
Coresets Meet EDCS: Algorithms for Matching and Vertex Cover

on Massive Graphs∗

Sepehr Assadi†

University of Pennsylvania
MohammadHossein Bateni‡

Google Research
Aaron Bernstein§

Rutgers University

Vahab Mirrokni¶

Google Research
Cliff Stein‖

Columbia University

Abstract

There is a rapidly growing need for scalable algo-
rithms that solve classical graph problems, such as
maximum matching and minimum vertex cover, on
massive graphs. For massive inputs, several different
computational models have been introduced, includ-
ing the streaming model, the distributed communi-
cation model, and the massively parallel computa-
tion (MPC) model that is a common abstraction of
MapReduce-style computation. In each model, al-
gorithms are analyzed in terms of resources such as
space used or rounds of communication needed, in ad-
dition to the more traditional approximation ratio.

In this paper, we give a single unified ap-
proach that yields better approximation algorithms
for matching and vertex cover in all these models.
The highlights include:

• The first one pass, significantly-better-than-2-
approximation for matching in random arrival
streams that uses subquadratic space, namely a
(1.5 + ε)-approximation streaming algorithm that

uses Õ(n1.5) space for constant ε > 0.

• The first 2-round, better-than-2-approximation for
matching in the MPC model that uses sub-
quadratic space per machine, namely a (1.5 + ε)-

approximation algorithm with Õ(
√
mn+ n) mem-

ory per machine for constant ε > 0.
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By building on our unified approach, we further
develop parallel algorithms in the MPC model that
give a (1+ε)-approximation to matching and an O(1)-
approximation to vertex cover in only O(log log n)
MPC rounds and O(n/polylog(n)) memory per ma-
chine. These results settle multiple open questions
posed by Czumaj et al. [STOC 2018].

We obtain our results by a novel combination of
two previously disjoint set of techniques, namely ran-
domized composable coresets and edge degree con-
strained subgraphs (EDCS). We significantly extend
the power of these techniques and prove several new
structural results. For example, we show that an
EDCS is a sparse certificate for large matchings and
small vertex covers that is quite robust to sampling
and composition.

1 Introduction

As massive graphs become more prevalent, there
is a rapidly growing need for scalable algorithms
that solve classical graph problems on large datasets.
When dealing with massive data, the entire input
graph is orders of magnitude larger than the amount
of storage on one processor and hence any algo-
rithm needs to explicitly address this issue. For mas-
sive inputs, several different computational models
have been introduced, each focusing on certain ad-
ditional resources needed to solve large-scale prob-
lems. Some examples include the streaming model,
the distributed communication model, and the mas-
sively parallel computation (MPC) model that is a
common abstraction of MapReduce-style computa-
tion (see Section 2 for a definition of MPC). The
target resources in these models are the number of
rounds of communication and the local storage on
each machine.

Given the variety of relevant models, there has
been a lot of attention on designing general algorith-
mic techniques that can be applicable across a wide
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range of settings. We focus on this task for two promi-
nent graph optimization problems: maximum match-
ing and minimum vertex cover. Our main result
(Section 1.2) presents a single unified algorithm
that immediately implies significantly improved re-
sults (in some or all of the parameters involved) for
both problems in all three models discussed above.
For example, in random arrival order streams, our al-
gorithm computes a (1.5 + ε)-approximate matching

in a single pass with Õ(n1.5) space; this significantly
improves upon the approximation ratio of previous
single-pass algorithms using subquadratic space, and
is the first result to present strong evidence of a sep-
aration between random and adversarial order for
matching. Another example is in the MPC model:
Given Õ(n1.5) space per machine, our algorithm com-
putes an a (1.5 + ε)-approximate matching in only 2
MPC rounds; this significantly improves upon all pre-
vious results with a small constant number of rounds.

Our algorithm is built on the framework of ran-
domized composable coreset, which was recently sug-
gested by Assadi and Khanna [12] as a means to unify
different models for processing massive graphs (see
Section 1.1). A common drawback of unified ap-
proaches is that although they have the advantage
of versatility, the results they yield are often not as
strong as those that are tailored to one particular
model. It is therefore perhaps surprising that we can
design essentially a single algorithm that improves
upon the state-of-the-art algorithms in all three mod-
els discussed above simultaneously. Our approach for
the matching problem notably goes significantly be-
yond a 2-approximation, which is a notorious barrier
for matching in all the models discussed above.

