6 Fast Trigonometric Functions using the RLIBM Approach

A total of 2t+2 precomputed values are necessary at this point (2t+1 each for sin( k′π
2t ) for cos( k′π

2t )),
since k′ ∈ [0,2t+1). If t = 8, then would need a total of 1024 precomputed values. We further reduce
the number of required table entries to 512 by exploiting the property that cos( k′π

2t ) = sin( k′π
2t + π

2 ) =

sin( k′+2t−1

2t π). Using the same property as before, one can conclude that sin( k′+2t−1

2t π)= sin( k′+2t−1−2t+1n
2t π)

where n = b k+2t−1

2t+1 c. Since k′+ 2t−1− 2t+1n is in the range of k′, the table for sin( k′π
2t ) contains all the

possible values of cos( k′π
2t ). Algorithm 1a shows the sketch of the range reduction steps.

Range Reduction and Output Compensation for cos(x) and tan(x). The range reduction for
cos(x) is the same as that for sin(x) in that it reduces an input x ∈ [−∞,∞] to a reduced input x′ ∈
[− π

2t+1 ,
π

2t+1 ] while minimizing the number of precomputed values needed for output compensation.
The output compensation formula for cos(x) using k and x′ is as follows.

cos(x) =cos
(

kπ
2t + x′

)
= cos

(
kπ
2t

)
cos(x′)− sin

(
kπ
2t

)
sin(x′) (7)

Using the definitions of m and k′ defined in Equation 3 and the periodicity cos(x) = cos(x− 2mπ)
for any integral value of m, we can rewrite Equation 7 as follows.

cos(x) = cos
(

k′π
2t

)
cos(x′)− sin

(
k′π
2t

)
sin(x′) (8)

Since k′ ∈ [0,2t+1), we require a precomputed table of 2t+2 values in total (2t+1 for sin( k′π
2t ) and

2t+1 for cos( k′π
2t )). Similar to sin, we further reduce the size of the precomputed table to 2t+1 entries by

leveraging the property cos(x) = sin(x+ π
2 ). As the range of k′ is the same for both sin(x) and cos(x),

we use a single table containing all the possible values of sin( k′π
2 ) for the output compensation of both

functions. In summary, our range reduction strategy for cos(x) computes for each x an appropriate k′ and
x′, which reduces the original problem to approximating sin(x′) and cos(x′) for x′ ∈ [− π

2t+1 ,
π

2t+1 ]. Given

that tan(x) = sin(x)
cos(x) , we can also implement tan(x) using the range reduction and output computation

strategies described thus far and the precomputed values used for sin(x) and cos(x).

3.1 Efficient Range Reduction with FP Operations

The range reduction described above requires computing k = [256x
π ] and x′ = π

256(
256x

π − k) = π
256 r accu-

rately. For the inputs with relatively small absolute values (i.e., |x| ≤ π
128 ), direct polynomial approxi-

mation is possible and thus range reduction is not necessary. Range reduction, however, is required for
the remaining inputs to obtain an efficient polynomial approximation. Implementing Algorithm 1a for
these inputs requires computing 256x

π with low latency while maintaining a large number of bits of 256
π

for accuracy. The number of bits required for 256
π depends on the precision of the target representation,

the exponent of the input x, and the number of accurate bits needed in the reduced input x′. Worst case
analysis available in the classic papers and books [24, 21, 22] for range reduction suggests that 224-bits
of 256

π is sufficient for performing range reduction with high accuracy for all 32-bit inputs.
Algorithm 1b provides an implementation of Algorithm 1a for small inputs. For relatively small

inputs (i.e. |x| < 230), we observe that approximately 80-bits of 256
π spread across two double-precision

values suffice for computing a reduced input with desirable accuracy. The double 0x1.45 f 306cp+6
(line 2) represents the first 28-bits of 256

π . The value 0x1.c9c882a53 f 84 f p-22 represents the subse-
quent 53-bits of 256

