
Comparing the Precision of Abstract Operators
in the eBPF Verifier using Differential Synthesis

Matan Shachnai ?, Harishankar Vishwanathan ,
Srinivas Narayana , and Santosh Nagarakatte

Rutgers University, USA
{m.shachnai, harishankar.vishwanathan,

srinivas.narayana,santosh.nagarakatte}@rutgers.edu

Abstract. The eBPF verifier ensures the safety of user-supplied pro-
grams before they are executed in the Linux kernel, relying on abstract
interpretation. While the verifier’s analysis must be sound, its utility
hinges on precision. An overly conservative abstract operator can rou-
tinely cause the verifier to reject safe programs. In this paper, we intro-
duce a framework for systematically comparing and validating the pre-
cision of competing abstract operator implementations used within the
verifier. We provide a formal specification of the precision relationship
between two abstract operators across all valid abstract inputs. How-
ever, reasoning about all valid abstract inputs over-approximates what
is actually reachable in real verifier executions. This is because the eBPF
verifier performs verification from a specific set of initial abstract states.
Hence, many abstract inputs used in theoretical comparisons may never
arise in practice. To address this gap, we propose SMT-based program
synthesis to automatically generate concrete eBPF witness programs, ex-
plicitly demonstrating observable precision differences in actual verifier
executions. Using these techniques and tools, we crafted a more precise
multiplication abstract operator in the verifier, bpf_mul. Our multipli-
cation patch has been upstreamed to the Linux kernel where the wit-
ness produced by our approach provided demonstration to the kernel
developers. We have also used these techniques to check the precision
of numerous kernel patches related to abstract operators in the eBPF
verifier.

Keywords: Abstract interpretation · Kernel extensions · Program syn-
thesis · eBPF

1 Introduction

The eBPF ecosystem has become the de facto approach for extending the func-
tionality of the Linux kernel, enabling versatility, portability, and performance.
It is used in a variety of contexts, such as load balancing [17], access control
and DDoS mitigation [19,37], tracing [74], and memory optimization [47]. A key

? Corresponding author.

https://orcid.org/0009-0003-2843-779X
https://orcid.org/0009-0001-7714-602X
https://orcid.org/0000-0002-1128-477X
https://orcid.org/0000-0002-5048-8548

2 M. Shachnai et al.

feature of the eBPF ecosystem is its safety guarantees; eBPF employs a static
analyzer, the eBPF verifier, which serves as a bulwark to prevent incorrect eBPF
programs from crashing or compromising the kernel once they are incorporated
into the address space of the kernel. The eBPF verifier checks for safety properties
such as program termination, safe memory access, and well-defined arithmetic
operations. Once accepted by the verifier, eBPF programs are Just-in-time (JIT)
compiled to the machine specific instruction set and implemented as efficiently
as any other part of the kernel.

Under the hood, the eBPF verifier is designed using abstract interpreta-
tion [32]; it maintains multiple abstract domains that track eBPF register states
for a given eBPF program. These abstract domains are then used to identify
potential unsound behavior in the given program. It is crucial, therefore, that
the analysis performed by the eBPF verifier is sound, rejecting unsafe programs
and accepting only safe programs. However, logic bugs in the eBPF verifier can
compromise the soundness of its analysis, leading to unsafe programs being ac-
cepted. Indeed, in recent years, the eBPF verifier has been shown to exhibit
many vulnerabilities stemming from such bugs [2,9–16,23–26,34,39–41] and has
also proved to be a ripe surface for attacks [50,51,59,64].

Since the eBPF verifier has a direct impact on the integrity of the Linux
kernel, verifying and testing the correctness of the eBPF verifier has been an on-
going effort [22,38,42,46,49,54,60,65,67,68,71,73]. In our own research, we have
focused on developing techniques and tools to formally reason about the value
tracking performed by the verifier. Specifically, we formalized the tnum abstract
domain, proved its soundness, and designed a sound and precise multiplication
operator for the domain that has been upstreamed to the Linux kernel [20, 71].
More recently, we designed a tool, Agni [72,73], which automatically checks the
soundness of value tracking performed by the eBPF verifier by generating veri-
fication conditions for its abstract operators and proving their correctness. If no
such proof can be attained, Agni generates a witness program that illustrates un-
sound behavior in the verifier using our differential synthesis approach [73]. Agni
has since been used to patch unsound abstract operators in the verifier [4, 65].
While most of this prior work regarding the eBPF verifier pertains to its sound-
ness, our primary focus in this paper is its precision.

Why precision matters in the eBPF verifier? The eBPF verifier must
ensure that its static analysis is not only sound but also sufficiently precise
to allow practical use. A sound yet imprecise analysis can render the verifier
ineffective by rejecting safe programs that should be accepted, simply because
the analysis produces overly conservative approximations of program variables.
Such imprecision arises when the verifier’s abstract domains yield coarse bounds
on the possible values of program variables, especially those used in memory
accesses. The verifier employs five abstract domains, four interval domains and
one bitwise domain [52,55,61,71], and implements a collection of efficient abstract
operators for these domains. It further uses cross-domain refinements to mutually
improve the precision of each domain. The overall precision of the verifier is
fundamentally limited by the precision of these abstract operators themselves.

Comparing Precision using Differential Synthesis 3

Imprecision in abstract operators can lead the eBPF verifier to reject programs
that are in fact safe. Consider the following 4-bit example where a register r1 is
tracked by an unsigned interval [l, u]:

1 ...
2 r1 = r1 & 0b0011; // mask to keep only the low two bits
3 arr[r1]; // index into a 4-byte array
4 exit;

Suppose we wish to access an offset into an array arr which is 4 bytes large.
Here the mask guarantees that r1 ∈ {0, 1, 2, 3}, so arr[r1] always stays within
the 4-byte buffer and is therefore safe. For illustration purposes, let us assume
the verifier’s abstract AND operator is imprecise and results in the abstract in-
terval [0, 8], over-approximating the set of values r1 may take in a real execu-
tion. Unable to conclusively prove that the memory access is safe, the verifier
conservatively rejects the program even though the memory access is safe and
won’t go out of bounds in any execution. Similar safe rejections have prompted
several recent kernel patches that improve precision of various abstract opera-
tors [1, 3, 6–8,18].

Designing efficient yet precise operators is non-trivial. Although classical in-
terval operators are well understood [32, 53], bit-width constraints and perfor-
mance requirements complicate their direct use in the verifier without modifica-
tion. Bitwise operations are particularly tricky on fixed-width interval domains:
interval endpoint reasoning is unsound, while exhaustive enumeration of operand
pairs is impractical. For instance, consider the bitwise AND of two unsigned inter-
vals: x ∈ [142, 145], y ∈ [13, 15]. A naive abstraction might apply the AND opera-
tion only to the interval endpoints (e.g., 142 & 13 = 12, 145 & 15 = 1), yielding
the ill-formed interval [12, 1]. A less naive abstraction might try the operation on
all combinations of the interval endpoints and take the minimum and maximum
values, yielding the interval [1, 14]. However, enumerating all possible pairs (x, y)
reveals that the actual set of outcomes is {0, 1, 12, 13, 14, 15}, meaning that both
of these abstractions fail to capture all outputs that may result from this oper-
ation, hence they are neither sound nor precise. Importantly, an interval is not
the ideal domain to represent this set since it is a sparse, non-contiguous set that
cannot be tightly captured by a single interval alone. Correctly abstracting such
operations requires reasoning about the bit-level structure of the operands, not
just their numeric ranges. This difficulty is precisely why the eBPF verifier incor-
porates a dedicated bitwise domain (tnum) [71]. However, combining tnum and
interval information precisely and efficiently in practice is not straight-forward
and has required multiple fixes [3, 4, 6, 57,65].

Overall, manual operator design in the verifier is labor-intensive and error-
prone. Additionally, Linux developers who craft these operators generally rely
on testcases to check them [5], which provides no formal guarantees of precision
(i.e., is the new operator implementation at least as precise as the old one for
all inputs). Hence, we develop approaches to prove precision relations between
two competing implementations of abstract operators in the verifier.

4 M. Shachnai et al.

Witness generation for comparing the precision of abstract operators.
While reviewing abstract operators in the verifier, we observed that some op-
erators may be less precise for some ranges of inputs, which causes the eBPF
verifier to reject safe programs. In particular, we noticed that when the multi-
plication operator is given negative values as inputs, it sets its abstract domains
to their widest range, essentially nullifying any useful information from the op-
eration. Hence, we focus on developing improved operators for the eBPF verifier
and develop tools and techniques to show that the new operator is more precise
than the existing operator. To accomplish this goal, we need a formal frame-
work for comparing the precision of two operator implementations. This task
entails expressing the behavior of these operators in first order logic and com-
paring them using a logical precision specification (i.e., operator A is at least
as precise as operator B for all inputs). However, comparing operators across
the entire space of valid abstract inputs is insufficient for evaluating real-world
benefit of the new operator. Evaluating over all abstract inputs can significantly
over-approximate the values that actually arise during verifier execution, many
of which are unreachable by any valid eBPF program (discussed in §4.1). This
phenomenon happens with the eBPF verifier because the verifier starts every
register in one of two legal abstract states, known-value or fully unknown, and
each subsequent instruction must transform those states through the verifier’s
abstract semantics. Thus, even if a new operator is provably more precise, the
gap may never manifest in real executions. To address this issue, we need to
be able to generate real witness eBPF programs that illustrate precision im-
provements with the new operator. Our experience shows that such witnesses
are rarely trivial to construct; they often cannot be hand-crafted with a single
instruction or obvious inputs, but instead require multi-instruction sequences.