We also build on our techniques to achieve a
second result (Section 1.3) particular to the MPC
model. We show that when each machine has only
O(n) space (or even O(n/polylog(n))), O(log log n)
rounds suffice to compute a (1 + ε)-approximate
matching or a O(1)-approximate vertex cover. This
improves significantly upon the recent breakthrough
of Czumaj et al. [29], which does not extend to
vertex cover, and requires O(log log2(n)) rounds. Our
results in this part settle multiple open questions
posed by Czumaj et al. [29].

1.1 Randomized Composable Coresets Two
examples of general techniques widely used for pro-
cessing massive data sets are linear sketches (see e.g.
[5,6,14,23,25,26,51,52,60]) and composable coresets
(see e.g. [12, 15, 16, 18, 48, 62, 63]). Both proceed by
arbitrarily partitioning the data into smaller pieces,
computing a small-size summary of each piece, and
then showing that these summaries can be combined

into a small-size summary of the original data set.
This approach has a wide range of applications, but
strong impossibility results are known for both tech-
niques for the two problems of maximum matching
and minimum vertex cover that we study in this pa-
per [14].

Recently, Assadi and Khanna [12] turned to
the notion of randomized composable coresets—
originally introduced in the context of submodular
maximization by Mirrokni and Zadimoghadam [62]
(see also [30])—to bypass these strong impossibility
results. The idea is to partition the graph into ran-
dom pieces rather than arbitrary ones. The authors
in [12] designed randomized composable coresets for
matching and vertex cover, but although this led
to unified algorithms for many models of computa-
tion, the resulting bounds were still for the most part
weaker than the state-of-the-art algorithms tailored
to each particular model.

We now define randomized composable coresets
in more detail; for brevity, we refer to them as
randomized coresets. Given a graph G(V,E), with
m = |E| and n = |V |, consider a random partition of
E into k edge sets

{
E(1), . . . , E(k)

}
; each edge in E

is sent to exactly one of the E(i), picked uniformly
at random, thereby partitioning graph G into k
subgraphs G(i)(V,E(i)).

Definition 1. (cf. [12,62]) Consider an algo-
rithm ALG that takes as input an arbitrary graph
and returns a subgraph ALG(G) ⊆ G. ALG
is said to output an α-approximate randomized
coreset for maximum matching if given any graph
G(V,E) and a random k-partition of G into
G(i)(V,E(i)), the size of the maximum matching in
ALG(G(1))∪ . . .∪ALG(G(k)) is an α-approximation
to the size of the maximum matching in G with high
probability. We refer to the number of edges in
the returned subgraph by ALG as the size of the
coreset. Randomized coresets are defined analogously
for minimum vertex cover and other graph problems.

It is proven in [12] that any O(1)-approximate
randomized coreset for matching or vertex cover has
size Ω(n). Thus, similarly to [12], we focus on

designing randomized coresets of size Õ(n), which
is optimal within logarithmic factors. The following
proposition states some immediate applications of
randomized coresets.

Proposition 1.1. Suppose ALG outputs an α-
approximate randomized coreset of size Õ(n) for prob-
lem P (e.g. matching). Let G(V,E) be a graph with
m = |E| edges. This yields:
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1. A parallel algorithm in the MPC model that with
high probability outputs an α-approximation to P
in two rounds with Õ(

√
m/n) machines, each with

Õ(
√
mn+ n) = Õ(n1.5) memory.

2. A streaming algorithm that on random arrival
streams outputs an α-approximation to P (G) with

high probability using Õ(
√
mn+n) = Õ(n1.5) space.

3. A simultaneous communication protocol that on
randomly partitioned inputs computes an α-
approximation to P (G) with high probability using

Õ(n) communication per machine/player.

A proof of Proposition 1.1 can be found in the full
version of the paper [11].

1.2 First Result: Improved Algorithms via
a New Randomized Coreset As our first result,
we develop a new randomized composable coreset for
matching and vertex cover.

Result 1. There exist randomized composable
coresets of size Õ(n) that for any constant ε > 0,
give a (3/2 + ε)-approximation for maximum
matching and (2 + ε)-approximation for mini-
mum vertex cover with high probability.