π obtained via round-to-nearest. Because 0x1.45 f 306cp+6 contains only 28-bits of
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1 Function range_reduction(x)
2 k = [ 256x

π ];
3 r = 256x

π − k;
4 x′ = π

256 r ;
5 m = b k

512c;
6 k′ = k−512m;
7 return (x′,k′)
8 end

(a)

1 Function fp_range_reduction_small(x)
2 p0 = 0x1.45 f 306cp+6∗x;
3 p1 = 0x1.c9c882a53 f 84 f p-22∗x;
4 p = p0+ p1;
5 p_int = round(p);
6 k = (int64_t)p_int;
7 r = (p0− p_int)+ p1;
8 xp = r ∗PI_OV ER_256;
9 kp = k & 0x1ff;

10 return (xp,kp);
11 end

(b)

Algorithm 1: (a) High level range reduction producing a reduced input x′ ∈ [− π
512 ,

π
512 ] and the index k′ for pre-

computed tables. Here, [ 256x
π ] computes the integer nearest to 256x

π . (b) A FP-based implementation of Algorithm
1a that produces reduced inputs for small inputs (i.e., |x|< 230). The values xp and kp denote x′ and k′ respectively.

precision, the product p0 =0x1.45 f 306cp+6∗x has at most 52 precision bits and is thus exactly repre-
sentable as a double value. By avoiding intermediate rounding errors, Algorithm 1b can compute the
integer k and an accurate approximation of the fractional value r = 256x

π − k using the partial products
p0 =0x1.45 f 306cp+6∗x and p1 = 0x1.c9c882a53 f 84 f p-22∗x.

The algorithm in Figure 5(a) sketches an FP-based implementation of the target range reduction for
larger inputs (i.e., 230 ≤ |x|). The algorithm’s objective is to appropriately divide the bits of 256

π to avoid
rounding (and the concomitant rounding errors) wherever possible. For large inputs, the initial bits of
256
π are insufficient. To account for a wider range of inputs, we generate 224-bits of 256

π using the MPFR
library and store them as 28-bit pieces in an array of doubles (i.e., _256_over_pi_28 in Figure 5(a)).
Each element is generated using the round-to-zero mode (i.e., truncation). We split 256

π into 28-bit pieces
to ensure that no partial product (i.e., _256_over_pi_28[idx]∗ x) incurs rounding error. The product of a
28-bit piece of 256

π and a 32-bit input with 24-bits of precision is exactly representable as a double.
The initial task in the algorithm in Figure 5(a) is to identify the pieces of 256

π necessary for computing
the fractional bits of 256x

π and the relevant portions of k, which we store as a 64-bit integer. For a
very large input, k can exceed the dynamic range of int64_t. However, we only require the lower
9-bits of k (see Equation 6). Hence, we can skip over the pieces of 256

π for which the exponent of the
least significant bit exceeds 8 when summed with the exponent of the least significant digit of the input
(see 7-9 in Figure 5(a)). Once the first piece that contributes to the least 9-bits of k is identified, we
proceed to compute the partial products of 256x

π . At most three partial products can contribute to the
lower order bits of k (lines 11-20). After obtaining the relevant integer bits, we compute the fractional
portion of 256x

π denoted r by accumulating the residual fractional bits and the final partial product (i.e.
_256_over_pi_28[idx+3]∗x in line 22). Multiplying r from this algorithm with π

256 , which is maintained
in double precision, produces the reduced input x′.

