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Abstract
We investigate the problem of heterogeneous task assignment
in crowdsourcing markets from the point of view of the re-
quester, who has a collection of tasks. Workers arrive online
one by one, and each declare a set of feasible tasks they can
solve, and desired payment for each feasible task. The re-
quester must decide on the fly which task (if any) to assign
to the worker, while assigning workers only to feasible tasks.
The goal is to maximize the number of assigned tasks with a
fixed overall budget.
We provide an online algorithm for this problem and prove
an upper bound on the competitive ratio of this algorithm
against an arbitrary (possibly worst-case) sequence of work-
ers who want small payments relative to the requester’s total
budget. We further show an almost matching lower bound on
the competitive ratio of any algorithm in this setting. Finally,
we propose a different algorithm that achieves an improved
competitive ratio in the random permutation model, where the
order of arrival of the workers is chosen uniformly at random.
Apart from these strong theoretical guarantees, we carry out
experiments on simulated data which demonstrates the prac-
tical applicability of our algorithms.

Introduction
Crowdsourcing markets have seen a remarkable rise in re-
cent years, as more and more markets use the internet to
connect people with tasks to solve, to people willing to solve
tasks in exchange for payment. While these tasks were orig-
inally simple tasks that could be accomplished while sit-
ting at a computer—say, labeling images or cleaning data—
recent systems handle complex tasks in the real world. Ser-
vices like TaskRabbit let users hire workers to run errands,
like picking up a package; ride-sharing applications like Lyft
or Uber provide drivers on-demand to transport customers;
other services offer meal or grocery delivery, house clean-
ing, and even on-demand massages1 to customers.

Accordingly, an important challenge for task requesters
in crowdsourcing (and more general) platforms is handling
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more and more heterogenous workers and tasks. A worker
may not be able to solve all the tasks—say, they may only
be able to translate certain languages, or they may only be
able to handle time-sensitive tasks on a deadline far into the
future. Among the solvable tasks, a worker may want dif-
ferent payment for different tasks; a short task can require
a small payment, while a more complex task may warrant a
higher payment.

At the same time, requesters must cope with a highly dy-
namic flow of workers. Since it is common for workers to
work for several different platforms simultaneously, the pool
of available workers is constantly changing. The requester
may not have the luxury of seeing all the workers, and then
selecting the right workers. Instead, requesters may need to
select workers in an online fashion, where workers arrive
one by one and must be hired (or not) as soon as they arrive.

We take aim at both of these challenges in crowdsourc-
ing by considering the following task assignment problem:
if workers (i) have an arbitrary set of feasible tasks, (ii) de-
mand heterogeneous payments by bidding for feasible tasks,
and (iii) arrive online, how can a requester assign workers to
tasks in order to maximize the number of completed tasks
given a fixed overall budget?

Singer and Mittal [8] were the first to study a simpler
version of this problem. In their setting, each worker has
a single bid for all the tasks; all the tasks are treated homo-
geneously, and workers are assumed to be able to solve all
the tasks (if they receive a payment which is at least equal
to their bids). We generalize their setting in two significant
ways: First, we allow workers to specify only a subset of
feasible tasks that they can handle. Second, we work in a
setting with heterogeneous tasks: workers can have different
preferences over tasks. As we will show, this heterogeneity
significantly complicates the task assignment problem; al-
gorithms for the heterogeneous case may look nothing like
their counterparts in the homogeneous case.

As a warm up, we start by providing two algorithms for
the offline problem – where the requester knows the se-
quence of workers and their bids up front: first, the optimal
algorithm via min-cost flows, and second, a fixed-threshold
constant factor approximation algorithm inspired by the al-
gorithm of Singer and Mittal [8]. Then, we move to the on-
line setting, where we draw on techniques from the online
knapsack literature.



As is typical for online algorithms, we measure the per-
formance of our algorithm via the competitive ratio, i.e., the
ratio of the number of tasks assigned by the best offline al-
gorithm to the number of tasks assigned by the online al-
gorithm on the same problem. When the bids are bounded
in [1, R], the bids of the workers are small compared to the
budget of the requester, and the order is worst-case, we give
an algorithm that achieves anO(Rε ln(R)) competitive ratio
when R ≤ εB2. The central idea is to use a moving thresh-
old, and take all workers with bid below the threshold. As the
budget is depleted, the threshold steadily decreases. Our al-
gorithm is inspired by Zhou, Chakrabarty, and Lukose [13],
who give algorithms for the online knapsack problem. We
also show a lower bound: for any (possibly randomized) on-
line algorithm, there exists an input that forces a competitive
ratio of at least Ω(ln(R)).

Then, we consider the random permutation setting where
the bids are adversarial, but the order of workers is chosen
uniformly at random. Here, we measure the performance of
an online algorithm by comparing the number of tasks as-
signed averaged over all permutations to the number of tasks
assigned by the offline optimal.

Model
Let us begin by defining our modeling more formally. We
will use j to index tasks and i to index workers throughout.
We model the problem from the perspective of a requester
who has a collection of m tasks.

Each worker i picks a subset of tasks Ji ⊆ {1, . . . ,m},
along with the numeric bid bij for each task j ∈ Ji. Work-
ers arrive online: the sequence of the workers and their bids
are initially unknown to the requester but once a worker ar-
rives, her bids for all the tasks are revealed to the requester.
We assume that each worker can be assigned to at most one
task; we can relax this assumption by having multiple copies
of each worker. We denote the total number of workers by
n. As customary in the crowdsourcing setting we assume
workers are abundant, hence n is large.