Our results improve upon the randomized coresets
of [12] that obtained O(1) and O(log n) approxima-
tion to matching and vertex cover, respectively. Our
approach is entirely different, and in particular we
go beyond the ubiquitous 2-approximation barrier for
matching (in the full version [11], we show that the
previous approach of [12] provably cannot go below 2
and present an improved analysis for that approach.).
Result 1 yields a unified framework that improves
upon the state-of-the art algorithms for matching and
vertex cover across several computational models, for
some or all the parameters involved.

First implication: streaming. We consider
single-pass streaming algorithms. Computing a
2-approximation for matching (and vertex cover) in
O(n) space is trivial: simply maintain a maximal
matching. Going beyond this barrier has remained
one of the central open questions in the graph stream-
ing literature since the introduction of the field [38].
No o(n2)-space algorithm is known for this task on
adversarially ordered streams and the lower bound
result by Kapralov [49] (see also [41]) proves that

an
(

e
e−1

)
-approximation requires n1+Ω(1/ log logn)

space. To make progress on this fascinating open
question, Konrad et al. [55] suggested the study of
matching in random arrival streams. They presented

an algorithm with approximation ratio strictly better
than 2, namely 2 − δ for δ ≈ 0.002, in O(n) space
over random streams. A direct application of our
Result 1 improves the approximation ratio of this
algorithm significantly albeit at a cost of a larger
space requirement.

Corollary 1.1. There exists a single-pass stream-
ing algorithm on random arrival streams that uses
Õ(n1.5) space and with high probability (over the
randomness of the stream) achieves a (3/2 + ε)-
approximation to the maximum matching problem for
constant ε > 0.

Our results provide the first strong evidence of
a separation between random-order and adversarial-
order streams for matching, as it is the first algo-

rithm that beats the ratio of
(

e
e−1

)
, which is known

to be “hard” on adversarial streams [49]. Although
the lower bound of [49] does not preclude achiev-
ing the bounds of Corollary 1.1 in an adversarial or-
der (because our space is Õ(n1.5) rather than Õ(n)),
the proof in [49] (see also [41]) suggests that achiev-
ing such bounds is ultimately connected to further
understanding of Ruzsa-Szemerédi graphs, a noto-
riously hard problem in additive combinatorics (see
e.g. [8, 39, 43]). From a different perspective, most
(but not all) streaming lower bounds are proven by
bounding the (per-player) communication complex-
ity of the problem in the blackboard communication

model, including the
(

e
e−1

)
lower bound of [49]. Our

algorithm in Result 1 can be implemented with Õ(n)
(per-player) communication in this model which goes
strictly below the lower bound of [49], thus establish-
ing the first provable separation between adversarial-
and random-partitioned inputs in the blackboard
communication model for computing a matching.

Second implication: MPC. Maximum
matching and minimum vertex cover are among
the most studied graph optimization problems in
the MPC and other MapReduce-style computation
models [4, 5, 12, 20, 29, 45, 56]. As an application of
Result 1, we obtain efficient MPC algorithms for
matching and vertex cover in only two rounds of
computation.

Corollary 1.2. There exist algorithms that with
high probability achieve a (3/2 + ε)-approximation to
matching and a (2+ε)-approximation to vertex cover

in two MPC rounds and Õ(
√
mn + n) memory per

machine for constant ε > 0.

It follows from the results of [14] that sub-quadratic
memory is not possible with one MPC round, so two
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rounds is optimal. Furthermore, our implementation
only requires one round if the input is distributed
randomly in the first place; see [62] for details on
when this assumption applies.

Our algorithms outperform the previous algo-
rithms of [12] for matching and vertex cover in
terms of approximation ratio (3/2 vs. O(1) and 2
vs. O(log n)), while memory and round complexity
are the same. Our matching algorithm outperforms
the 2-approximate maximum matching algorithm of
Lattanzi et al. [56] in terms of both the approxima-
tion ratio (3/2 vs. 2) and round complexity (2 vs. 6)
within the same memory. Our result for the match-
ing problem is particularly interesting as all other
MPC algorithms [4, 5, 20] that can achieve a bet-
ter than two approximation (which is also a natural
barrier for matching algorithms across different mod-
els) require a large (unspecified) constant number of
rounds. Achieving the optimal 2 rounds is significant
in this context, since the round complexity of MPC
algorithms determines the dominant cost of the com-
putation (see, e.g. [19,56]), and hence minimizing the
number of rounds is the primary goal in this model.