The iterative search for the first relevant piece of 256
π (lines 7-9) is a key source of overhead in the al-

gorithm in Figure 5(a). Another drawback is that the limited precision of each piece in _256_over_pi_28
requires computing the relevant bits of k across many elements (up to 3) of the array. We present an alter-
native strategy that addresses these issues in Figure 5(b). This alternative range reduction method splits
256
π into double values with 53-bits of precision stored in the array _256_over_pi_53. As before, we

generate each element of _256_over_pi_53 using the MPFR library, albeit in the round-to-nearest mode.
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1 Function fp_range_reduction_v1(x)
2 int64_t k,kp;
3 z = |x|;
4 biased_exp = bits(z) >> 23;
5 lsb_exp = biased_exp�150;
6 idx = 0;
7 while lsb_exp+_256_over_pi_exp[idx] > 8 do
8 idx++;
9 end

10 prod_hi = (double)x⇤_256_over_pi_28[idx];
11 k_hi = round(prod_hi);
12 k_hi_int = (int64_t)k_hi;
13 k_hi_int = k_hi_int & 0x1ff;
14 f rac_hi = prod_hi� k_hi;
15 prod_mid = (double)x⇤_256_over_pi_28[idx+1]+ f rac_hi;
16 k_mid = round(prod_mid);
17 k_mid_int = (int64_t)k_mid;
18 f rac_mid = prod_mid � k_mid;
19 prod_lo = (double)x⇤_256_over_pi_28[idx+2]+ f rac_mid;
20 k_lo = round(prod_lo);
21 f rac_lo = prod_lo� k_lo;
22 r = (double)x⇤_256_over_pi_28[idx+3]+ f rac_lo;
23 xp = r ⇤PI_OV ER_256;
24 k = (int64_t)(k_lo+ k_mid)+ k_hi_int;
25 kp = k & 0x1ff;
26 return (xp,kp);
27 end

(a)

1 Function fp_range_reduction_v2(x)
2 int64_t k,kp;
3 z = |x|;
4 biased_exp = bits(z) >> 23;
5 lsb_exp = biased_exp�150;
6 idx = 55 <= lsb_exp;
7 prod_hi = (double)x⇤_256_over_pi_53[idx];
8 k_hi = round(prod_hi);
9 k_hi_int = (int64_t)k_hi;

10 k_hi_int = k_hi_int & 0x1ff;
11 f rac_hi = f ma(x,_256_over_pi_53[idx],�k_hi);
12 prod_lo = f ma(x,_256_over_pi_53[idx+1], f rac_hi);
13 k_lo = round(prod_lo);
14 k_lo_int = (int64_t)k_lo;
15 r = f ma(x,_256_over_pi_53[idx+1], f rac_hi� k_lo);
16 r = f ma(x,_256_over_pi_53[idx+2],r);
17 xp = r ⇤PI_OV ER_256;
18 k = k_hi_int + k_lo_int;
19 kp = k & 0x1ff;
20 return (xp,kp);
21 end

(b)

Algorithm 6: (a) FP-based implementation of Algorithm 5a for large inputs (i.e., 226  |x|). We denote the
reduced input and the lower 9 bits of k as xp and kp respectively. We store 8 28-bit pieces of 256

p in a dou-
ble array named _256_over_pi_28. We maintain the exponent of the last bit of each piece of 256

p in the array
_256_over_pi_28_exp. k and k_hi_int are signed 64-bit integers, idx is a signed 32-bit integer, and the rest are
FP double values. The function bits(z) provides the underlying IEEE-754 FP bit-pattern as an integer. (b) An
alternative FP-based strategy for large inputs (i.e., 226  |x|). We store 5 53-bit pieces of 256

p in a double array
named _256_over_pi_53. k_lo_int is a signed 64-bit integer. f ma denotes the fused-multiply-add operation that
performs FP multiplication and addition sequentially with a single instance of rounding. The remaining details are
identical to Algorithm 6a.
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1 Function fp_range_reduction_v1(x)
2 int64_t k,kp;
3 z = |x|;
4 biased_exp = bits(z) >> 23;
5 lsb_exp = biased_exp�150;
6 idx = 0;
7 while lsb_exp+_256_over_pi_exp[idx] > 8 do
8 idx++;
9 end