We propose an approach to compare the precision of two abstract operator
implementations in the value tracking of the eBPF verifier. Our framework lever-
ages our C-to-logic tool, designed in prior work [73], to express the behavior of
two abstract operator implementations in logic. We develop a precision specifi-
cation (§4.1) to formally prove the precision relationship between the two im-
plementations (e.g., one operator is more precise than another for some inputs).
When our precision specification query shows one abstract operator is more pre-
cise for some abstract inputs, we invoke an enumerative SMT-based synthesizer
(§4.2) that searches the space of bounded eBPF instruction sequences and pro-
duces a concrete eBPF program, a witness, whose analysis reaches the relevant
abstract inputs. We build on Agni’s sound, but incomplete, witness generation
approach [73], adapting it to precision comparisons instead of soundness viola-
tions. Using our approach, we were able to show our latest bpf_mul patch (§3) is
more precise than the former version and we generated a witness eBPF program
that illustrates this improvement. Our patch has been upstreamed to the Linux
kernel [7]. We evaluate our approach on prior patches to the kernel which aim to
improve precision of abstract operators in the verifier and we were able to gen-
erate witness eBPF programs for all of them, demonstrating the practical value
of the precision improvements (§5). Lastly, we also use our framework to show

Comparing Precision using Differential Synthesis 5

that the reduction operator in the verifier serves an important role in improving
the precision of its abstract domains.

2 Background on Abstract Interpretation in the eBPF
Verifier

In this section we describe how the eBPF verifier employs abstract interpreta-
tion. Specifically, we formally present how the verifier uses abstract domains and
operators to perform value tracking. We then present notions of precision in the
abstract interpretation literature, which will later be used to define our precision
specification.

Path-sensitive analysis without joins. The eBPF verifier implements a
path-sensitive abstract interpretation that diverges from classical join-based anal-
yses. Instead of merging abstract states at control-flow joins using traditional join
operations, it forks execution at each conditional branch and explores successor
paths independently. Each execution path thus maintains its own set of abstract
domains, updated by abstract operators at every instruction. This means that
for every feasible execution path, the verifier maintains a separate abstract state,
which allows it to retain path-specific precision that might otherwise be lost in
merged (joined) states. To keep this analysis tractable, the verifier imposes strict
bounds on instruction count, call stack depth, and loop unrolling.

2.1 Value Tracking in the eBPF Verifier

Abstract domains for value tracking. The eBPF verifier uses multiple ab-
stract domains to track register values. Specifically, it uses four signed and un-
signed interval domains to track the upper and lower bounds of 64-bit and 32-bit
registers (i.e., Au64, Au32, As64, As32). In addition, it uses a bitwise domain,
called the tnum domain (Atnum) [58, 71], to track individual bits across execu-
tions. The tnum domain represents possible register values using a pair of 64-bit
unsigned integers: a value and a mask. The value encodes known bits, while the
mask specifies which bits are unknown; any bit set to 1 in the mask is uncon-
strained (it may be 0 or 1), whereas bits set to 0 are known and must match the
corresponding bits in the value. For example, a tnum with value 0b10 and mask
0b01 represents the set {0b10, 0b11}, since the low bit is unknown and the high
bit is known to be 1. This representation efficiently captures uncertainty at the
bit level and is structurally similar to the bitfield domain [52].

Signed interval domain. The signed interval domain, As64, models the range
of values a 64-bit register can take during an execution of an eBPF program,
using the signed interpretation. It captures these potential values as intervals,
characterized by lower and upper bounds. Formally, the domain is defined as
follows:

As64 , {[l, u] | l, u ∈ Z64, l ≤s64 u} ∪ {⊥}.

6 M. Shachnai et al.

Here, Z64 denotes the set of all 64-bit signed integers, ≤s64 represents signed
integer comparison for 64-bit integers, and ⊥ represents the empty set. The C
implementation within the eBPF verifier maintains these intervals using two
signed 64-bit integers, s64_min and s64_max, which indicate the current minimum
and maximum possible values for the register. The concretization function γs64
translates the signed interval domain into the set of concrete values it represents,
in this case:

γs64(a) ,

{
{z ∈ Z64 | l ≤s64 z ≤s64 u} if a = [l, u]

∅ if a = ⊥

Conversely, the abstraction function αs64 converts a concrete set of values c ⊆
P(Z64) into the interval containing all elements of c:

αs64(c) ,

{
[mins64(c),maxs64(c)] if c 6= ∅

⊥ if c = ∅

where mins64(c) and maxs64(c) calculate the minimum and maximum of the
finite set c, respectively.

An abstract operator is the abstract interpretation counterpart of a concrete
operation. Consider the subtraction abstract operator for this domain [31]. Let
the subtraction operator 	s64 on signed intervals be defined as follows; given two
intervals a1 = [l1, u1] and a2 = [l2, u2] in the signed 64-bit integer domain, the
abstract subtraction computes a resulting interval that approximates all possible
concrete subtractions between elements from these intervals:

a1 	s64 a2 ,

[l1 −s64 u2, u1 −s64 l2] if no overflow

[−263, 263 − 1] otherwise

Here, overflow is checked according to signed 64-bit arithmetic. If overflow occurs,
the operation yields the maximal interval, ensuring soundness at the expense of
precision. The eBPF verifier implements this abstract operator as defined above.
Importantly, the other interval domains in the verifier follow the same formal-
ism as the signed domain, adjusted according to their respective bit-width and
signedness. Specifically, for the unsigned interval domains (e.g., Au64), intervals
similarly represent ranges of values using lower and upper bounds, but with
arithmetic and comparisons interpreted according to unsigned integer seman-
tics. Consequently, their minimal bound is always non-negative, and arithmetic
overflow is checked using the corresponding unsigned arithmetic rules.

The reduction operator in the eBPF verifier. The eBPF verifier does
not combine information from multiple domains using traditional approaches,
such as Cartesian or modular reduced products [33]. Instead, the verifier mixes
abstraction and reduction [65, 73] to improve precision of its abstract domains.
For example, when computing interval results for bitwise operations (e.g., r1 =

r1 & 0b10), the verifier does not separately calculate interval and tnum domain

Comparing Precision using Differential Synthesis 7

values and then combine them via a formal product. Instead, it computes the
abstract value in the tnum domain first (e.g., determining bits known to be
fixed and unknown), and subsequently uses this information to derive an interval
bound.

Beyond this strategy, the verifier also maintains a reduction operator which is
shared by all abstract operators in the verifier [48] and is performed immediately
after every abstract operator (arithmetic, logic, branch) is executed. The purpose
of this operator is to systematically propagate information between domains
to improve precision. Let each abstract domain (Ai,vi) be equipped with an
abstraction function αi : P(Ci) → Ai and a concretization function γi : Ai →
P(Ci) defined over the same concrete domain P(Ci), where Ci denotes the set
of concrete values associated with the ith abstract domain (e.g., signed 64-bit
integers for As64, unsigned 64-bit integers for Au64, etc.). Here, vi denotes the
partial order on the abstract domain Ai. The combined abstract domain is then
the product lattice A = A1 × · · · ×Ak ordered component-wise:

(a1, . . . , ak) v (b1, . . . , bk) ⇐⇒ ∀i, ai vi bi.

The concretization of a product domain is commonly defined as the inter-
section of its component concretizations: γ(a) =

⋂k
i=1 γi(ai). However, such a

definition would be unsound in the context of the eBPF verifier’s product do-
main; intersecting the concretizations of signed with unsigned interval domains
would erroneously eliminate valid negative values, and intersecting concretiza-
tions of 32-bit and 64-bit domains would constrain values to 32-bit ranges. To
avoid these issues, the verifier does not use an intersection-based concretization.
Instead, it maintains domain-specific concretizations and refines them through
its reduction operator. We define the product domain concretization γ∗ as the
tuple of its component concretizations:

γ∗(a) := (γ1(a1), . . . , γk(ak)), with each γi(ai) ⊆ Ci.

We write ⊆∗, ⊂∗, ⊇∗, and ⊃∗ to denote component-wise set inclusion between
concretization tuples. For example, γ∗(a) ⊆∗ γ∗(b) ⇐⇒ ∀i, γi(ai) ⊆ γi(bi).
Formally, the verifier’s reduction operator is defined as a monotone function
ρ : A→ A. Given an abstract state a = (a1, . . . , ak) ∈ A, the reduction operator
computes a refined abstract state a′ = ρ(a) satisfying

a′ v a and γ∗(a′) ⊆∗ γ∗(a),

thereby locally refining each domain without enforcing an explicit intersection.
The verifier strikes a balance between precision and performance by applying
the reduction operator only a bounded number of times (usually two iterations),
following a partially reduced products approach [53]. Informally, each invocation
of the reduction operator consists of the following three sequential reduction
steps:

1. Bitwise-to-interval refinement: Use known and unknown bits from the
tnum domain to restrict possible values in each 64-bit signed and unsigned
interval.

8 M. Shachnai et al.

2. Interval cross-domain propagation: Propagate tightened bounds be-
tween 64-bit and 32-bit intervals, and between signed and unsigned intervals,
ensuring consistency across width and signedness.

3. Interval-to-bitwise refinement: Use the updated intervals to detect newly
fixed bits and mark them as known within the tnum domain.

Initially, the reduction operator was introduced without a formal soundness proof
into the eBPF verifier. We proved the soundness of the verifier’s reduction oper-
ator in prior work [65]. In this paper, we focus on its role in enhancing precision.
In Sec. §5, we empirically evaluate it by comparing abstract operator precision
with and without the reduction step.

2.2 Comparing the Precision of Abstract Operators

The eBPF verifier utilizes five non-relational abstract domains. We compare two
abstract operators by ordering their results in the underlying abstract lattice,
following the standard framework of abstract interpretation [32,53]. To compare
the precision of two abstract operators, we assume sound abstractions, which we
define next. Let f : C → C be a concrete operation over the set of all 64-bit
machine values, and let f∗ : P(C) → P(C) denote its collecting semantics. An
abstract operator F# : A → A is sound with respect to f if, for every abstract
state a = (a1, . . . , ak) ∈ A and for each component i, the following holds:

f∗
(
γi(ai)

)
⊆ γi

(
πi(F

#(a))
)
,

where πi : A→ Ai denotes the projection onto the ith component of the product
lattice A. This definition ensures that soundness is preserved individually within
each component domain.