We model the sequence of workers (their bids and their
order of arrivals) in two different ways. First, we consider
the case that we have no assumptions on the sequence of
workers. This worst case scenario has been referred to as
the adversarial setting in the literature. Second, we consider
the random permutation model in which we still make no
assumptions on the bids of the workers but we assume the
order of their arrival is randomly permuted before being pre-
sented to the requester. We define these two settings in more
detail in the following sections.

The requester has a budget of B and has to decide on
the fly which task to assign to the worker who arrives; of
course, a worker can only be assigned to a task he is willing
to do. If task j is assigned to worker i, then the requester
pays worker i at least the price bij . The goal of the requester
is to maximize the number of tasks he assigns to the workers
while spending at most a budget of B and satisfying all the

2In particular, whenR� B, which is arguably the case in most
practical applications, our algorithm achieves an optimal competi-
tive ratio of O(ln(R)).

constraints of the workers (on the tasks they are willing to
solve).

Similar to the online algorithms literature, we compare
the performance of our online algorithms to the performance
of the best offline algorithm (denoted by OPT), which can
see all the bids and the order of arrival of workers before
allocating tasks to workers. As is standard, we measure the
performance via the competitive ratio: the ratio of the num-
ber of tasks assigned in the offline optimal solution to the
number of tasks assigned by the online algorithm (so com-
petitive ratio is at least 1, and smaller competitive ratio is
more desirable).

Related Work
Pricing and task assignments have been previously studied
in the context of mechanism design for crowdsourcing mar-
kets. Singer and Mittal [8, 9] provide mechanisms for task
assignment when tasks are homogeneous and the workers
are arriving from a random permutation model. Our work
in the random permutation section generalizes their work to
heterogeneous tasks. Ho and Vaughan [5] consider task as-
signment when the tasks are heterogeneous. However, they
assume the existence of limited task types and the focus of
their work is learning qualities of the workers from stochas-
tic observations. Singla and Krause [11] design price mech-
anism for crowdsourcing markets using tools from online
learning. Goel, Nikzad, and Singla [4] consider the hetero-
geneous task assignment in the offline setting and provide
near optimal approximation algorithms. However, they fo-
cus on the mechanism design aspect of the problem—how to
pay workers so that they report their bids truthfully. This line
of budget feasible mechanism design is inspired by the work
of Singer [10] and has been followed up in Singer and Mit-
tal [8, 9].3 Also these pricing mechanisms have close con-
nections to the stochastic online adwords problem [3] and
the online primal-dual literature (see Buchbinder, Jain, and
Naor [1] and references within).

Our work is inspired by variants of the online knapsack
problem. In the adversarial setting with homogeneous tasks,
our problem is an instance of the online knapsack problem
studied by Zhou, Chakrabarty, and Lukose [13] (see refer-
ences within for more information). However, it is not clear
how to formulate our problem as a knapsack problem when
the tasks are heterogeneous.

Variants of generalized online matching and the adwords
problem are also related to our problem (e.g ., see Mehta et
al. [6] and Mehta [7] for an excellent survey). The adwords
problem can be described as follows. There are some bidders
and each bidder has a fixed budget. Queries arrive one at the
time, bidders bid for the queries and the algorithm has to
decide what bidder to assign to the query. If the algorithm
assigns a bidder to a query, the bidder pays the amount that
is equal to her bid. The goal is to maximize the revenue.

3While we ignore the mechanism design aspect of the prob-
lem in our formulation, as we describe at the end of the Random
Permutation section, all our online algorithms (either with a slight
modification or as they are) satisfy truthfulness and incentive com-
patibility.



While one might attempt to formalize our task assignment
problem as an instance of the online adwords problem, it
is not hard to see that our constraint on the total budget of
the requester cannot be written as an adwords type budget
constraint for the bidders.

Adversarial Setting
When comparing an online algorithm with an offline algo-
rithm, we first need to precisely specify the inputs on which
we make the comparison. Let us first consider the worst case
for the requester: adversarial inputs. In this setting, there is
a fixed input and order, and we compare an online algorithm
in this single input to an offline algorithm on the same input
via the competitive ratio. We are interested in bounding this
ratio in the worst case, i.e., the max over all inputs.

Of course, if we really do not make any assumption on
the input, we cannot hope to compete with an offline algo-
rithm as the competitive ratio may be arbitrarily high (see,
for instance, [13, Section 1.2]).

Consequently, we restrict the adversary’s power by mak-
ing one main assumption on the relationship between worker
bids and the budget: the ratio of the largest bid to the small-
est bid should be small compared to the budget. More pre-
cisely, we can scale worker bids so that bij ∈ [1, R], and we
write R = εB. We will frequently consider ε to be small—
this is appropriate for the crowdsourcing problems we have
in mind, where (i) the scale of the budget is much larger
than the scale of payments to workers and (ii) the tasks are
not extremely difficult, so no worker charges an exorbitantly
high price. We refer to this assumption as large market as-
sumption because when the bids are small compared to the
budget, the requester can hire a large number of workers be-
fore exhausting his budget. This is in line with the common
assumption in crowdsourcing that n is large.

Before diving into the technical details, let us consider
which range of parameters and competitive ratios is inter-
esting. Since the bids are restricted in [1, R], achieving a
competitive ratio of R is trivial. So, we will be mainly in-
terested in the following question: Can we design an algo-
rithm that has a competitive ratio much smaller than R for
any sequence of workers?

The rest of this section is organized as follows. We first
investigate the offline problem, describing how the problem
can be solved optimally. Then we propose a simpler algo-
rithm for the offline setting; the performance is a constant
factor off from optimal, but the simpler algorithm will be
useful later when we will work in the random permutation
setting. We then move to the online setting, giving an al-
gorithm with competitive ratio of O(Rε ln(R)) for any se-
quence of workers. Finally, we give a lower bound showing
that any algorithm has competitive ratio of at least Ω(ln(R))
in the worst case.