10 prod_hi = (double)x⇤_256_over_pi_28[idx];
11 k_hi = round(prod_hi);
12 k_hi_int = (int64_t)k_hi;
13 k_hi_int = k_hi_int & 0x1ff;
14 f rac_hi = prod_hi� k_hi;
15 prod_mid = (double)x⇤_256_over_pi_28[idx+1]+ f rac_hi;
16 k_mid = round(prod_mid);
17 k_mid_int = (int64_t)k_mid;
18 f rac_mid = prod_mid � k_mid;
19 prod_lo = (double)x⇤_256_over_pi_28[idx+2]+ f rac_mid;
20 k_lo = round(prod_lo);
21 f rac_lo = prod_lo� k_lo;
22 r = (double)x⇤_256_over_pi_28[idx+3]+ f rac_lo;
23 xp = r ⇤PI_OV ER_256;
24 k = (int64_t)(k_lo+ k_mid)+ k_hi_int;
25 kp = k & 0x1ff;
26 return (xp,kp);
27 end

(a)

1 Function fp_range_reduction_v2(x)
2 int64_t k,kp;
3 z = |x|;
4 biased_exp = bits(z) >> 23;
5 lsb_exp = biased_exp�150;
6 idx = 55 <= lsb_exp;
7 prod_hi = (double)x⇤_256_over_pi_53[idx];
8 k_hi = round(prod_hi);
9 k_hi_int = (int64_t)k_hi;

10 k_hi_int = k_hi_int & 0x1ff;
11 f rac_hi = f ma(x,_256_over_pi_53[idx],�k_hi);
12 prod_lo = f ma(x,_256_over_pi_53[idx+1], f rac_hi);
13 k_lo = round(prod_lo);
14 k_lo_int = (int64_t)k_lo;
15 r = f ma(x,_256_over_pi_53[idx+1], f rac_hi� k_lo);
16 r = f ma(x,_256_over_pi_53[idx+2],r);
17 xp = r ⇤PI_OV ER_256;
18 k = k_hi_int + k_lo_int;
19 kp = k & 0x1ff;
20 return (xp,kp);
21 end

(b)

Algorithm 6: (a) FP-based implementation of Algorithm 5a for large inputs (i.e., 226  |x|). We denote the
reduced input and the lower 9 bits of k as xp and kp respectively. We store 8 28-bit pieces of 256

p in a dou-
ble array named _256_over_pi_28. We maintain the exponent of the last bit of each piece of 256

p in the array
_256_over_pi_28_exp. k and k_hi_int are signed 64-bit integers, idx is a signed 32-bit integer, and the rest are
FP double values. The function bits(z) provides the underlying IEEE-754 FP bit-pattern as an integer. (b) An
alternative FP-based strategy for large inputs (i.e., 226  |x|). We store 5 53-bit pieces of 256

p in a double array
named _256_over_pi_53. k_lo_int is a signed 64-bit integer. f ma denotes the fused-multiply-add operation that
performs FP multiplication and addition sequentially with a single instance of rounding. The remaining details are
identical to Algorithm 6a.

(a) (b)

Figure 5: (a) The FP-based implementation of Algorithm 1a for large inputs. We denote the reduced input
and the lower 9-bits of k as xp and kp, respectively. We store 8 28-bit pieces of 256

π in a double array named
_256_over_pi_28. We maintain the exponent of the last bit of each piece in the array _256_over_pi_28_exp.
Here, k and k_hi_int are signed 64-bit integers, idx is a signed 32-bit integer, and the rest are FP double values.
The function bits(z) provides the IEEE-754 FP bit-pattern of the input as an integer. (b) An alternative FP-based
strategy for large inputs. We store 5 53-bit pieces of 256

π in a double array named _256_over_pi_53. The fused-
multiply-add ( f ma) operation that performs both FP multiplication and addition with a single instance of rounding.