Definition 1 (Precision preorder, multi-domain). Given two sound ab-
stract operators F#

1 , F
#
2 : A → A, we say F#

1 is at least as precise as F#
2 ,

denoted F#
1 � F

#
2 , if and only if:

∀a ∈ A : F#
1 (a) v F#

2 (a)

where v is the component-wise product order.
Intuitively, operator F#

1 is at least as precise as F#
2 if, for all inputs, the ab-

stract states produced by F#
1 are component-wise at least as informative (i.e.,

smaller or equal in the lattice ordering) than those produced by F#
2 . Equiva-

lently, this implies γ∗(F#
1 (a)) ⊆∗ γ∗(F#

2 (a)) for every a ∈ A. If the opposite
direction also holds (F#

2 � F
#
1), then F#

1 and F#
2 are equally precise. If neither

direction holds universally, the operators are incomparable.

3 Improving the Precision of Abstract Operators in the
eBPF Verifier

While exploring abstract operators in the eBPF verifier, we observed that some
abstract operators perform overly conservative approximations of their concrete

Comparing Precision using Differential Synthesis 9

counterparts, which resulted in loss of precision. Specifically, the eBPF verifier’s
multiplication operator seemed to exhibit this exact behavior (i.e., returning
loose bounds when given negative operands). To tackle this imprecision, we first
needed to formalize how the verifier performs this operator to identify where
imprecision stems from. Then, we wanted to craft a new operator that is at
least as precise as the old operator for all abstract inputs, but also more precise
for some inputs. This section presents these efforts. We first describe how the
abstract operator for multiplication (bpf_mul) is performed by the eBPF verifier
and where imprecision stems from. Then we propose an improved multiplication
abstract operator and discuss proving its precision merits over the prior operator.

Beyond serving as a stand-alone improvement, this case study motivates the
need for a more systematic approach to design and validate abstract operators.
Crafting a more precise operator is only part of the challenge, ensuring that this
improved precision is relevant to real-world eBPF programs is equally important.
In particular, reasoning about all abstract inputs can over-approximate what is
actually reachable in verifier executions, since the verifier begins analysis from
constrained initial states and enforces strict invariants on how abstract states
evolve. As such, many abstract inputs used in theoretical comparisons may never
arise in practice. We present our techniques for comparing precision and witness
generation in the following sections (§4).

How the eBPF verifier performs abstract multiplication (bpf_mul). For-
mally, we represent the existing multiplication operator in the eBPF verifier as
F#
ebpf−mul : A × A → A where A = Au64 × As64. While the verifier uses five

abstract domains, we focus on these two domains for clarity and brevity as these
two domains are enough to illustrate how imprecision manifests in this operator.

Operands. We define the operator’s operands a, b ∈ A

a =
(
[`au64, u

a
u64], [`

a
s64, u

a
s64]
)
, b =

(
[`bu64, u

b
u64], [`

b
s64, u

b
s64]
)
,

where unsigned and signed interval invariants are maintained,
0 ≤ `(.)u64 ≤ u

(.)
u64 ≤ 264 − 1 and −263 ≤ `(.)s64 ≤ u

(.)
s64 ≤ 263 − 1.

Bit-width constants. The following constants represent the minimum and max-
imum numeric values that can be represented using a fixed number of bits, as
used by the verifier, when interpreted as signed or unsigned integers.

U64min = 0, U64max = 264 − 1,

S64min = −263, S64max = 263 − 1,

U32max = 232 − 1.

Operator definition as represented by the eBPF verifier.

F#
ebpf−mul(a, b) =


>, if `as64 < 0 ∨ `bs64 < 0,

>, if uau64 > U32max ∨ ubu64 > U32max,(
[`au64 · `bu64, uau64 · ubu64], ∆

)
, otherwise

10 M. Shachnai et al.

where > :=
(
[U64min, U64max], [S64min, S64max]

)
is the greatest element of

A and

∆ =

{
[S64min, S64max], uau64 · ubu64 > S64max

[`au64 · `bu64, uau64 · ubu64], otherwise.

F#
ebpf−mul computes precise interval products under restrictive conditions;

both operands must be non-negative and fit within 32-bit unsigned bounds,
and the resulting product must not exceed the maximum representable 64-bit
signed value, S64max. Every other case is conservatively widened to the full
64-bit range. While this ensures soundness, it significantly limits the utility of
the operator in practice, especially for signed computations, leading to overly
conservative analyses and potential rejection of safe programs. As shown in Ta-
ble 1, this behavior results in avoidable precision losses. To address this issue,
we present an improved multiplication operator that retains soundness while
computing tighter interval bounds in many of these previously imprecise cases.

Our more precise eBPF multiplication abstract operator. Our operator
is grounded in interval arithmetic [56], which has become standard in abstract
interpretation literature [32,53]. Specifically, we adapt interval multiplication to
64-bit fixed-width arithmetic, accounting for overflow as defined by the eBPF
instruction set [45]. We formally define our abstract multiplication operator
F#
our−mul : A × A → A where A = Au64 × As64. We use these two domains

for brevity, but the operator is also directly extensible to the Au32 and As32 do-
mains. Our operator preserves the existing abstract multiplication for the tnum
domain defined elsewhere [71]. Next, we define auxiliary products which we use
to compute intervals:

U`` = `au64 · `bu64, Uuu = uau64 · ubu64,

S`` = `as64 · `bs64, S`u = `as64 · ubs64,
Su` = uas64 · `bs64, Suu = uas64 · ubs64.

Lastly, let prodmin = min
{
S``, S`u, Su`, Suu

}
and prodmax = max

{
S``, S`u, Su`, Suu

}
.

Our improved multiplication operator is defined as follows:

F#
our−mul(a, b) =

(
∆u64, ∆s64

)
where

∆u64 =

{
[U64min, U64max], overflow in U`` or Uuu

[U``, Uuu], otherwise

∆s64 =

{
[S64min, S64max], overflow in S`` or S`u or Su` or Suu

[prodmin, prodmax], otherwise.

Our operator multiplies the operand intervals’ bounds, returning precise un-
signed and signed 64-bit product intervals when all auxiliary products do not

Comparing Precision using Differential Synthesis 11

Table 1: Precision gains in our abstract multiplication operator (F#
our−mul) com-

pared to the verifier’s operator (F#
ebpf−mul) where a, b ∈ Au64×As64. For instance,

when any of the operands’ signed intervals maintain negative values (second
row), the verifier’s operator will set its abstract values to >, whereas ours will
produce tight bounds when no overflow is possible.

Operands a, b F#
ebpf-mul(a, b) F#

our-mul(a, b)(
[2, 3], [2, 3]

)
,
(
[4, 5], [4, 5]

) (
[8, 15], [8, 15]

) (
[8, 15], [8, 15]

)
(
[1, 1], [1, 1]

)
,
(
[0, 0], [−1,−1]

)
>

(
[0, 0], [−1,−1]

)
(
[234, 234], [234, 234]

)
,
(
[1, 1], [1, 1]

)
>

(
[234, 234], [234, 234]

)
(
[0, 5], [0, 5]

)
,
(
[0, 2], [−2, 2]

)
>

(
[0, 10], [−10, 10]

)
(
[263, 263], [0, 262]

)
,
(
[2, 8], [2, 8]

)
> >

overflow. If any product overflows, the operator conservatively widens the af-
fected domain to the full 64-bit range. Table 1 exemplifies precision gains of our
operator over the existing one.

Bridging formal precision and real world execution—why we need au-
tomated precision comparison. The construction above guarantees that our
operator F#

our-mul is never less precise than the kernel’s current operator F#
ebpf-mul,

but we don’t know if it is practically more precise in real eBPF executions since
abstract inputs for which our operator is more precise may not be reachable
under the verifier’s strict constraints. Further, most of the verifier’s operators
are handcrafted by kernel developers and may involve subtle bit-level invariants,
or interaction with multiple abstract domains in non-obvious ways (i.e., bitwise
operations for signed intervals). This means that we cannot rely on intuition or
isolated examples to assess their precision. Hence, when a new abstract operator
is proposed, in our case the multiplication operator, we argue it should achieve
two goals: (i) satisfy the precision preorder F#

our-mul � F#
ebpf-mul for all abstract

inputs (or a region of inputs that are of interest) and (ii) demonstrate concrete
eBPF programs in which that improved precision is observable (i.e., in the mul-
tiplication case, programs for which the old operator widens to > while the new
one produces a tight bound).

Task (i) reduces to a lattice-theoretic proof obligation. Task (ii) amounts to
searching the program space for witnesses where precision differences manifest.
Performing this search by hand is error-prone and does not scale to the many
arithmetic and branch operators maintained in the verifier. Hence we propose an
automated pipeline that (a) encodes our precision specification as a logical for-
mula, (b) systematically enumerates bounded eBPF instruction sequences, and
(c) invokes an SMT solver to find a satisfying assignment that separates the two
operators in terms of precision. The next section introduces our synthesis-driven
framework for precision comparison.

12 M. Shachnai et al.

4 Our Approach for Precision Comparison and Witness
Synthesis

In this section, we describe how precision relationships between abstract opera-
tors can be formalized and checked via logical queries. To ground these formal
guarantees in practice, we develop an automated pipeline that synthesizes con-
crete eBPF programs exposing true precision differences in the verifier. This
two-part approach, proving precision formally and validating it empirically, en-
sures that abstract operator changes are both correct and meaningful in the
context of real verifier executions.