Third implication: distributed. Maximum
matching (and to a lesser degree vertex cover)
has been studied previously in the simultaneous
communication model owing to many applications
of this model, including in achieving round-optimal
distributed algorithms [12], proving lower bounds for
dynamic graph streams [7,13,14,54], and applications
to mechanism design [9, 32, 33]. As an application of
Result 1, we obtain the following corollary.

Corollary 1.3. There exist simultaneous commu-
nication protocols on randomly partitioned inputs
that achieve (3/2+ε)-approximation to matching and
(2+ε)-approximation to vertex cover with high proba-
bility (over the randomness of the input partitioning)

with only Õ(n) communication per machine/player
for constant ε > 0.

This result improves upon the O(1) and O(log n) ap-
proximation of [12] (on randomly partitioned inputs)
for matching and vertex cover that were also designed
by using randomized coresets. Our protocols achieve
optimal communication complexity (up to polylog(n)
factors) [12].

1.3 Second Result: MPC with Low Space
Per Machine Our second result concerns the MPC
model with per-machine memory O(n) or even
O(n/polylog(n)). This is achieved by extending our
Result 1 from random edge-partitioned subgraphs (as
in randomized coresets) to random vertex-partitioned

subgraphs (which we explain further below).

Result 2. There exists an MPC algorithm that
for any constant ε > 0, with high probabil-
ity, gives a (1 + ε)-approximation to maximum
matching and O(1)-approximation to minimum
vertex cover in O(log log n) MPC rounds using
only O(n/polylog(n)) memory per machine.

Given an existing black-box reduction [57]
(see also [29]), our Result 2 immediately implies
a (2 + ε)-approximation algorithm for maximum
weighted matching in the same O(log log(n)) rounds,
though with the memory per machine increased to
O(n log(n)).

Prior to [29], all MPC algorithms for matching

and vertex cover [4,5,56] required Ω
(

logn
log logn

)
rounds

to achieve O(1) approximation when the memory

per machine was restricted to Õ(n) (which is ar-
guably the most natural choice of parameter, similar-
in-spirit to the semi-streaming restriction [38, 59]).
Recently, Czumaj et al. [29] presented an (almost)
2-approximation algorithm for maximum matching
that requires O(n) (even n/(log n)O(log logn)) memory
per machine and only O

(
(log log n)2

)
MPC rounds.

Result 2 improves upon this result on several fronts:
(i) we improve the round complexity of the match-
ing algorithm to O(log log n), resolving a conjecture
of [29] in the affirmative, (ii) we obtain an O(1) ap-
proximation to vertex cover, answering another open
question of [29], and (iii) we achieve all these us-
ing a considerably simpler algorithm and analysis
than [29].

Comparison to results published after the
appearance of our paper. After an earlier version
of our paper was shared on arXiv [11], Ghaffari
et al. [40] presented a result very similar to our
Result 2: their bounds are exactly the same for
matching, while for vertex cover they achieve a
better approximation in the same asymptotic number
of rounds: (2 + ε)-approximation vs. our O(1)
approximation. Techniques-wise, our approaches are
entirely different: the algorithms in [40] are based on
an earlier round-compression technique of [29], and
require an intricate local algorithm and analysis to
ensure consistency between machines; see Section 1.4
below for more details.

Note that only our Result 2 is shared with the
later paper of Ghaffari et al. [40]: Result 1 appears
only in our paper, and is entirely specific to the
particular techniques that we use.
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1.4 Our Techniques Both of our results are
based on a novel application of edge degree con-
strained subgraphs (EDCS) that were previously in-
troduced by Bernstein and Stein [21] for maintaining
large matchings in dynamic graphs. Previous work
on EDCS [21, 22] focused on how large a matching
an EDCS contains and how it can be maintained in
a dynamic graph. For the two results of this paper,
we instead focus on the structural properties of the
EDCS, and prove several new facts in this regard.