The Offline Problem
Let us start by investigating the offline problem where the se-
quence of workers and their bids are known up front. We first
show how the offline optimal assignment can be computed.
Then we propose a simpler algorithm that approximates the

offline optimal assignment by a factor of 4. We show later in
the paper that how this second algorithm, while suboptimal,
can be converted to an online algorithm.

The offline problem is a well-known problem in the
crowdsourcing literature [10] and can be solved by a reduc-
tion to the min-cost flow problem defined as follows. Con-
sider a graph with costs and capacities on the edges and two
nodes marked as source and target. Given this graph, for a
demand value of flow, the goal of the min-cost flow problem
is to route this amount of flow from the source to the target
while minimizing the total flow cost over the edges, where
the flow cost over an edge is equal to the amount of the flow
passing the edge multiply by the cost of the edge.

We now briefly describe an algorithm for solving the
offline problem optimally which uses min-cost flow algo-
rithms as a subroutine. Note that this algorithm is generally
known in the literature and we provide it here for the sake
of completeness. In our problem, we want to maximize the
number of assigned tasks given a fixed budget. In order to do
so, we first construct the following instance of the min-cost
flow problem. We start with a bipartite graph with workers
on one side and tasks on the other. We then draw an edge
from a worker to a task if the worker is willing to solve that
task and let the cost of this edge to be equal to the bid of the
worker for the task. Additionally, we attach a source node
pointing to all the workers and connect all the tasks to an
added target node. Finally, we set the capacity of all edges
to be 1.

First notice that any feasible flow in this graph corre-
sponds to an assignment of tasks and workers. Moreover,
for any integer F , the minimum cost of a flow with value F
corresponds to the minimum budget required for assigning
F worker-task pairs 4. Consequently, we can search over all
possible F ∈ [n], solve the min-cost flow problem on the
described graph and demand flow of F , and return the max-
imum value of F where the minimum cost flow is at most
the available budget.

While the above approach achieves the optimal solution,
we will see in the random permutation section that using a
fixed threshold to decide which workers to hire can be very
useful. Hence, we next provide a simpler algorithm with this
feature; while this simpler algorithm does not guarantee an
optimal solution anymore, we show in Theorem 1 that its
solution is within a factor of at most 4 from OPT.

The algorithm, which we refer to as Offline Approxima-
tion Algorithm (OA) (see Algorithm 2) is mainly using the
subroutine Fixed Threshold Policy (FTP). In this subrou-
tine, given a threshold value p, the algorithm goes over
workers one by one and assigns a task to an unassigned
worker if the bid of the worker for that task is not bigger
than p. In case there are more than one unassigned task that
the worker bids p or less for, the algorithm break ties arbi-
trarily. The FTP subroutine is described in Algorithm 1.5

4Since the amount of flow routed from the source to the target
and the capacity of the edges are integral, the min-cost flow prob-
lem has an integral solution.

5While we use FTP as an offline algorithm in this section, the
sequential nature of the algorithm allows FTP to be used when



Algorithm 1 FTP

Input: Threshold price p, budget B, worker bids {bij},
set of available tasks J .

While B > 0, on input worker i:
Let Ci := {j ∈ J | bij ≤ min(p,B)}.
If Ci 6= ∅:

Output: a(i) ∈ Ci.
Let B := B − bi,a(i).
Let J := J \ {a(i)}.

else:
Output: a(i) :=⊥.

OA then searches over all possible values of p to find the
proper threshold. Although the search space is continuous, it
is sufficient for the algorithm to restrict its search to the bids
of the workers. Hence, the running time of OA is polynomial
in m and n. We show that the number of assignments of
the OA is least a quarter of the OPT for any sequence of
workers.

Algorithm 2 OA

Input: Worker bids {bij}, set of available tasks J , budget
B.

Let Q := 0.
Foreach bij :

Let q := FTP(bij , B, {bi,j}, J).
If q > Q then: Update Q := q.

Output Q (number of assignments) and p∗ := B/Q (the
threshold price).

Theorem 1. Let ALGOA(σ) and OPT(σ) denote the num-
ber of tasks assigned by the OA and the offline optimal al-
gorithm for a sequence of workers σ, respectively. Then for
any σ, OPT(σ) ≤ 4 ·ALGOA(σ).

Before proving Theorem 1, we state the following useful
lemma.

Lemma 1 ([9], Lemma 3.1). Let a1, . . . ak be a sorted se-
quence of k positive numbers in an increasing order such
that Σki=1ai ≤ B. Then abk/2c · k/2 ≤ B.

The proof of Lemma 1 is the result of the following two
simple observations: (i) the sum of the second half of the
numbers is at most B and (ii) each of the numbers in the
second half is at least as big as the median of the sequence.

Proof of Theorem 1. Consider all the (worker, task) pairs in
the offline optimal where a pair simply denotes that the task
is assigned to the worker. Sort these pairs in an increasing
order of the bids. Let p∗ denote the median of the bids. By
Lemma 1, we can assign half of these (worker, task) pairs,
pay all the workers price p∗ (clearly an upper bound on the
bid of every considered worker) and be sure not to exceed
the budget. However, there are two problems: (i) we do not

workers arrive online (one by one).

know which (worker, task) pairs are in the optimal solution
and hence, (ii) we do not know the value p∗.

To deal with problem (i), suppose we somehow knew p∗.
We can then assign a worker to any task where the worker
has a bid of at most p∗ and continue until (a) we exhaust the
budget or (b) there are no more workers or tasks left.