4.1 Precision Specification for Comparing Abstract Operators

Let F#
1 , F

#
2 : A × A → A be two sound abstract operators over the domain

A = Au64 ×Au32 ×As64 ×As32 ×Atnum. To show that F#
1 � F

#
2 , we check the

validity of the following query:

∀t, u ∈ C, at, au ∈ A :

memA(t, at) ∧memA(u, au) ∧

av = F#
1 (at, au) ∧ a′v = F#

2 (at, au) =⇒ av v a′v. (1)

Here, memA(x, a) ,
∧k

i=1 x ∈ γi
(
πi(a)

)
denotes that a concrete value x is

a member of the abstract state a ∈ A iff it lies in the concretization of every
component of a. We use av = F#

1 (at, au) to represent an abstract operator and its
input-output relationships as specified by the verifier’s source code. Specifically,
at and au represent the inputs to F#

1 and av the output. With this query, we
compare each component (i.e., As64, Au64, etc.) of the abstract states produced
by both abstract operators F#

1 and F#
2 and assert the precision relationship

between them. For interval domains, checking whether av v a′v amounts to
verifying that `′ ≤ ` ∧ u ≤ u′, where [`′, u′] and [`, u] are the intervals represented
by a′v and av, respectively. For the tnum domain, where abstract values are
represented as value-mask pairs (av′, am′) and (av, am), we can ascertain av v
a′v by checking ((av & ∼ am′) = av′) ∧ (am | am′) = am′.

We are also able to check the precision of individual components between
the two operators. Let’s assume we proved F#

1 � F#
2 for two operators we are

comparing and we suspect that the As64 component produced by F#
1 is not only

at least as precise as the one produced by F#
2 for all inputs, but also more precise

for some inputs. Using the previously defined projection function πi : A → Ai,
which extracts the ith component of an abstract state, we express this query
formally as:

∃t, u ∈ C, at, au ∈ A :

memA(t, at) ∧memA(u, au) ∧

av = F#
1 (at, au) ∧ a′v = F#

2 (at, au) =⇒ πs64(av) @ πs64(a
′
v). (2)

Comparing Precision using Differential Synthesis 13

Table 2: Reachable and unreachable abstract states where a ∈ As64 × Au64. R1
exhibits a case where both abstract values are aligned after reduction, represent-
ing the same values in their respective domains. R2 represents a reachable state
where the signed interval cannot be used to inform the unsigned interval since
[−100, 200] cannot be represented soundly in an unsigned interval. U1 and U2
exemplify abstract states that have not been reduced which cannot happen in
a real verifier execution, hence they are unreachable. After the reduction oper-
ation, U1 and U2 should be ([−10,−1], [264 − 10, 264 − 1]) and ([5, 10], [5, 10]),
respectively.

Case a Reachable?

R1 ([−5,−1], [264 − 5, 264− 1]) X

R2 ([−100, 200], [0, 264− 1]) X

U1 ([−10,−1], [0, 264 − 1]) ×
U2 ([5, 232], [5, 10]) ×

We can adapt this query to reason about any of the other specific domains as
well (i.e., As32, Atnum, etc.). Reasoning about precision of specific domains is
useful because patches to the verifier’s abstract operators may only improve the
precision of a specific domain rather than all.

Reachability constraints in the verifier’s abstract state space. While
proving any of the above queries is useful for understanding the precision rela-
tions between two comparable operators, it may not reflect real-world precision
improvements in the verifier. This is because the abstract states used in such
specifications over-approximate the set of states that can arise during actual
eBPF program analysis. In practice, the verifier initializes registers in either
known or fully unknown states, and these states evolve only through a sequence
of eBPF abstract operations and reduced by the reduction operator. As such,
many abstract states used in the precision specification may never actually be
realized during verifier execution. Table 2 illustrates examples of reachable and
unreachable abstract states in the verifier, using only the 64-bit signed and un-
signed domains for brevity. Consider the last row in the table; while it is a valid
abstract state where each individual abstract value is sound, it is not reachable
in a real verifier execution. This is because the reduction operator would tighten
the signed interval such that the resulting state would become ([5, 10], [5, 10]).
Importantly, our precision specification considers all of these abstract states
when comparing operators, regardless of reachability. If any unreachable states
are used as inputs in our query to show precision improvements of one abstract
operator over another, then that precision gain is impractical and no real eBPF
program can illustrate it. Since we are interested in practical precision improve-
ments that can manifest in a real verifier execution, we now present our witness
generation approach for synthesizing eBPF programs that illustrates reachable
precision improvements in one abstract operator over another.

14 M. Shachnai et al.

4.2 Synthesizing Witness eBPF Programs for Precision
Comparisons

Proving precision properties of abstract operators using our precision specifica-
tion (§4.1) may not be enough to determine if one operator is truly more precise
than another in any real eBPF program. This discrepancy underscores the need
to test precision differences not just in theory, but through actual witness pro-
grams that drive the verifier into states where the two operators diverge. Our
goal then is to automatically synthesize actual eBPF programs that illustrate an
instance in which one abstract operator produces tighter bounds in one, or more,
of its abstract domains compared to another operator as specified in Eqn. 2.

To address this challenge, we adapt our differential synthesis approach [73],
originally developed for soundness verification, to instead generate witness pro-
grams that highlight precision differences between abstract operators. We use
bpf_add as our abstract operator under test to illustrate our witness generation
in this section. Concretely, our approach aims to model the verifier’s behavior
when executed with two competing abstract operators. (i.e., two different opera-
tors for bpf_add). This involves enumerating bounded length eBPF programs that
exercise the abstract operators of interest. We use an SMT solver to determine
when a program illustrates that one operator is more precise than the other.
This method is sound–any synthesized program indeed demonstrates a precision
improvement–but incomplete; failure to find a witness at a given bound does not
preclude its existence.

Reaching abstract states starting from initial states. The goal of our
synthesis procedure is to produce an abstract state a ∈ A which is the result of
the verifier’s analysis of a sequence of eBPF instructions. Importantly, the verifier
begins all executions with an initial set of abstract states it allows. Formally, we
use init(b) to specify that abstract input b ∈ A is an initial abstract state where
b can be unknown (b = >) or a singleton (i.e., bs64 = [`, `] where ` ∈ Z64).
Hence, a is reachable if there exists a sequence of eBPF instructions for which
the verifier’s analysis reaches a starting from the set of restricted abstract states
such that init(b) holds.

Witness generation procedure. Let F#
1 and F#

2 be two sound, compara-
ble abstract operators that satisfy our precision specification (Eqns. 1 and 2).
Our goal is to construct an executable eBPF program whose analysis in the
verifier reaches an abstract state where the two operators diverge in precision.
To generate a concrete witness program, we consider all instruction sequences
up to a maximum length L. Each sequence includes a mix of arithmetic, logic,
and branch instructions, with the final instruction reserved for the abstract op-
erator under test. These programs are partially specified: instruction opcodes
are fixed, but operands and data flow remain symbolic. For each such program,
we construct a logical formula that (i) selects initial abstract states consistent
with the verifier’s start-state constraints (e.g., known or fully unknown abstract
states) using init(), (ii) models each instruction according to the verifier’s ab-
stract semantics, and (iii) ensures that the final instruction produces a strictly

Comparing Precision using Differential Synthesis 15

more precise abstract state under one abstract operator than the other. We emit
every such program formula to an SMT solver and repeat this process until we
reach our maximum bound length L or time limit.

To illustrate how this process begins, we first consider the case where the
program consists of a single instruction, the abstract operator under test. In
this case, we check whether the precision gap between F#

old_add and F#
new_add

(modeling bpf_add) can be demonstrated using only initial abstract states. For
illustration purposes, we test for precision differences in the As64 domain, but
this applies to any domain. This reduces to a satisfiability query over concrete
and abstract inputs:

t, u ∈ C, at, au ∈ A :

init(at) ∧ init(au) ∧memA(t, at) ∧memA(u, au) ∧

av = F#
new_add(at, au) ∧ a

′
v = F#

old_add(at, au) ∧ πs64(av) @ πs64(a
′
v) (3)

Extending witness generation to multiple instructions. A single instruc-
tion may not be enough to elicit precision gaps between operators so we extend
our synthesis to a larger program length. We explore all instruction sequences
of length L − 1 and reserve the Lth instruction for the operator under test.
Operands are left symbolic. We assert that every operand must be either (i) an
initial abstract state allowed by the verifier or (ii) the output produced by an
earlier instruction. Extending Eqn. 3, we illustrate a two-instruction (bpf_and
followed by bpf_add) query:

p, q, r, t, u, v ∈ C, ap, aq, ar, at, au, av ∈ A :

init(ap) ∧ init(aq) ∧memA(p, ap) ∧memA(q, aq) ∧

r = concand(p, q) ∧ ar = F#
and(ap, aq) ∧memA(r, ar)∧

(init(at) ∨ assign(t, {p, q, r})) ∧ (init(au) ∨ assign(u, {p, q, r}))∧
memA(t, at) ∧memA(u, au)∧

av = F#
new_add(at, au) ∧ a

′
v = F#

old_add(at, au) ∧ πs64(av) @ πs64(a
′
v). (4)

Here, variables p, q, . . . , v ∈ C denote concrete 64-bit values, and ap, aq, . . . , av ∈
A are their abstract counterparts. For the first instruction bpf_and, r = concand(p, q)

represents the concrete operator and ar = F#
and(ap, aq) represents its abstract

counterpart. The abstract operator consumes initial abstract inputs ap, aq; its
result ar may later be used as an operand. For the second instruction, bpf_add,
each abstract input may be either a fresh initial element init(·) or one of the ear-
lier results {ap, aq, ar}. We encode this choice with assign(x, {y1, . . . , ym}) =∨m

i=1

(
x = yi ∧ ax = ayi

)
, thereby linking concrete values and abstract states.

Finally, the key precision-checking constraint is imposed: πs64(av) @ πs64(a
′
v),

asserting that the new operator’s output interval is strictly more precise than
that of the old operator. If this formula is satisfiable, we get a model of a concrete
two-instruction eBPF program which exposes a real precision advantage of the
new operator over the old one. Otherwise we keep exploring the search space.