The increased bit-width confines the first piece contributing to the relevant bits for k to the first two
elements. The largest possible value of lsb_exp, which represents the exponent of the least significant
bit of the input, is 254−150 = 104 given that the largest possible unbiased exponent for a non-infinity,
non-NaN 32-bit float is 254. The exponent of the least significant bit of _256_over_pi_53[1] is −99,
and thus the largest possible exponent for the least significant bit of the product _256_over_pi_53[1]∗ x
is 104−99 = 5. Therefore, either the first or second element of _256_over_pi_53 is necessary to com-
pute the 9 lowest bits of k for all inputs. Whether the first element is needed depends on the value of
lsb_exp. The exponent of the least significant bit of _256_over_pi_53[0] is −46. For all inputs x such
that lsb_exp≥ 55, the exponent of the least significant bit of _256_over_pi_53[0]∗x evaluated in infinite
precision is at least −46+ 55 = 9. As such, the first piece of _256_over_pi_53 does not contribute to
the 9 lowest bits k for any input such that lsb_exp ≥ 55. The comparison 55 ≤ lsb_exp (line 6) thus
determines the first relevant piece of _256_over_pi_53. By limiting the starting point to the first two
elements of _256_over_pi_53, the algorithm in Figure 5(b) avoids the iterative search in Figure 5(a).

Unlike the algorithm in Figure 5(a), which divides 256
π into 28-bit pieces to avoid rounding during

multiplication, the algorithm in Figure 5(b) is susceptible to more intermediate rounding errors as the
product of x and an element of _256_over_pi_53 may not be exactly representable as a double. To
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minimize this rounding error, we use fused-multiply-add instructions (lines 11-16 in Figure 5(b)), which
perform multiplication and addition sequentially with a single instance of rounding [3]. By computing
the partial products (i.e., _256_over_pi_53[idx] ∗ x) while subtracting portions of the previous products
that contribute to integer bits through fma instructions (see lines 11 and 15), we are able to compute the
fractional bits composing r (line 16) with sufficient precision in Figure 5(b).

3.2 Efficient Range Reduction with Integer Operations

After we implemented the above range reduction strategy with FP operations, we observed that the
resulting implementations produced correctly rounded results but were slower than mainstream libraries.
Hence, we subsequently explored integer-based implementations that compute 256x

π . Moreover, we can
compute with more precision than FP doubles by using integers (i.e., uint64_t and uint128_t), which
can reduce the number of intermediate products. In the earlier FP-based strategies, maintaining the pieces
of 256

π and the partial products as doubles helped us identify the integer k and the fractional parts for the
reduced input easily. With our integer based implementation, we maintain the pieces of 256

π and partial
products as integers and we track the exponent implicitly. Finally, we compute the reduced input and k
using bitwise shift operations.

int            exp     = (x  >> 23) - 150;
uint64_t      m     = (x & 0x7FFFFF) | (1 << 23);
uint64_t  pp0      = m * P0;
uint64_t  pp1      = m * P1;
               pp1      = pp1 + (pp0 >> 40);
int64_t        k       = pp1 >> (33-exp);
                    r      = (pp1<< (31+exp)) | ((pp0 << 24) >> (33-exp));
                   k’      =  (k - (r >> 63)) & 0x1FF; 
                   x’      = r * 0x1p-64 * PI_OVER_256;

256_Over_Pi  P0

X

P1

X* P0

X* P1

X* 256_Over_PI

(24 bits)

64 bits

k r

64 bits

40 bits40 bits
(A) Logical view of computing k and x’ with small x 

(B) Computing k and x’ with integer operations

(c)Identifying integral and fractional parts 
with implicit exponents

6

256_Over_Pi  P0P1

X

expexp+23

P1 * X

exp+30 exp-33

exponent 
of the digit

exponent of 
the bit

-33 -73

0
k r

33-exp bits 
from P1 * X 

for r

31+exp 
bits for 

k

         P0 * X

remaining 
bits from 

P0 * X for r

Figure 6: Range reduction for small inputs when π
128 ≤ |x| < 230 and t = 8.