In case (a), the algorithm made at leastB/p∗ assignments
and by Lemma 1, we know this number is at least OPT/2.
For case (b), consider the bipartite graph between the tasks
and the workers described earlier for the min-cost flow prob-
lem construction and remove all the edges with cost bigger
than p∗. Since p∗ is the median of the bids in the optimal
solution, we know that in this graph, there exists a match-
ing M of size at least OPT/2 between the workers and the
tasks. On the other hand, since we know OA terminated in
this case because there are no tasks or workers left, we know
that OA has arrived at a maximal matching. Finally, since
the size of any maximal matching is at least half of the size
of the maximum matching, we know the number of assign-
ments of OA is at least a half of the number of assignments
of M . So ALGOA(σ) ≥ OPT(σ)/4 if we knew p∗.

To deal with problem (ii) (not knowing p∗), we run the
FTP for all the values that p∗ can take and return the maxi-
mum number of assignments as our solution.6

A brief detour: the homogeneous case. As we discussed
in the introduction, we make a strong distinction between
the setting with heterogeneous tasks and the setting with ho-
mogeneous tasks. To highlight this difference, we show that
in the homogeneous case, the following simple algorithm
computes the offline optimal: sort all the workers by their
bids and (if possible) assigns a task to the sorted workers
until the budget is exhausted or there are no more tasks or
workers left.

It is easy to verify that this greedy construction indeed
computes the best offline assignments when the workers
are homogeneous. However, this method will not result in
the optimal offline assignment when the tasks are heteroge-
neous. For example consider the following toy problem with
two workers and two tasks where each workers is willing to
do both tasks. Let the bids of worker 1 and 2 to be (0.4, 0.5)
and (0.45, 0.7) for the two tasks, respectively. With a bud-
get of 1, the optimal offline assignment is to assign task 1 to
worker 2 and task 2 to worker 1. However, the homogeneous
greedy algorithm will assign task 1 to worker 1 and will not
have enough budget left to assign a task to worker 2.

The Online Problem
Let’s now move to the online setting, where the workers ar-
rive online and our algorithm must decide which (if any)
task to assign to a worker before seeing the remaining work-
ers. We propose an online algorithm and prove an upper
bound on the competitive ratio of our algorithm which holds

6Note that this might result in OA using a threshold p which is
different than p∗ but since OA picks a p that maximizes the number
of assignments we know the number of assignments made by OA
using p is at least as large as the number of assignments made by
OA using p∗.



against any sequence of workers. Our upper bound crucially
depends on the large market assumption where we assume
that the bids of the workers are small compared to the bud-
get. So throughout this section, we assume the bids are
bounded in [1, R] where R ≤ εB for some small value of
ε.

Our Online Heterogeneous Algorithm (OHA) is inspired
by an algorithm from the online knapsack literature pro-
posed by Zhou, Chakrabarty, and Lukose [13], with an anal-
ysis modified for our setting. The idea is to use a potential
function φ : [0, 1] → [1, R] based on the fraction of budget
spent so far as an input. The φ function acts as a price thresh-
old: the algorithm assigns a task to a worker only if the bid
of the worker for any of the remaining unassigned tasks is
below the value of the potential function—intuitively, as the
budget shrinks, the algorithm becomes pickier about which
workers to hire. Once a worker is selected, the algorithm
greedily assigns a task arbitrarily from the remaining set of
tasks. See Algorithm 3 for a pseudo-code.7

Algorithm 3 OHA

Input: Available tasks J , budget B.
Online input: Worker bids {bij} ∈ [1, R].

Define φ(x) = min((R · e)1−x, R).
Let x := 0, f := B.
While B > 0, on input i:

Let Ci := {j ∈ J | bij ≤ min(f, φ(x))}.
If Ci 6= ∅ then

Output a(i) ∈ Ci.
Let x := x+ bi,a(i)/B.
Let f := f − bi,a(i).
Let J := J \ {a(i)}.

else:
Output: a(i) :=⊥.

Theorem 2. Let ALGOHA(σ) and OPT(σ) denote the
number of tasks assigned by the OHA and the offline op-
timal algorithm for a sequence of workers σ, respectively.
Then for any σ with bids in [1, R] such that R ≤ εB,
OPT(σ)/ALGOHA(σ) ≤ (R · e)ε (ln(R) + 3) .

Proof. Fix a sequence of workers σ. Let S = {(i, j)}
be the set of (worker, task) pairs assigned by the OHA
where i and j index workers and tasks, respectively. Also let
S∗ = {(i∗, j∗)} be the offline optimal. We want to bound
OPT(σ)/ALGOHA(σ) = |S∗|/|S|.

Let xi and X denote the fraction of the budget used
by the OHA when worker i arrives and upon termina-
tion, respectively. We will analyze the (worker, task) pairs
in three stages. First, consider the common (worker, task)
pairs which we denote by (i, j) ∈ S ∩ S∗. Let W =∑

(i,j)∈S∩S∗ bij denote the total bid of such workers. Since
each worker i in the common part who is assigned to task j is
picked by the OHA, it must be that bij ≤ φ(xi). Therefore,

|S ∩ S∗| ≥
∑

(i,j)∈S∩S∗

bij
φ(xi)

. (1)

7In Algorithm 3, e is the base of natural logarithm.

Second, consider (i, j) ∈ S∗ \ S. This can happen either
because (i) the worker i is assigned to a task different than j
by OHA, or (ii) the worker i is not assigned to any task by
OHA. We know the number of pairs that satisfy the condi-
tion (i) is at most |S| because all such workers are assigned
to a task by both OHA and the offline optimal.