16 M. Shachnai et al.

5 Experimental Evaluation

In this section, we evaluate our prototype which compares the precision of two
abstract operator implementations in the eBPF verifier and produces witness
eBPF programs to illustrate precision gaps between these operators in real eBPF
programs. We test our framework on recent patches to the kernel that aim to
improve precision of various abstract operators in range tracking. Additionally,
we use our approach to evaluate the effectiveness of the verifier’s reduction oper-
ator (called BPF_SYNC) which is called after every abstract operator executes. For
brevity, we compare a limited set of arithmetic and logical abstract operators
with and without reduction and present the results. Overall, with this evaluation
we tackle the following questions:

1. RQ1: Precision Comparison. Can our formal framework determine whether
a newly proposed abstract operator implementation is at least as precise, or
strictly more precise, compared to an existing implementation, particularly
in the kernel’s precision-related patches?

2. RQ2: Witness Generation. Given identified precision gaps between oper-
ator implementations, can our automated framework reliably generate real
eBPF programs as concrete witnesses that reveal these differences during
verifier execution?

3. RQ3: Impact of Reduction Operator. Does the eBPF verifier’s reduc-
tion operator (BPF_SYNC) tangibly improve the precision of abstract domains,
and can our approach demonstrate these improvements through synthesized
witness programs?

Experimental setup.We conducted all experiments on a system running Ubuntu
20.04, equipped with an AMD Ryzen 5 3600 (6-core CPU) and 32GB RAM. Our
prototype was implemented in Python 3.12, leveraging the Agni C-to-logic trans-
lation tool [73] to automatically convert abstract operator implementations from
C into logical representations. For logical verification and witness synthesis tasks,
we utilized the Z3 SMT solver [35], setting a query timeout of 10 minutes and
synthesizing eBPF programs up to a length of 4 instructions.

Evaluating kernel precision patches (RQ1 & RQ2). To evaluate the effec-
tiveness of recent precision improvement efforts, we applied our precision com-
parison and witness generation framework to a set of kernel patches spanning
Linux versions v5.7 to v6.8. These patches targeted various abstract operators,
including the reduction operator (BPF_SYNC), to address overly conservative be-
havior in the verifier that resulted in rejection of safe programs. Table 3 presents
a summary of our evaluation. As shown in columns 2 and 3, our framework
confirmed that all patched operators are at least as precise as their predecessors
across all inputs and domains, and strictly more precise for some. Column 4
details the specific abstract domains where each patch demonstrably improved
precision, ranging from individual domains like As64 to improvements across
all tracked domains. To assess the practical benefit of these precision improve-
ments, we used our synthesis engine to generate concrete eBPF witness programs

Comparing Precision using Differential Synthesis 17

Table 3: We show precision relation and witness generation results for selected
eBPF abstract operator patches (Linux v5.7–v6.8). For each modified eBPF
instruction we check the two-way precision preorder between the new and old
abstract operators and indicate the abstract domains in which the patch demon-
strably tightens results. We are able to generate real eBPF program as witnesses
for all patches that are provably more precise for some inputs.

eBPF Patch F#
new � F#

old F#
old � F#

new Improved Witness
insn reference domains generated?

BPF_AND [8] X × As64, As32 X

BPF_SYNC [57] X × All X

BPF_SYNC [6] X × Atnum X

BPF_XOR [1] X × All X

BPF_MUL [7] X × Au64, Au32,
As64, As32

X

for each precision gain (column 5), providing evidence that these improvements
are observable in a real execution. These synthesized programs complement the
hand-written examples that often accompany kernel patches, reinforcing the role
of automated witness generation in kernel development and validation.

1 set r1 ; r1 unknown r1([S64min, S64max], [S32min, S32max])
2 r1 = r1 & 15 ; r1([0, 15], [0, 15])
3 r1 = r1 - 10 ; r1([-10, 5], [-10, 5])
4 r1 = r1 * -5 ; our bpf_mul: r1([-75, 50], [-75, 50])
5 old bpf_mul: r1([S64min, S64max], [S32min, S32max])
6 exit

Listing 1.1: Witness eBPF program demonstrating improved precision in the
multiplication abstract operator bpf_mul for signed interval domains (As64, As32).
The old operator yields overly conservative intervals, whereas our operator com-
putes exact bounds.

Generating witness of precision for bpf_mul and bpf_and. Here, we present
two witness programs generated by our synthesizer for our improved multipli-
cation abstract operator (§3) and for the bitwise and abstract operator bpf_-

and [8]. These witnesses are real eBPF programs that exhibits the precision
merits of these operators. We illustrate our multiplication operator’s perfor-
mance on signed values in Listing 1.1 using two domains, As64 and As32. The
program exemplifies how the operator handles multiplying two signed intervals
[−10, 15] × [−5,−5]. We observe that the old multiplication operator (line 5)
yields the widest range possible for these domains while our operator yields the
exact result expected for this multiplication [−75, 50]. This improvement in pre-
cision could practically mean the verifier would accept a program in which the r1

18 M. Shachnai et al.

register might be later used to access memory. Importantly, in our patch to the
Linux kernel, we included such an automatically generated witness embedded in
its commit message. This patch is now upstreamed to kernel version v6.14 and
beyond [7].

Our second witness example (Listing 1.2) illustrates precision improvement
in the As64 domain for the bpf_and operator. The patch itself aimed at improving
the handling of negative values when performing the bitwise and operation, since
it would result in verifier rejections detailed in [8]. Our synthesizer generates
a program which performs bitwise and on two signed intervals where the old
operator (line 5) results in > and the proposed version (line 4) returns a more
precise interval [−240,≈ 240].

1 set r1 ; set r1 to unknown r1([S64min, S64max])
2 set r2 ; set r2 to unknown r2([S64min, S64max])
3 r1 = r1 s>> 23 ; r1([-1099511627776, 1099511627775])
4 r2 = r2 s>> 32 ; r2([-2147483648, 2147483647])
5 r1 = r1 & r2 ; new bpf_and: r1([-1099511627776, 1099511627775])
6 old bpf_and: r1([S64min, S64max])
7 exit

Listing 1.2: Witness eBPF program illustrating precision gap in abstract operator
bpf_and for the signed interval domain (As64).

Evaluating the reduction operator (RQ3). To assess the precision benefits
of the verifier’s reduction operator (BPF_SYNC), we systematically compared a set
of arithmetic and logical abstract operators with and without reduction, using
Linux kernel version v6.10. The reduction operator, invoked at the tail end of ev-
ery abstract operator execution, has been the focus of multiple precision- focused
kernel patches [3, 6, 18]. While its soundness has been formally established [65],
its precision impact had not been rigorously evaluated prior to this work.

Table 4 summarizes our findings and reveals several important insights. First,
as shown in columns 2 and 3, all operators augmented with reduction are always
at least as precise, and some may also be strictly more precise, than operators
without reduction. Second, column 4 illustrates that the reduction operator can
enhance precision across a wide range of domains, frequently yielding improve-
ments in all five abstract domains. Third, our framework was able to successfully
synthesize witness eBPF programs (column 5) for all operators and for most
domains where precision gains were possible. However, we were not able to gen-
erate witnesses that expose improvements in the tnum domain for any of the
bitwise/shift operations given the program length and time constraints used in
this experiment. This reflects the inherent limitations of bounded enumeration;
we cannot know if limited sequence length prevented reaching the input abstract
states necessary to expose precision differences or if such inputs are unreachable
regardless of sequence length. Lastly, our results indicate that many of these
witnesses required multi-instruction sequences to manifest observable differences
(column 6), underscoring the importance of bounded program synthesis beyond

Comparing Precision using Differential Synthesis 19

Table 4: Precision gains from applying the reduction operator (BPF_SYNC) to arith-
metic eBPF instructions (Linux v6.10). Operators with reduction (F#

R) are con-
sistently at least as precise as those without (F#

¬R), and for some inputs strictly
more so (cols. 2–3). Precision testing shows the reduction operator can improve
precision in almost all abstract domains (col. 4). Our synthesizer is able to pro-
duce witness programs for most of these domains which require four or less
instructions to expose precision gaps (cols. 5–6). This demonstrates both the
broad utility of reduction and the effectiveness of our approach.

eBPF F#
R � F#

¬R F#
¬R � F#

R Improved Synthesized Witness
insn domains? witness for length?

BPF_RSH X × All
Au64, Au32,
As64, As32 ≤ 4

BPF_ARSH X × All
Au64, Au32,
As64, As32 ≤ 4

BPF_LSH X × All
Au64, Au32,
As64, As32 ≤ 4

BPF_ADD X × All All ≤ 3

BPF_SUB X × All All ≤ 3

BPF_AND X × All Au64, As64 ≤ 4

BPF_OR X ×
Au64, Au32,
As64, As32 Au64, As64 ≤ 4

BPF_XOR X X None — —

single-instruction analysis. Taken together, our evaluation demonstrates that the
reduction operator is an effective, general-purpose mechanism for improving the
precision of value tracking in the eBPF verifier.

6 Related Work

Verifying correctness of the eBPF verifier. This paper is closest in ap-
proach to our prior work verifying the value tracking of the eBPF verifier [65,73].
These automatically verify the soundness of abstract operators by generating
verification conditions directly from C code of the Linux eBPF verifier. When a
proof of correctness is unattainable, our prototype, Agni [72], generates witness
programs illustrating unsound behavior in the verifier. This paper is similar in
its approach, but our main focus here is proving precision properties of abstract
operator implementations rather than proving their correctness, with the goal
of reducing verifier rejections of safe programs. As such, we adapt our differen-
tial synthesis to produce witness programs illustrating precision gaps between
operators.