Here, we are creating a reduced input x′ ∈ [− π
512 ,

π
512 ). (A) Computation with

80 bits of x * 256_Over_Pi with 40 bits each in two 64-bit integers P1 and P0.
(B) Computing k and r with integer and bitwise operations. (c) Intuition for
finding the bit whose exponent is 0 when we perform computation with integers
and do not explicitly maintain exponents.

Range reduction with
small inputs. For inputs
such that |x| < 230 (exclud-
ing special case inputs that
do not require range reduc-
tion), we compute k and the
reduced input using the first
80-bits of 256

π . As we want to
primarily compute with in-
tegers, we represent the sig-
nificand of the input x as an
integer (i.e., multiplying by
223, which is equivalent to
subtracting 23 from the ex-
ponent of x). For these in-
puts, the integer k is con-
tained in the first 64-bits of
the product 256x

π and we can
generate precise reduced in-
puts using 80-bits of 256

π . We
generate 80 bits of 256

π and
store 40 bits of 256

π in two 64-
bit numbers P1 and P0. We
store 40-bits of 256

π each in
P1 and P0 because we can store P1 ∗ x and P0 ∗ x exactly as 64-bit integers. The partial products are
added as shown in Figure 6.

The final task is to identify the position of the binary point in the resultant product, which will help
us identify k and the bits belonging to the reduced input x′. Figure 6(c) pictorially provides the intuition
for finding the position of the binary point. The exponent of the most significant bit of 256

π in P1 is
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6. The exponent of the least significant bit in P1 is −33. When we compute P1 ∗ x, the exponent of
the least significant bit of this partial product is exp− 33, where exp represents the exponent of the
least significant bit of the original input. Since the partial product can have up to 64 precision bits, the
exponent of the most significant bit would be at most exp−33+63 = exp+30. The binary point (i.e.,
exponent 0) lies within this partial product (i.e., between the exponents exp+30 and exp−33). We can
compute the integral part of the product (i.e., k) with a right shift operation by 33− exp because there
are 0− (exp− 33) = 33− exp bits after exponent 0. Next, we accumulate all bits past the binary point
in the products P1 ∗ x and P0 ∗ x into a 64-bit integer r. We first need to place the 33− exp fractional
bits in the partial product P1∗ x as the most significant bits of r. We accomplish this with a left shift by
31+ exp because there are 64− (33− exp) non-fractional bits in P1∗ x pertaining to the integer portion
k. Then, we need to collect the remaining bits for the reduced input from P0 ∗ x. The leading 24-bits
of P0 ∗ x, which are added to the partial product P1 ∗ x, can be removed with a left shift by 24. We
subsequently place the most significant portions of the remaining bits of P0 ∗ x (i.e., (P0 ∗ x) << 24)
after the 33− exp initial bits in r obtained from P1∗ x. This can be accomplished by performing a right
shift on (P0 ∗ x) << 24 with a shift amount of 33− exp. Finally, we compute the reduced input by
multiplying r with the floating point value 2−64 and π

256 as shown in Figure 6(B).
Range reduction with large inputs. When the input |x|> 230, we use 192 bits of 256

π maintained as
three 64-bit integers. We also maintain the 24 bits in the significand of input x as a 64-bit integer. We
compute the partial products between x and 64-bit pieces of 256

π and represent them as 128-bit integers as
shown in Figure 7(A). After computing the partial products, we identify the position of the binary point
based on the exponent of x and the exponents of each piece of 256

π . Figure 7(B) provides the bitwise
operations that identify k and fractional bits required for the reduced input. The exponent of the most
significant bit of 256

π is 6 and the the exponent of the least significant bit of P2, the first piece of 256
π , is

-57. When the exponent of the least significant bit of x, represented by exp, is less than 57, the integer
bits pertaining to k will be completely contained in the partial product pp2. The remaining step involves
extracting 64 fractional bits for the reduced input through bitwise shifts akin to those performed on the
smaller inputs in Figure 6(B).