For the pairs that satisfy condition (ii), either (a) bij ≤
φ(xi) or (b) bij > φ(xi). It is easy to see that in case (a),
OHA assigned task j to some other worker i′ who arrived
before i. Again we know this can happen at most |S| times.
For case (b), since φ is non-increasing then bij > φ(xi) ≥
φ(X) for all such pairs (i, j). Since the offline optimal spent
a budget of W for hiring workers in S∗ ∩ S, then it has a
budget of at most B −W to hire workers in case (b). Since
all the pairs in case (b) have bij > φ(xi) ≥ φ(X), the offline
optimal can hire at most (B −W )/bij ≤ (B −W )/φ(X)
workers. Adding up cases (i) and (ii), we can bound

|S∗ \ S| ≤ 2|S|+ (B −W )

φ(X)
. (2)

Finally, consider (i, j) ∈ S \S∗. Since bij ≤ φ(xi) for all
such pairs, we know

|S \ S∗| ≥
∑

(i,j)∈S\S∗

bij
φ(xi)

. (3)

Putting all the pieces together, Equations (1) to (3) yield

OPT(σ)− 2 ·ALGOHA(σ)

ALGOHA(σ)
=
|S ∩ S∗|+ |S∗ \ S| − 2|S|
|S ∩ S∗|+ |S \ S∗|

≤
∑

(i,j)∈S∩S∗ bij/φ(xi) + |S∗ \ S| − 2|S|∑
(i,j)∈S∩S∗ bij/φ(xi) + |S \ S∗|

. (4)

To see why the inequality holds, first note that we know
|S ∩ S∗| ≥

∑
(i,j)∈S∩S∗ bij/φ(xi) by Equation (1). Now

if OPT = |S∗| < 3|S| then we are done. Otherwise,

|S∗| ≥ 3|S|
|S ∩ S∗|+ |S∗ \ S| ≥ |S \ S∗|+ |S ∩ S∗|+ 2|S|
|S∗ \ S| − 2|S| ≥ |S \ S∗|.

Hence, the inequality holds because if a ≥ b and c ≥ d then
(a+ c)/(a+ d) ≤ (b+ c)/(b+ d).



We bound the right hand side of Equation (4) as follows.∑
(i,j)∈S∩S∗ bij/φ(xi) + |S∗ \ S| − 2|S|∑

(i,j)∈S∩S∗ bij/φ(xi) + |S \ S∗|

≤
∑

(i,j)∈S∩S∗ bij/φ(xi) + 2|S|+ (B −W )/φ(X)− 2|S|∑
(i,j)∈S∩S∗ bij/φ(xi) + |S \ S∗|

=

∑
(i,j)∈S∩S∗ bij/φ(xi) + (B −W )/φ(X)∑

(i,j)∈S∩S∗ bij/φ(xi) + |S \ S∗|

≤
∑

(i,j)∈S∩S∗ bij/φ(X) + (B −W )/φ(X)∑
(i,j)∈S∩S∗ bij/φ(xi) + |S \ S∗|

=
W/φ(X) + (B −W )/φ(X)∑
(i,j)∈S∩S∗ bij/φ(xi) + |S \ S∗|

=
B/φ(X)∑

(i,j)∈S∩S∗ bij/φ(xi) + |S \ S∗|

≤ B/φ(X)∑
(i,j)∈S∩S∗ bij/φ(xi) +

∑
(i,j)∈S\S∗ bij/φ(xi)

=
B/φ(X)∑

(i,j)∈S bij/φ(xi)

=
1

φ(X)
∑

(i,j)∈S ∆(xi)/φ(xi)
,

where ∆(xi) := xi+1 − xi. The first inequality is due to
Equation (2), the second is due to monotonicity of φ and
the third inequality is due to Equation (3). Since (i, j) ∈ S,
OHA assigns task j to worker i and increases the fraction of
the budget consumed by bij/B, so bij/B = ∆(xi).

We now estimate the sum with an integral. If ∆(xi) ≤ ε,∑
(i,j)∈S

∆(xi)
1

φ(xi)
≥
∫ X−ε

0

1

φ(xi)
dx.

Letting c = 1/(1 + ln(R)), we have φ(x) = R if x ≤ c.
Similar to [13], we bound the integral as follows.∫ X−ε

0

1

φ(xi)
dx =

∫ c

0

1

R
dx+

∫ X−ε

c

1

φ(xi)
dx

=
c

R
+

1

Re
· 1

1 + ln(R)
((Re)X−ε − (Re)c)

=

(
c

R
− 1

Re
· 1

1 + ln(R)
(Re)c

)
+

1

Re
· 1

ln(R) + 1
(Re)X−ε

=
1

Re
· 1

1 + ln(R)
(Re)X−ε

=
1

φ(X)
· (Re)−ε

1 + ln(R)
.

It is easy to show by algebraic manipulation that the first
term in the 3rd line is equal to 0. Therefore,
OPT(σ)− 2 ·ALGOHA(σ)

ALGOHA(σ)
≤ 1

φ(X)
∑

(i,j)∈S ∆(xi)/φ(xi)

≤ (Re)ε(ln(R) + 1).

Thus, OPT(σ) ≤ ((Re)ε(ln(R) + 3) ·ALGOHA(σ), as de-
sired.

A Lower Bound on the Competitive Ratio
To wrap up this section, we show that if the large market as-
sumption is the only assumption on the sequence of workers,
then no algorithm (even randomized) can achieve a constant
competitive ratio. We prove the result for the special case
that all the tasks are homogeneous.