20 M. Shachnai et al.

Synthesizing abstract operators. Manually crafting sound and precise ab-
stract operators is non-trivial and error-prone. Research on developing auto-
mated approaches is ongoing [36, 62, 63, 69]. Amurth [43] automatically synthe-
sizes abstract operators for non-relational domains with a user provided DSL.
Amurth explores the search space using a dual CEGIS [66] loop with positive
(soundness) and negative (precision) counter-examples guaranteeing that when
an abstract operator is synthesized, it is sound and the most precise possible in
the given language. This approach is extended for reduced-product domains [44].
Our work complements these efforts, allowing precision comparison of operators
generated automatically for non-relational domains. Our precision comparison
framework along with automated approaches to generating abstract operators
could provide a sound and precise foundation for abstract operators in the eBPF
verifier.

Domain refinement and abstract interpretation Our work builds on foun-
dational ideas in abstract interpretation [30,32,33], particularly the use of lattice-
theoretic structures to reason about precision. We focus on non-relational do-
mains such as intervals and bitwise abstractions [52, 53], and define precision
comparisons over abstract operators using their ordering in the lattice. Our
witness generation approach led us to explore how the eBPF verifier combines
information from multiple domains, which is non-standard but loosely follows
the literature on reduced products domain refinements [33,53]. Improving cross-
domain interaction remains an area of interest [21, 27, 29, 70]. For a broader
overview, we refer the reader to an existing survey on product operators [28].

7 Conclusion

The eBPF verifier’s precision is vital for practical eBPF deployment: overly
coarse abstract operators cause the kernel to reject programs that are, in fact,
safe. In this work, we propose a systematic approach that leverages formal speci-
fications and program synthesis to compare and validate the precision of compet-
ing abstract operator implementations. We introduce a formal precision specifi-
cation rooted in abstract interpretation, allowing us to precisely define and ver-
ify precision relationships between competing operator implementations. When
precision gaps are identified, our approach synthesizes concrete eBPF programs
demonstrating these differences in real executions. We applied our framework to
our improved bpf_mul operator and several other precision-related kernel patches,
successfully generating witness programs for each, confirming their precision im-
provements. We propose this methodology as a principled way to ensure that
future kernel patches targeting abstract operator precision are effective across
all relevant inputs.

8 Acknowledgements

This paper is based upon work supported in part by the National Science Foun-
dation under FMITF-Track I Grant No. 2019302 and FMITF-Track II Grant No.

Comparing Precision using Differential Synthesis 21

2422076, the Facebook Systems and Networking Award, and the eBPF Founda-
tion Award. We thank the anonymous reviewers for their insightful feedback. We
also thank Eduard Zingerman and Alexei Starovoitov for their feedback on our
patches.

References

1. bpf: fix a verifier failure with xor. https://lore.kernel.org/bpf/20200825064608.
2017937-1-yhs@fb.com/

2. bpf: fix incorrect sign extension in check_alu_op(). https://github.com/
torvalds/linux/commit/95a762e2c8c942780948091f8f2a4f32fce1ac6f

3. bpf: Fix reg_bound_offset 64->32 var_off subreg propagation. https://lore.
kernel.org/linux-patches/20230508094431.898575322@linuxfoundation.org/

4. bpf, Harden and/or/xor value tracking in verifier. https://git.kernel.org/pub/
scm/linux/kernel/git/bpf/bpf-next.git/commit/?id=1f586614f3ff

5. bpf selftests. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/
linux.git/tree/tools/testing/selftests/bpf/

6. bpf: Verifer, adjust_scalar_min_max_vals to always call update_reg_bounds().
https://lkml.iu.edu/hypermail/linux/kernel/2208.1/01778.html

7. bpf, verifier: Improve precision of BPF_MUL. https://git.kernel.org/pub/scm/
linux/kernel/git/bpf/bpf-next.git/commit/?id=9aa0ebde0014

8. bpf, verifier: improve signed ranges reasoning for BPF_AND. https://lore.
kernel.org/bpf/20240719110059.797546-6-xukuohai@huaweicloud.com/

9. bpf, x32: Fix bug with ALU64 LSH, RSH, ARSH BPF_X shift by 0. https://
github.com/torvalds/linux/commit/68a8357ec15bdce55266e9fba8b8b3b8143fa7d2

10. CVE-2017-16996 Mishandling of register truncation. https://nvd.nist.gov/vuln/
detail/CVE-2017-16996

11. CVE-2017-17852 Mishandling of 32-bit ALU ops. https://nvd.nist.gov/vuln/
detail/CVE-2017-17852

12. CVE-2017-17853 Mishandling of 32-bit ALU ops. https://nvd.nist.gov/vuln/
detail/CVE-2017-17853

13. CVE-2017-17864 Mishandled comparison between pointer and unknown data
types. https://nvd.nist.gov/vuln/detail/CVE-2017-17864

14. CVE-2018-18445 Mishandling of 32-bit RSH op. https://nvd.nist.gov/vuln/
detail/CVE-2018-18445

15. CVE-2020-8835 Mishandling of bounds tracking for 32-bit JMPs. https://nvd.
nist.gov/vuln/detail/CVE-2020-8835

16. CVE-2021-3490 The eBPF ALU32 bounds tracking for bitwise ops (AND, OR and
XOR) in the Linux kernel did not properly update 32-bit bounds. CVE-2021-3490

17. Facebook’s Katran load balancer: Kernel XDP program. https://github.com/
facebookincubator/katran/blob/master/katran/lib/bpf/balancer_kern.c

18. Merge branch ’bpf-register-bounds-logic-and-testing-improvements’. https:
//git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/commit/?id=
cd9c127069c040d6b022f1ff32fed4b52b9a4017

19. Netconf 2018 day 1. https://lwn.net/Articles/757201/
20. bpf, tnums: Provably sound, faster, and more precise algorithm for tnum_mul.

[Online, Retrieved Oct 19, 2022.] https://git.kernel.org/pub/scm/linux/kernel/
git/bpf/bpf-next.git/commit/?id=05924717ac70 (2021)

https://lore.kernel.org/bpf/20200825064608.2017937-1-yhs@fb.com/
https://lore.kernel.org/bpf/20200825064608.2017937-1-yhs@fb.com/
https://github.com/torvalds/linux/commit/95a762e2c8c942780948091f8f2a4f32fce1ac6f
https://github.com/torvalds/linux/commit/95a762e2c8c942780948091f8f2a4f32fce1ac6f
https://lore.kernel.org/linux-patches/20230508094431.898575322@linuxfoundation.org/
https://lore.kernel.org/linux-patches/20230508094431.898575322@linuxfoundation.org/
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/commit/?id=1f586614f3ff
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/commit/?id=1f586614f3ff
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/testing/selftests/bpf/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/testing/selftests/bpf/
https://lkml.iu.edu/hypermail/linux/kernel/2208.1/01778.html
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/commit/?id=9aa0ebde0014
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/commit/?id=9aa0ebde0014
https://lore.kernel.org/bpf/20240719110059.797546-6-xukuohai@huaweicloud.com/
https://lore.kernel.org/bpf/20240719110059.797546-6-xukuohai@huaweicloud.com/
https://github.com/torvalds/linux/commit/68a8357ec15bdce55266e9fba8b8b3b8143fa7d2
https://github.com/torvalds/linux/commit/68a8357ec15bdce55266e9fba8b8b3b8143fa7d2
https://nvd.nist.gov/vuln/detail/CVE-2017-16996
https://nvd.nist.gov/vuln/detail/CVE-2017-16996
https://nvd.nist.gov/vuln/detail/CVE-2017-17852
https://nvd.nist.gov/vuln/detail/CVE-2017-17852
https://nvd.nist.gov/vuln/detail/CVE-2017-17853
https://nvd.nist.gov/vuln/detail/CVE-2017-17853
https://nvd.nist.gov/vuln/detail/CVE-2017-17864
https://nvd.nist.gov/vuln/detail/CVE-2018-18445
https://nvd.nist.gov/vuln/detail/CVE-2018-18445
https://nvd.nist.gov/vuln/detail/CVE-2020-8835
https://nvd.nist.gov/vuln/detail/CVE-2020-8835
CVE-2021-3490
https://github.com/facebookincubator/katran/blob/master/katran/lib/bpf/balancer_kern.c
https://github.com/facebookincubator/katran/blob/master/katran/lib/bpf/balancer_kern.c
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/commit/?id=cd9c127069c040d6b022f1ff32fed4b52b9a4017
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/commit/?id=cd9c127069c040d6b022f1ff32fed4b52b9a4017
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/commit/?id=cd9c127069c040d6b022f1ff32fed4b52b9a4017
https://lwn.net/Articles/757201/
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/commit/?id=05924717ac70
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/commit/?id=05924717ac70

22 M. Shachnai et al.

21. Amadini, R., Jordan, A., Gange, G., Gauthier, F., Schachte, P., Søndergaard, H.,
Stuckey, P.J., Zhang, C.: Combining string abstract domains for javascript anal-
ysis: An evaluation. In: Legay, A., Margaria, T. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems. pp. 41–57. Springer Berlin Heidelberg,
Berlin, Heidelberg (2017)

22. Bhat, S., Shacham, H.: Formal verification of the linux kernel ebpf
verifier range analysis. https://sanjit-bhat.github.io/assets/pdf/
ebpf-verifier-range-analysis22.pdf (2022)

23. Borkmann, D.: bpf: Fix scalar32_min_max_or bounds tracking. https://github.
com/torvalds/linux/commit/5b9fbeb75b6a98955f628e205ac26689bcb1383e (2020)

24. Borkmann, D.: bpf: Undo incorrect __reg_bound_offset32 handling.
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/
commit/?id=f2d67fec0b43edce8c416101cdc52e71145b5fef (2020)

25. Borkmann, D.: bpf: Fix alu32 const subreg bound tracking on bitwise opera-
tions. https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/commit/
?id=049c4e13714ecbca567b4d5f6d563f05d431c80e (2021)