For Result 1, we identify the EDCS as a sparse
certificate for large matchings and small vertex covers
which are quite robust to sampling and composition:
an ideal combination for a randomized coreset. For
Result 2, we use the following recursive procedure,
which crucially relies upon on the robustness prop-
erties of the EDCS proved in Result 1: we repeat-
edly compute an EDCS of the underlying graph in
a distributed fashion, redistribute it again amongst
multiple machines, and recursively solve the prob-
lem on this EDCS to compute an O(1)-approximation
to matching and vertex cover. We therefore limit
the memory on each machine to only O(n) (even
O(n/polylog(n))) at the cost of increasing the num-
ber of rounds from O(1) to O(log log n). Additional
ideas are needed to ensure that the approximation
ratio of the algorithm does not increase beyond a
fixed constant as a result of repeatedly computing an
EDCS of the current graph in O(log log n) iterations.

Comparison of techniques. Result 1 uses the
definition of EDCS from [21, 22] but uses it in an
entirely different setting, and hence we prove and use
novel properties of EDCS in this work.

Result 2 relies on the high-level technique of ver-
tex sampling from Czumaj et al. [29]: instead of parti-
tioning the edges of the graph, each machine receives
a random sample of the vertices, and works on the
resulting induced subgraph. Other than this starting
point, our approach proceeds along entirely different
lines from [29], in terms of both the local algorithm
computed on each subgraph and in the analysis. The
main approach in [29] is round compression, which
corresponds to compressing multiple rounds of a par-
ticular distributed algorithm into smaller number of
MPC rounds by maintaining a consistent state across
the local algorithms computed on each subgraph (us-
ing a highly non-trivial local algorithm and analysis).
Our results, on the other hand, do not correspond
to a round compression approach at all and we do
not require any consistency in the local algorithm on
each machine. Instead, we rely on structural prop-
erties of the EDCS that we prove in this paper, in-
dependent of the algorithms that compute these sub-

graphs. This allows us to bypass many of the tech-
nical difficulties arising in maintaining a consistent
state across different machines which in turn results
in improved bounds and a considerably simpler algo-
rithm and analysis.

1.5 Related Work Maximum matching and min-
imum vertex cover are among the most studied
problems in the context of massive graphs includ-
ing in MPC model and MapReduce-style compu-
tation [4, 5, 12, 20, 29, 40, 45, 56], streaming algo-
rithms [3–6,13,14,26–28,34–38,41,44,49,50,54,55,58,
59, 61, 70], simultaneous communication model and
similar distributed models [9, 12–14, 33, 44, 47], dy-
namic graphs [17, 21, 22, 65, 68, 71], and sub-linear
time algorithms [46, 66, 67, 69, 73]. Beside the re-
sults mentioned already, most relevant to our work
are the polylog(n)-space polylog(n)-approximation
algorithm of [50] for estimating the size of a max-
imum matching in random stream, and the (3/2)-
approximation communication protocol of [41] when
the input is (adversarially) partitioned between two
parties and the communication is from one party to
the other one (as opposed to simultaneous which we
studied). However, the techniques in these results
and ours are completely disjoint.

Coresets, composable coresets, and random-
ized composable coresets are respectively introduced
in [2], [48], and [62]. Composable coresets have been
studied previously in nearest neighbor search [1], di-
versity maximization [48, 74], clustering [16, 18], and
submodular maximization [15, 30, 31, 48, 62]. More-
over, while not particularly termed a composable
coreset, the “merge and reduce” technique in graph
streaming literature (see [59], Section 2.2) is identical
to composable coresets.

2 Preliminaries

Notation. For a graph G(V,E), we use MM(G)
to denote the maximum matching size in G and
VC(G) to denote the minimum vertex cover size. For
any subset of vertices V ′ ⊆ V and any subset of edges
E′ ⊆ E, we use V ′(E′) to denote the set of vertices
in V ′ that are incident on edges of E′ and E′(V ′)
to denote the set of edges in E′ that are incident on
vertices of V ′. For any vertex v ∈ V , we use dG(v)
to denote the degree of v in the graph G.

Sampled Subgraphs. Throughout the paper,
we work with two different notion of sampling a graph
G(V,E). For a parameter p ∈ (0, 1),

• A graph GE
p(V,Ep) is an edge sampled subgraph of

G iff the vertex set of GE
p and G are the same and

every edge in E is picked independently and with
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probability p in Ep.