The proof is very similar to the lower bound for the com-
petitive ratio in a variant of the online knapsack problem
studied by Zhou, Chakrabarty, and Lukose [13]. In this vari-
ant, items arrive one by one online and we have a knap-
sack with some known capacity. Each item has a weight
and a utility parameter and it is assumed that the utility to
weight ratio for all the items are within a bounded range.
Furthermore, it is assumed that the weight of each item is
small compared to the capacity of the knapsack (similar to
our large market assumption). The algorithm have to decide
whether to pick an item or not upon arrival and the goal is
to maximize the utility of the picked items while satisfy-
ing the knapsack capacity constraint. Since our setting when
the tasks are homogeneous is a special case of the online
knapsack variant, the lower bound for that problem might
not necessarily provide us with a lower bound. However, we
show that with a bit of care, we can achieve the same lower
bound using a similar construction.

The main idea of the lower bound is to construct hard
sequences of worker arrivals. A hard sequence can be de-
scribed as follows. The sequence starts with workers with
maximum bid, R, and then the following workers progres-
sively have smaller and smaller bids compared to the preced-
ing workers. Then at some random point until the end of the
sequence only workers with bid R appear in the sequence.
Intuitively, these sequences are hard because no algorithm
can foresee whether the bids will decrease (so it should wait
for cheaper workers) or increase (so it should spend its bud-
get on the current workers).

Theorem 3. For any (possibly randomized) online algo-
rithm, there exists a set of sequences of worker arrivals sat-
isfying the large market assumption (all bids in [1, R] and
R � B) such that the competitive ratio of the algorithm on
the sequence is at least Ω (ln(R)).

Proof. We modify the proof of Theorem 2.2 by Zhou,
Chakrabarty, and Lukose [13] to fit our problem formula-
tion.

We use Yao’s minimax principle; by constructing a dis-
tribution over a set of instances and showing that no deter-
ministic algorithm can achieve a expected competitive ra-
tio which is better than ln(R) + 1 on these instances, Yao’s
principle implies that no randomized algorithm can beat this
competitive ratio in the worst-case [12].

To construct the distribution, fix η ∈ (0, 1), let k be the
smallest integer such that (1− η)k ≤ 1/R, and define k+ 1
instances indexed by I0 to Ik as follows. I0 contains B/R
identical workers all with bids equal to R. For all u > 0,
Iu is Iu−1 followed by B/(R(1 − η)u) workers all with
bids equal toR(1−η)u. Since these instances have different
length we pad all the instances with enough workers with
bid R so that all the instances have the same length.



We specify a distribution D by k + 1 values p0, . . . , pk
where pu denotes the probability of occurrence of instance
Iu. Let

p0 = p1 = . . . = pk−1 :=
η

(k + 1)η + 1
and

pk :=
1 + η

(k + 1)η + 1
.

On this distribution of inputs, any deterministic algorithm
is fully specified by the fraction of budget spent on hiring
workers with bid R(1 − η)u; call each fraction fu. Since
the optimal assignment for instance i is to only hire workers
with bids R(1− η)i, the inverse of the expected competitive
ratio can be bounded as follows.

k∑
u=0

pu

∑u
v=0 fvB/(R(1− η)v)

B/(R(1− η)u)
=

k∑
u=0

pu

u∑
v=0

fv(1− η)u−v

=

k∑
v=0

fv

k∑
u=v

pu(1− η)u−v,

(5)
where the last statement is by expanding the sums and re-
ordering the terms.

The second sum in the RHS of Equation (5) is bounded
by

k∑
u=v

pu(1− η)u−v =
2η(1− η)k−v + (1− η)

(k + 1)η + 1

≤ 2η + (1− η)

(k + 1)η + 1
=

1 + η

(k + 1)η + 1
, (6)

where the first equality is derived exactly similar to Zhou,
Chakrabarty, and Lukose [13]. Replacing Equation (6) into
the RHS of Equation (5),

k∑
v=0

fv

k∑
u=v

pu(1− η)u−v ≤ 1 + η

(k + 1)η + 1

k∑
v=0

fv

≤ 1 + η

(k + 1)η + 1

since by definition
∑k
v=0 fv ≤ 1.

Now by definition of k, we know (1− η)k ≤ 1/R, which
implies k + 1 ≥ ln(R)/ ln(1/(1− η)). So,

k∑
v=0

fv

k∑
u=v

pu(1− η)u−v ≤ 1 + η

(k + 1)η + 1

≤ 1 + η

η ln(R)/ ln(1/(1− η)) + 1
= O

(
1

ln(R)

)
as η → 0, because limη→0 η/ ln(1/(1 − η)) = 1. Since
we bound the inverse of the competitive ratio in the above
analysis, then the competitive ratio is at least Ω(lnR).

Finally, it is worth mentioning that if we consider the limit
where worker’s bids are very small compared to the budget
(ε → 0), Theorem 2 shows that Algorithm 3 has an optimal
competitive ratio approaching O(ln(R)), the best possible
as proven by Theorem 3.

Random Permutation Setting
Now that we have considered the worst-case scenario of in-
puts, let us consider more “well-distributed” inputs. We con-
sider the random permutation model [3]. In the random per-
mutation model there is no assumption about the bids of the
workers (they can still be chosen by an adversary) but we
measure the competitive ratio a bit differently: we take all
possible permutations of these workers, and take the aver-
age competitive ratio over all permutations. Intuitively, this
assumption makes the task assignment easier because the
premium workers get distributed evenly in the sequence.

As pointed out by Devanur and Hayes [3], the random per-
mutation model can be considered as drawing bids from an
unknown distribution without replacement. Hence, the ran-
dom permutation model is very similar to the model that
assumes the bids of the workers are drawn i .i .d . from an
unknown distribution.

Throughout this section, we assume that the number of
available workers, n, is large and known to us. Also, we re-
strict our attention to inputs where the offline optimal al-
gorithm assigns at least a constant fraction of workers, i.e.,
OPT(σ) = Ω(n) for all sequences σ.