26. Borkmann, D.: bpf: Fix signed_sub,add32_overflows type handling.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/
commit/?id=bc895e8b2a64e502fbba72748d59618272052a8b (2021)

27. Cheng, X., Wang, J., Sui, Y.: Precise sparse abstract execution via cross-domain
interaction. In: Proceedings of the IEEE/ACM 46th International Conference on
Software Engineering. ICSE ’24, Association for Computing Machinery, New York,
NY, USA (2024). https://doi.org/10.1145/3597503.3639220, https://doi.org/
10.1145/3597503.3639220

28. Cortesi, A., Costantini, G., Ferrara, P.: A Survey on Product Operators in Abstract
Interpretation. Electronic Proceedings in Theoretical Computer Science 129, 325–
336 (sep 2013). https://doi.org/10.4204/eptcs.129.19

29. Cousot, P., Cousot, R.: Higher-order abstract interpretation (and application to
comportment analysis generalizing strictness, termination, projection and per anal-
ysis of functional languages). In: Proceedings of 1994 IEEE International Confer-
ence on Computer Languages (ICCL’94). pp. 95–112 (1994). https://doi.org/10.
1109/ICCL.1994.288389

30. Cousot, P.: Lecture 13 notes: Mit 16.399, abstract interpretation.
http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/lecture_
13-abstraction1/Cousot_MIT_2005_Course_13_4-1.pdf (2005)

31. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In:
Proceedings of the 2nd International Symposium on Programming, Paris, France.
pp. 106–130. Dunod (1976)

32. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages. p. 238–252. POPL ’77, Association for Computing Machinery, New
York, NY, USA (1977). https://doi.org/10.1145/512950.512973

33. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages. p. 269–282. POPL ’79, Association for Computing Machin-
ery, New York, NY, USA (1979). https://doi.org/10.1145/567752.567778

34. Cree, E.: bpf/verifier: fix bounds calculation on BPF_RSH. https:
//git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/
?id=4374f256ce8182019353c0c639bb8d0695b4c941 (2017)

https://sanjit-bhat.github.io/assets/pdf/ebpf-verifier-range-analysis22.pdf
https://sanjit-bhat.github.io/assets/pdf/ebpf-verifier-range-analysis22.pdf
https://github.com/torvalds/linux/commit/5b9fbeb75b6a98955f628e205ac26689bcb1383e
https://github.com/torvalds/linux/commit/5b9fbeb75b6a98955f628e205ac26689bcb1383e
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=f2d67fec0b43edce8c416101cdc52e71145b5fef
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/?id=f2d67fec0b43edce8c416101cdc52e71145b5fef
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/commit/?id=049c4e13714ecbca567b4d5f6d563f05d431c80e
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf.git/commit/?id=049c4e13714ecbca567b4d5f6d563f05d431c80e
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bc895e8b2a64e502fbba72748d59618272052a8b
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bc895e8b2a64e502fbba72748d59618272052a8b
https://doi.org/10.1145/3597503.3639220
https://doi.org/10.1145/3597503.3639220
https://doi.org/10.1145/3597503.3639220
https://doi.org/10.1145/3597503.3639220
https://doi.org/10.4204/eptcs.129.19
https://doi.org/10.4204/eptcs.129.19
https://doi.org/10.1109/ICCL.1994.288389
https://doi.org/10.1109/ICCL.1994.288389
https://doi.org/10.1109/ICCL.1994.288389
https://doi.org/10.1109/ICCL.1994.288389
http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/lecture_13-abstraction1/Cousot_MIT_2005_Course_13_4-1.pdf
http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/lecture_13-abstraction1/Cousot_MIT_2005_Course_13_4-1.pdf
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/567752.567778
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4374f256ce8182019353c0c639bb8d0695b4c941
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4374f256ce8182019353c0c639bb8d0695b4c941
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=4374f256ce8182019353c0c639bb8d0695b4c941

Comparing Precision using Differential Synthesis 23

35. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: Proceedings of
the Theory and Practice of Software, 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. p. 337–340.
TACAS’08/ETAPS’08, Springer-Verlag, Berlin, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-78800-3_24

36. Elder, M., Lim, J., Sharma, T., Andersen, T., Reps, T.: Abstract domains of affine
relations. ACM Trans. Program. Lang. Syst. 36(4) (Oct 2014). https://doi.org/
10.1145/2651361, https://doi.org/10.1145/2651361

37. Fabre, A.: L4drop: Xdp ddos mitigations. https://blog.cloudflare.com/
l4drop-xdp-ebpf-based-ddos-mitigations/

38. Gershuni, E., Amit, N., Gurfinkel, A., Narodytska, N., Navas, J.A., Rinetzky, N.,
Ryzhyk, L., Sagiv, M.: Simple and precise static analysis of untrusted linux kernel
extensions. In: Proceedings of the 40th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. p. 1069–1084. PLDI 2019, Association
for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/
3314221.3314590

39. Horn, J.: Arbitrary read+write via incorrect range tracking in ebpf. https://bugs.
chromium.org/p/project-zero/issues/detail?id=1454

40. Horn, J.: bpf: fix 32-bit ALU op verification. https://git.
kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
468f6eafa6c44cb2c5d8aad35e12f06c240a812a (2017)

41. Horn, J.: bpf: 32-bit RSH verification must truncate input before the
ALU op. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/commit/?id=b799207e1e1816b09e7a5920fbb2d5fcf6edd681 (2018)

42. Hung, H.W., Amiri Sani, A.: Brf: Fuzzing the ebpf runtime. Proc. ACM Softw.
Eng. 1(FSE) (Jul 2024). https://doi.org/10.1145/3643778, https://doi.org/10.
1145/3643778

43. Kalita, P.K., Muduli, S.K., D’Antoni, L., Reps, T., Roy, S.: Synthesizing abstract
transformers. Proc. ACM Program. Lang. 6(OOPSLA2) (Oct 2022). https://doi.
org/10.1145/3563334, https://doi.org/10.1145/3563334

44. Kalita, P.K., Reps, T., Roy, S.: Synthesizing abstract transformers for reduced-
product domains. In: Giacobazzi, R., Gorla, A. (eds.) Static Analysis. pp. 147–172.
Springer Nature Switzerland, Cham (2025)

45. Kline, E.: Bpf instruction set architecture (isa). https://www.kernel.org/doc/
html/latest/bpf/standardization/instruction-set.html

46. Li, Y., Niu, W., Zhu, Y., Gong, J., Li, B., Zhang, X.: Fuzzing logical bugs in
ebpf verifier with bound-violation indicator. In: ICC 2023 - IEEE International
Conference on Communications. pp. 753–758 (2023). https://doi.org/10.1109/
ICC45041.2023.10278676

47. Lian, Z., Li, Y., Chen, Z., Shan, S., Han, B., Su, Y.: ebpf-based working set size
estimation in memory management. In: 2022 International Conference on Service
Science (ICSS). pp. 188–195. IEEE (2022)

48. Linux eBPF maintainers: Bounds syncing for abstract registers. https://github.
com/torvalds/linux/blob/v6.0/kernel/bpf/verifier.c#L1565 (2023)

49. Lu, D., Tang, B., Paper, M., Kogias, M.: Towards functional verification of ebpf
programs. In: Proceedings of the ACM SIGCOMM 2024 Workshop on EBPF and
Kernel Extensions. p. 37–43. eBPF ’24, Association for Computing Machinery,
New York, NY, USA (2024). https://doi.org/10.1145/3672197.3673435, https:
//doi.org/10.1145/3672197.3673435

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2651361
https://doi.org/10.1145/2651361
https://doi.org/10.1145/2651361
https://doi.org/10.1145/2651361
https://doi.org/10.1145/2651361
https://blog.cloudflare.com/l4drop-xdp-ebpf-based-ddos-mitigations/
https://blog.cloudflare.com/l4drop-xdp-ebpf-based-ddos-mitigations/
https://doi.org/10.1145/3314221.3314590
https://doi.org/10.1145/3314221.3314590
https://doi.org/10.1145/3314221.3314590
https://doi.org/10.1145/3314221.3314590
https://bugs.chromium.org/p/project-zero/issues/detail?id=1454
https://bugs.chromium.org/p/project-zero/issues/detail?id=1454
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=468f6eafa6c44cb2c5d8aad35e12f06c240a812a
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=468f6eafa6c44cb2c5d8aad35e12f06c240a812a
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=468f6eafa6c44cb2c5d8aad35e12f06c240a812a
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b799207e1e1816b09e7a5920fbb2d5fcf6edd681
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=b799207e1e1816b09e7a5920fbb2d5fcf6edd681
https://doi.org/10.1145/3643778
https://doi.org/10.1145/3643778
https://doi.org/10.1145/3643778
https://doi.org/10.1145/3643778
https://doi.org/10.1145/3563334
https://doi.org/10.1145/3563334
https://doi.org/10.1145/3563334
https://doi.org/10.1145/3563334
https://doi.org/10.1145/3563334
https://www.kernel.org/doc/html/latest/bpf/standardization/instruction-set.html
https://www.kernel.org/doc/html/latest/bpf/standardization/instruction-set.html
https://doi.org/10.1109/ICC45041.2023.10278676
https://doi.org/10.1109/ICC45041.2023.10278676
https://doi.org/10.1109/ICC45041.2023.10278676
https://doi.org/10.1109/ICC45041.2023.10278676
https://github.com/torvalds/linux/blob/v6.0/kernel/bpf/verifier.c#L1565
https://github.com/torvalds/linux/blob/v6.0/kernel/bpf/verifier.c#L1565
https://doi.org/10.1145/3672197.3673435
https://doi.org/10.1145/3672197.3673435
https://doi.org/10.1145/3672197.3673435
https://doi.org/10.1145/3672197.3673435