When exp is equal to 57, there is no need to perform any shift operations. Here, the relevant bits for
k are the lower 64-bits of the partial product pp2 and the fraction bits for the reduced input are the lower
64-bits of partial product pp1. When exp is greater than 57, k will be computed using the lower 64-bits
of the partial product pp2 and portions of pp1. The reduced input will be computed using the lower
64-bits of the partial product pp1 and portions of pp0. Everything is computed with integers prior to
multiplying r with 2−64 and π

256 to generate the reduced input as shown in Figure 7(B). All shift amounts
in Figure 7(B) are positive and less than 64, which avoids undefined behavior. The largest value of exp in
Figure 7(B), which represents the exponent of the least significant bit of the input, is 104. This is because
the largest exponent of any 32-bit FP number is 127.

4 Experimental Evaluation

We have developed various implementations of trigonometric functions that produce correctly rounded
results for all inputs for all FP representations up to 32-bits. Our prototype uses the MPFR library [12]
as the oracle to generate the library. We developed new range reduction techniques, inference techniques
for reduced intervals, and new polynomials for the trigonometric functions with the RLIBM approach.
To evaluate our functions for correctness and performance, we compare it against mainstream libraries
(e.g., GLIBC’s float and double libm) and the correctly rounded Core-Math library [25]. We conducted
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256_Over_Pi

X

P0P1P2

X* P0
X* P1

X* P2

X* 256_Over_PI

192 bits

(X in 64-bits)

128 bits

128 bits

128 bits

k

pp0

pp1

pp2

r

6 -57Exponent 
of the bit 
of  256/pi

int64_t k, r;
int            exp       = (x  >> 23) - 150;
uint64_t   m      = (x & 0x7FFFFF) | (1 << 23); 
uint128_t pp0   = (uint128_t) m * 256_Over_Pi[0];
uint128_t pp1   = (uint128_t) m * 256_Over_Pi[1];
                pp1   = pp1 + pp0 >> 64; 
uint128_t pp2   = (uint128_t) m * 256_Over_Pi[2];
                pp2   =  pp2 + pp1 >> 64;
uint64_t   pp2h  = pp2 >> 64; 
if( exp < 57){
     k = (pp2h << (7+exp)) | ((uin64_t) pp2 >> (57-exp));
     r = ((uint64_t)  pp2 << (7+exp)) | ((uint64_t) pp1 >> (57-exp));
} else if (exp == 57){
     k = (uint64_t) pp2;
     r = (uint64_t) pp1;
} else {
    k  = ((uint64_t) pp2 << (exp-57)) | ((uint64_t) pp1 >> (121-exp));
    r = ((uint64_t) pp1 << (exp-57)) | ((uint64_t) pp0 >> (121-exp));
}
k’ = (k - (r >> 63)) & 0x1FF;
x’ = r * 0x1p-64 * PI_OVER_256;

(A) Computing partial products when x is large (B) Computing k and the reduced input using integer operations

Figure 7: Range reduction for large inputs when 230≤ |x|when t = 8 to produce the reduced input x′ ∈ [− π
512 ,

π
512 ).

(a) We show the logical computation of 256x
π . (b) The computation with integer and bitwise operations. Each piece

of 256_Over_Pi (i.e., P2, P1,and P0) is 64-bits.

our experiments on a 2.10GHz Intel Xeon(R) Silver 4310 server with 256GB of RAM running Ubuntu
24.04.1 LTS and used performance counters to measure the time taken.