For the case that the workers are homogeneous, Singer
and Mittal [9] provide an algorithm with competitive ratio
of 360. In this section, we extend their result to the case
the tasks are heterogeneous. We also improve on their com-
petitive ratio, though the setting is a bit different: as they
were concerned with mechanism design properties, it was
important for Singer and Mittal [9] to carefully tune their
payments to (i) incentivize workers to bid honestly and (ii)
compensate all workers, even workers at the very beginning.
Our algorithm only satisfies the first property. We discuss
more about this at the end of this section.

If we knew the sequence of the workers and their bids,
we could run OA to compute a threshold price p and num-
ber of assignments Q where we know Q is at least a quar-
ter of the optimal number of assignments by Theorem 1.
However, since we are in the random permutation model,
we can estimate this threshold with high probability by ob-
serving a subset of workers. This idea is summarized as the
Random Permutation Algorithm (RPA) in Algorithm 4.

Algorithm 4 RPA

Input: Parameter α ∈ (0, 1), set of available tasks J , bud-
get B.
Online input: Worker bids {bij}.

Let C be the first half of workers; do not assign.
Let p̂ := OA(C, J,B/2).
On rest of input, run FTP((1 + α)p̂, B/2).

The algorithm observes the first half of workers, assign
no tasks but computes a threshold p̂ by running OA with a
half of the budget on the sequence of workers on the first
half. Given an input parameter α, the algorithm then uses
the threshold (1 + α)p̂ and runs FTP on the second half of
the workers with the remaining half of the budget.8 While

8While we can use the whole budget on the second half of the



using the threshold (1 + α)p̂ instead of p̂ might decrease
the performance of our algorithm, we show that (1 + α)p̂ is
higher than p with high probability and use this observation
to make the analysis of the competitive ratio of RPA easier.

Theorem 4. Let α, δ ∈ (0, 1), and suppose the number of
workers is at least

n = Ω

(
1

α
log(

1

δ
)

)
,

and OPT = Ω(n) for every input. For any sequence of
workers σ, let ALGRPA(σ) and OPT(σ) denote the num-
ber of tasks assigned by the RPA and the offline optimal
algorithm for a sequence of workers σ, respectively. Then,

OPT(σ) ≤ 8(1 + α)2/(1− α) ·ALGRPA(σ),

with probability at least 1− δ for all σ.

Proof. If we knew the sequence of the workers and their
bids, we could run OA to compute a price p and number of
assignments Q. We know Q ≥ OPT/4 by Theorem 1. Let
us refer to these Q workers hired by OA as good workers.

We first claim that if we use a price of (1 + α) · p instead
of p, the number of assignments will decrease by a factor of
(1 +α). This is because we can still assign a task to workers
who OA assigned a task to with a threshold of p, but now
we also have access to workers with bids in (p, (1 + α) · p]
which may cause us to exhaust the budget faster.

Second, we can estimate p from the first half of the work-
ers. Call this estimate p̂. We claim that at least (1 − α)Q/2
of the good workers are in the second half of the sequence
with high probability, and

p ≤ (1 + α)p̂ ≤ (1 + α)p/(1− α). (7)

This together with the first claim and the 4-approximation of
OA will give us the competitive ratio claimed in the state-
ment of the theorem.

To complete the proof, we first show that there are enough
good workers in the second half of the sequence. Since we
are in the random permutation model, then with high proba-
bility, we know the number of good workers in the first half
of the workers is in [Q(1− α)/2, Q(1 + α)/2]. Chvatal [2]
show that this probability is bounded by

1− 2

Q∑
i=Q(1+α)/2

(
i

Q/2

)(
n/2−i
n−Q

)(
n
n/2

) =

{
1−O(e−αQ

2/n) if Q ≥ n
2 ,

1−O(e−α(n−Q)2Q/n2

) if Q < n
2

= 1−O(e−αn).

To prove that Equation (7) holds, we consider two cases.

1. The number of good workers in the first half is [Q(1 −
α)/2, Q/2). In this case p̂ ≥ p because we can obviously
use the budget to assign tasks to all the good workers. And

workers (as we did in our experiments) because the algorithm as-
signs no tasks to the first half of the workers, this will only decrease
the competitive ratio by a factor of half.

if there is leftover budget, we might be able to assign tasks
to workers with bid greater than p. So,

p̂
Q

2
(1− α) ≤ B

2
=
pQ

2
(last line in Algorithm 2)

p̂ ≤ 1

(1− α)
p,

Combined with p̂ ≥ p, the condition in Equation (7) holds
in this case.

2. The number of good workers in the first half is
[Q/2, Q(1 + α)/2].
In this case p̂ ≤ p. Suppose by contradiction that p̂ >
p. This means the workers hired by the OA with bids of
at most p̂ is at least S = B/(2p̂). We know S ≥ Q/2
because all good workers have bids of most p. So,

B

2p̂
=
pQ

2p̂
≥ Q

2

p ≥ p̂,
which is a contradiction. Thus,

p̂
Q

2
(1 + α) ≥ B

2
=
pQ

2

p̂ ≥ 1

1 + α
p.

Combined with p̂ ≤ p, the condition in Equation (7) also
holds in this case, concluding the proof.

A Note On Incentive Compatibility. A problem closely
related to ours is to design incentive compatible mechanisms
in a setting where the workers arrive online but their bids are
private and unknown to the requester [9]. While our focus
in this paper was mainly on designing competitive online
algorithms, we point out that both of our online algorithms,
OHA (Algorithm 3) and RPA (Algorithm 4), can lead to
incentive compatible mechanisms in a straightforward way.
We briefly describe this relation here and omit the formal
proofs.