24 M. Shachnai et al.

50. Lucas Leong: ZDI-20-1440: An incorrect calculation bug in the linux ker-
nel eBPF verifier. https://www.zerodayinitiative.com/blog/2021/1/18/
zdi-20-1440-an-incorrect-calculation-bug-in-the-linux-kernel-ebpf-verifier

51. Manfred Paul: CVE-2020-8835: Linux kernel privi-
lege escalation via improper eBPF program verification.
https://www.zerodayinitiative.com/blog/2020/4/8/cve-2020-8835-linux-kernel-
privilege-escalation-via-improper-ebpf-program-verification

52. Miné, A.: Abstract domains for bit-level machine integer and floating-point oper-
ations. In: WING’12 - 4th International Workshop on invariant Generation. p. 16.
Manchester, United Kingdom (Jun 2012), https://hal.science/hal-00748094

53. Miné, A.: Tutorial on static inference of numeric invariants by abstract interpre-
tation. Foundations and Trends® in Programming Languages 4(3-4), 120–372
(2017). https://doi.org/10.1561/2500000034

54. Mohamed, M.H.N., Wang, X., Ravindran, B.: Understanding the security of linux
ebpf subsystem. In: Proceedings of the 14th ACM SIGOPS Asia-Pacific Workshop
on Systems. p. 87–92. APSys ’23, Association for Computing Machinery, New York,
NY, USA (2023). https://doi.org/10.1145/3609510.3609822, https://doi.org/
10.1145/3609510.3609822

55. Monniaux, D.: Verification of device drivers and intelligent controllers: a case study.
In: Proceedings of the 7th ACM & IEEE international conference on Embedded
software. pp. 30–36 (2007). https://doi.org/10.1145/1289927.1289937

56. Moore, R.E.: Interval analysis. Prentice-Hall (1966)
57. Nakryiko, A.: BPF register bounds logic and testing improvements.

https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/commit/
?id=cd9c127069c0 (2023)

58. Onderka, J., Ratschan, S.: Fast three-valued abstract bit-vector arithmetic. In: Ver-
ification, Model Checking, and Abstract Interpretation: 23rd International Confer-
ence, VMCAI 2022, Philadelphia, PA, USA, January 16–18, 2022, Proceedings.
p. 242–262. Springer-Verlag, Berlin, Heidelberg (2022). https://doi.org/10.1007/
978-3-030-94583-1_12

59. Palmiotti, V.: Kernel pwning with eBPF: a love story. https://www.
graplsecurity.com/post/kernel-pwning-with-ebpf-a-love-story

60. Peng, C., Jiang, M., Wu, L., Zhou, Y.: Toss a fault to bpfchecker: Revealing
implementation flaws for ebpf runtimes with differential fuzzing. In: Proceed-
ings of the 2024 on ACM SIGSAC Conference on Computer and Communica-
tions Security. p. 3928–3942. CCS ’24, Association for Computing Machinery,
New York, NY, USA (2024). https://doi.org/10.1145/3658644.3690237, https:
//doi.org/10.1145/3658644.3690237

61. Regehr, J., Duongsaa, U.: Deriving abstract transfer functions for analyzing em-
bedded software. In: Proceedings of the 2006 ACM SIGPLAN/SIGBED Confer-
ence on Language, Compilers, and Tool Support for Embedded Systems. p. 34–43.
LCTES ’06, Association for Computing Machinery, New York, NY, USA (2006).
https://doi.org/10.1145/1134650.1134657

62. Reps, T., Sagiv, M., Yorsh, G.: Symbolic implementation of the best transformer.
In: Steffen, B., Levi, G. (eds.) Verification, Model Checking, and Abstract Inter-
pretation. pp. 252–266. Springer Berlin Heidelberg, Berlin, Heidelberg (2004)

63. Reps, T., Thakur, A.: Automating abstract interpretation. In: Jobstmann, B.,
Leino, K.R.M. (eds.) Verification, Model Checking, and Abstract Interpretation.
pp. 3–40. Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

https://www.zerodayinitiative.com/blog/2021/1/18/zdi-20-1440-an-incorrect-calculation-bug-in-the-linux-kernel-ebpf-verifier
https://www.zerodayinitiative.com/blog/2021/1/18/zdi-20-1440-an-incorrect-calculation-bug-in-the-linux-kernel-ebpf-verifier
https://hal.science/hal-00748094
https://doi.org/10.1561/2500000034
https://doi.org/10.1561/2500000034
https://doi.org/10.1145/3609510.3609822
https://doi.org/10.1145/3609510.3609822
https://doi.org/10.1145/3609510.3609822
https://doi.org/10.1145/3609510.3609822
https://doi.org/10.1145/1289927.1289937
https://doi.org/10.1145/1289927.1289937
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/commit/?id=cd9c127069c0
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/commit/?id=cd9c127069c0
https://doi.org/10.1007/978-3-030-94583-1_12
https://doi.org/10.1007/978-3-030-94583-1_12
https://doi.org/10.1007/978-3-030-94583-1_12
https://doi.org/10.1007/978-3-030-94583-1_12
https://www.graplsecurity.com/post/kernel-pwning-with-ebpf-a-love-story
https://www.graplsecurity.com/post/kernel-pwning-with-ebpf-a-love-story
https://doi.org/10.1145/3658644.3690237
https://doi.org/10.1145/3658644.3690237
https://doi.org/10.1145/3658644.3690237
https://doi.org/10.1145/3658644.3690237
https://doi.org/10.1145/1134650.1134657
https://doi.org/10.1145/1134650.1134657

Comparing Precision using Differential Synthesis 25

64. Rick Larabee: eBPF and Analysis of the get-rekt-linux-hardened.c Ex-
ploit for CVE-2017-16995. https://ricklarabee.blogspot.com/2018/07/
ebpf-and-analysis-of-get-rekt-linux.html

65. Shachnai, M., Vishwanathan, H., Narayana, S., Nagarakatte, S.: Fixing latent un-
sound abstract operators in the ebpf verifier of the linux kernel. In: International
Static Analysis Symposium. pp. 386–406. Springer (2024)

66. Solar-Lezama, A.: Program sketching. International Journal on Software Tools for
Technology Transfer 15(5), 475–495 (2013)

67. Sun, H., Su, Z.: Validating the eBPF verifier via state embedding. In: 18th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 24). pp. 615–
628. USENIX Association, Santa Clara, CA (Jul 2024), https://www.usenix.org/
conference/osdi24/presentation/sun-hao

68. Sun, H., Xu, Y., Liu, J., Shen, Y., Guan, N., Jiang, Y.: Finding correctness
bugs in ebpf verifier with structured and sanitized program. In: Proceedings of
the Nineteenth European Conference on Computer Systems. p. 689–703. EuroSys
’24, Association for Computing Machinery, New York, NY, USA (2024). https:
//doi.org/10.1145/3627703.3629562, https://doi.org/10.1145/3627703.3629562

69. Thakur, A., Reps, T.: A method for symbolic computation of abstract operations.
In: Madhusudan, P., Seshia, S.A. (eds.) Computer Aided Verification. pp. 174–192.
Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

70. Toubhans, A., Chang, B.Y.E., Rival, X.: Reduced product combination of abstract
domains for shapes. In: International Workshop on Verification, Model Checking,
and Abstract Interpretation. pp. 375–395. Springer (2013)

71. Vishwanathan, H., Shachnai, M., Narayana, S., Nagarakatte, S.: Sound, precise,
and fast abstract interpretation with tristate numbers. In: Proceedings of the 20th
IEEE/ACM International Symposium on Code Generation and Optimization. p.
254–265. CGO ’22, IEEE Press (2022). https://doi.org/10.1109/CGO53902.2022.
9741267

72. Vishwanathan, H., Shachnai, M., Narayana, S., Nagarakatte, S.: Agni: Verifying
the Verifier (eBPF Range Analysis Verification). https://github.com/bpfverif/
ebpf-range-analysis-verification-cav23 (2023)

73. Vishwanathan, H., Shachnai, M., Narayana, S., Nagarakatte, S.: Verifying the
verifier: ebpf range analysis verification. In: Computer Aided Verification: 35th
International Conference, CAV 2023, Paris, France, July 17–22, 2023, Proceed-
ings, Part III. p. 226–251. Springer-Verlag, Berlin, Heidelberg (2023). https:
//doi.org/10.1007/978-3-031-37709-9_12

74. Yang, J., Chen, L., Bai, J.: Redis automatic performance tuning based on ebpf. In:
2022 14th International Conference on Measuring Technology and Mechatronics
Automation (ICMTMA). pp. 671–676. IEEE (2022)

https://ricklarabee.blogspot.com/2018/07/ebpf-and-analysis-of-get-rekt-linux.html
https://ricklarabee.blogspot.com/2018/07/ebpf-and-analysis-of-get-rekt-linux.html
https://www.usenix.org/conference/osdi24/presentation/sun-hao
https://www.usenix.org/conference/osdi24/presentation/sun-hao
https://doi.org/10.1145/3627703.3629562
https://doi.org/10.1145/3627703.3629562
https://doi.org/10.1145/3627703.3629562
https://doi.org/10.1145/3627703.3629562
https://doi.org/10.1145/3627703.3629562
https://doi.org/10.1109/CGO53902.2022.9741267
https://doi.org/10.1109/CGO53902.2022.9741267
https://doi.org/10.1109/CGO53902.2022.9741267
https://doi.org/10.1109/CGO53902.2022.9741267
https://github.com/bpfverif/ebpf-range-analysis-verification-cav23
https://github.com/bpfverif/ebpf-range-analysis-verification-cav23
https://doi.org/10.1007/978-3-031-37709-9_12
https://doi.org/10.1007/978-3-031-37709-9_12
https://doi.org/10.1007/978-3-031-37709-9_12
https://doi.org/10.1007/978-3-031-37709-9_12

	Comparing the Precision of Abstract Operators in the eBPF Verifier using Differential Synthesis