Ability to produce correct results. Our functions produce correctly rounded results for all repre-
sentations from 10-bits to 32-bits for all inputs, which we tested with complete enumeration similar to
bounded model checking. In contrast, GLIBC’s float libm does not produce correctly rounded results for
32-bit float inputs for sin, cos, and tan even for one representation and has several thousand incorrect
results. GLIBC’s double libm is more accurate than GLIBC’s float libm but still produces wrong results
for some inputs. For the 32-bit float representation, both our functions and Core-Math produce correctly
rounded results for all inputs. However, Core-Math does not produce correctly rounded results for all
inputs from 10-bits to 32-bits, which is due to double-rounding errors.

Performance due to our range reduction optimizations. For the FP-based approach, we developed
two implementations for sin, cos, and tan that apply the range reduction algorithms shown in Figure 5(a)
and Figure 5(b). We have also developed implementations for these functions that use the integer-based
range reduction depicted in Figures 6 and 7. Lastly, we experimented with applying different approaches
for different sub-domains. Specifically, we implemented versions of sin, cos, and tan that use the FP-
based approach for smaller inputs (see Algorithm 1b) and an integer-based approach for larger inputs
(see Figure 7).

Among these strategies, applying a FP-based approach for smaller inputs and an integer-based ap-
proach for larger inputs leads to the best performance for all three functions. Figure 8a reports the
speedup of this approach over the FP-based approach detailed in Figure 5(a) (FP V1), the alternative
FP-based approach in Figure 5(b)(FP V2), and the integer-based approach (Int). On average, our most
efficient, hybrid range reduction achieves a 19% speedup against the initial FP-based approach. This
result highlights the advantage of employing an integer-based range reduction for large inputs. We at-
tribute this speedup to the larger amount of precision relative to 64-bit doubles (i.e. 53-bits of precision)
available with integer representations (i.e., uint64_t and uint128_t). The larger amount of precision
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(a) (b)

Figure 8: (a) Performance improvement using our approach that uses FP-based range reduction for small inputs
and integer-based range reduction for larger inputs over other approaches. (b) Performance improvement of the
fastest RLIBM implementation over other libraries.

available for each piece of 256
π and intermediate outputs in the integer-based approach reduces the num-

ber of partial products required to obtain a reduced input with sufficient accuracy. Moreover, the bit-wise
operations employed for the integer-based approach greatly simplifies identifying the portions of 256x

π
relevant to the reduced input and the lower order bits of k for any given input. Alternatively, the speedup
of the hybrid approach over the integer-based approach (4% on average) indicates that FP operations
provide a more ideal solution when the inputs have low magnitudes and the relevant portions of 256

π are
confined to the initial set of bits. We attribute this result to the observation that the integer portion of
256x

π for small inputs (i.e., |x|< 230) are small enough to be exactly representable using a single double-
precision value. For such cases, the results indicate that computing the first few partial products of 256x

π
and subtracting away integer bits identified through FP rounding operations are sufficient for obtaining
reduced inputs with the desirable level of accuracy with low overhead.

Figure 8b reports the performance speedup of our fastest implementations when compared to other
libraries. On average, our functions are 10% and 137% faster than Core-Math’s functions and GLIBC’s
double functions respectively. The performance speedups over Core-Math are smaller because Core-
Math’s implementations are also well optimized with a range reduction strategy appropriately mixing
both FP and integer-based approaches. Unlike Core-Math’s functions, which produce correct results
only for 32-bits, our functions produce correct results for multiple representations from 10-bits to 32-bits
and all five rounding modes in the IEEE standard.

5 Conclusion and Future Work

We extend the RLIBM approach to trigonometric functions by paying careful attention to the amount of
precision required in handling 256

π , while obtaining performance using integer and bitwise operations. We
have been collaborating with the developers of mainstream math libraries to incorporate these methods,
which will enable push-button usage. We are also participating in the standards committees to mandate
correct rounding in the next version of the IEEE-754 standard. Finally, we want to explore correctly
rounded libraries for GPU platforms in the future.
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