For any worker i, let φi denote the largest price that satis-
fies the potential φ upon the arrival of worker i. Suppose in
OHA, instead of checking the bids of each worker against
the potential function φ, the requester simply offers φi to
worker i (without knowing the worker’s true bids). One can
simply check that by allocating this budget to the i-th worker
instead of her bid (which is never bigger than φi by defini-
tion) in OHA, the proof of Theorem 2 still holds and conse-
quently the modified OHA still achieves the promised com-
petitive ration. However, in this variant of OHA, the domi-
nant strategy for a worker is to reveal her true bid since her
utility (i.e, the payment she receives) is independent of her
true bid (0 if bij > φi and φi otherwise). Similarly, we can
argue this property for the RPA (with the modification that
we pay the workers equal to the fixed threshold price not
their true bid) also. Although we are dealing with heteroge-
neous tasks, the analysis of incentive compatibility is similar
to Singer and Mittal [9] which only consider homogenous
tasks.



Figure 1: Competitive Ratio of OHA and RPA against an
adversarially chosen input. The line with circle shows the
competitive ratio of OHA on the adversarial sequence. The
lines with diamond and square show the competitive ratio
of RPA and OHA on the randomly permuted sequence, re-
spectively. A line for ln(R) as the theoretical bound on the
competitive ratio of OHA is also provided. The plot is pre-
sented in log-scale.

Experiments
In this section we describe some experiments to examine the
performance of OHA (Algorithm 3) and RPA (Algorithm 4)
on synthetic data.9

We conduct two sets of experiments. The first set focuses
on the performance under homogeneous and adversarially
chosen bids (similar to the hard distribution in Theorem 3).
In the second set of experiments, we use a sequence of het-
erogeneous workers and bids produced from a family of dis-
tributions meant to model input in practical settings.

Adversarial Homogenous Bids. The input in this setting
is created similar to the hard distribution in Theorem 3 with
groups of workers that are willing to solve any of the tasks
with the same bid, but the bids may vary across different
groups of workers. Since these instances are hard inputs
from the adversarial setting (as shown in Theorem 3), they
are a good benchmark for comparing the algorithms in ad-
versarial setting.

Formally, the input is created as follows. We vary R in
the range from 2 to 220 (on all powers of two) and set
B = 2R. The bids of the workers are R,R/2, . . . , R/2i,
where in each experiment, i is chosen uniformly at random
from {1, 2, . . . , log2R}; for each group with bidR/2i, there
will be B · 2i/R workers. We always pad the input with a
set of workers with bid R to ensure that the total number of
workers in each instance is the same (i.e., we set n = 8R).
We set the number of tasks to be equal to the number of

9We slightly modified the RPA in our experiments by using
all the budget (instead of half) on the second half of the workers.
Note that this modification can only improve the performance in
our implementation compared to our theoretical guarantee for Al-
gorithm 4.

Figure 2: Competitive Ratio of OHA and RPA against the
uniform heterogeneous bids.

workers (so a worker will never run out of tasks to solve no
matter what the previous workers have done). Finally, for
each value of R, we create the input 10, 000 times and com-
pute the average competitive ratio of OHA. Note that since
in this distribution, there is essentially no suitable worker in
the second half, RPA performs very poorly and hence we do
not include it in this part of the experiment. We then ran the
same experiment (for both OHA and RPA) on the same in-
put but this time we permute the workers randomly; Figure 1
shows the result for this experiment.

The experiment over the truly adversarial input shows
that OHA outperforms the theoretical guarantee of
O(Rε ln (R)), (ε = 0.5 here) and grows roughly like lnR,
suggesting that the true performance of OHA may be closer
to our theoretical lower bound from Theorem 3.

The experiment over the randomly permuted input shows
that RPA is obtaining a constant competitive ratio even
though the input does not satisfy all the properties required
by Theorem 4 (e.g., OPT = Ω(n) assumption). Interest-
ingly, even OHA performs very well over the input (only
slightly worse than RPA), and also much better than the
theoretical guarantee proved in Theorem 2. Finally note that
although the sequence of workers were adversarially chosen
to begin with, a random permutation of this sequence makes
the problem significantly easier; to the point that even OHA
which is designed to perform against worst case sequences
will also achieve a constant competitive ratio.

Uniform Heterogeneous Bids. We consider a similar dis-
tribution (with minor modification of parameters) as the one
introduced by Goel, Nikzad, and Singla [4]. They use this
setting to analyze the performance of their proposed algo-
rithms for heterogeneous task assignment in the offline case.
These inputs are aimed to capture more realistic scenarios
compared to our experiments in the previous part.

The distribution is as follows. We vary R in range from
2 to 50 and set B = 200. The workers are heterogeneous
and are only willing to solve a subset of all available tasks.
In particular, we create n = 200 workers and m = 200
tasks and create a random graph with probability of edge



formation equal to 0.05 between any of the (worker, task)
pairs. Additionally, over each realized edge, we choose the
bid of the worker for the given task uniformly at random
from {1, 2, . . . , R} (independently of the bids chosen over
the other edges for this worker). For each choice of R, we
repeat the experiment 80 times and report the average com-
petitive ratio of the algorithms over the runs. Figure 2 illus-
trates the results of this experiment.

As seen in Figure 2 both algorithms perform very well
over these inputs, obtaining a competitive ratio that is nearly
independent of R. Interestingly, OHA performs distinctly
better than its theoretical guarantee, even outperforming
RPA. We suspect that this is because OHA is more adaptive
than RPA, since it uses a varying price threshold while RPA
sticks to a fixed price (after discarding half the input). Hence
RPA exhausts the budget sooner than necessary, while ad-
ditionally losing the contribution of half of the workers.
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