• A graph GV
p (Vp, Ep) is a vertex sampled (induced)

subgraph of G iff every vertex in V is sampled in
Vp independently and with probability p and GV

p is
the induced subgraph of G on Vp

2.1 The Massively Parallel Computation
(MPC) Model We adopt the most stringent model
of modern parallel computation among [10,19,42,53],
the so-called Massively Parallel Computation (MPC)
model of [19]. Let G(V,E) with n := |V | and
m := |E| be the input graph. In this model, there are
p machines, each with a memory of size s and one typ-
ically requires that both p, s = m1−Ω(1) i.e., polyno-
mially smaller than the input size [10,53]. Computa-
tion proceeds in synchronous rounds: in each round,
each machine performs some local computation and
at the end of the round machines exchange messages
to guide the computation for the next round. All
messages sent and received by each machine in each
round have to fit into the local memory of the ma-
chine. This in particular means that the length of the
messages on each machine is bounded by s in each
round. At the end, the machines collectively output
the solution.

2.2 Basic Graph Theory Facts

Fact 2.1. For any graph G(V,E), MM(G) ≤
VC(G) ≤ 2 ·MM(G).

The following propositions are well-known (see
the full version [11] for proofs).

Proposition 2.1. Suppose M and V ′ are respec-
tively, a matching and a vertex cover of a graph G
such that α · |M | ≥ |V ′|; then, both M and V ′ are
α-approximation to their respective problems.

Proposition 2.2. Suppose G(V,E) is a graph with
maximum degree ∆ and Vhigh is the set of all vertices
with degree at least γ ·∆ in G for γ ∈ (0, 1). Then,
MM(G) ≥ γ·∆

2·(∆+1) · |Vhigh|.

2.3 Edge Degree Constrained Subgraph
(EDCS) We introduce edge degree constrained sub-
graphs (EDCS) in this section and present several of
their properties which are proven in previous work.
We emphasize that all other properties of EDCS
proven in the subsequent sections are new to this pa-
per. An EDCS is defined formally as follows.

Definition 2. ([21]) For any graph G(V,E) and
integers β ≥ β− ≥ 0, an edge degree constraint
subgraph (EDCS) (G, β, β−) is a subgraph H :=
(V,EH) of G with the following two properties:

(P1) For any edge (u, v) ∈ EH : dH(u) + dH(v) ≤ β.

(P2) For any edge (u, v) ∈ E \EH : dH(u)+dH(v) ≥
β−.

We sometimes abuse the notation and use H and EH
interchangeably.

We use the terms “Property (P1)” and
“Property (P2)” of EDCS to refer to the first and
second items in Definition 2 above.

One can prove the existence of an
EDCS(G, β, β−) for any graph G and parame-
ters β− < β using the results in [22] (Theorem
3.2) which in fact shows how to maintain an EDCS
efficiently in the dynamic graph setting (see also
the full version [11] for a simpler and self-contained
proof of existence of EDCS and a simple polynomial
time algorithm for computing it).

Lemma 2.1. Any graph G contains an
EDCS(G, β, β−) for any parameters β > β−.

It was shown in [21] (bipartite graphs) and [22]
(general graphs) that for appropriate parameters and
EDCS always contains an (almost) 3/2-approximate
maximum matching of G. Formally:

Lemma 2.2. ( [21,22]) Let G(V,E) be any graph
and ε < 1/2 be a parameter. For parameters λ ≥ ε

100 ,
β ≥ 32λ−3, and β− ≥ (1 − λ) · β, in any subgraph
H := EDCS(G, β, β−), MM(G) ≤

(
3
2 + ε

)
·MM(H).

Lemma 2.2 implies that an EDCS of a graph
G(V,E) preserves the maximum matching of G ap-
proximately. We also show a similar result for vertex
cover. The basic idea is that in addition to comput-
ing a vertex cover for the subgraph H(to cover all the
edges in H), we also add to the vertex cover all ver-
tices that have degree at least ≥ β−/2 in H, which by
Property (P2) of an EDCS covers all edges in G \H.

Lemma 2.3. Let G(V,E) be any graph, ε < 1/2 be a
parameter, and H := EDCS(G, β, β−) for parameters
β ≥ 4

ε and β− ≥ β · (1− ε/4). Suppose Vhigh is the
set of vertices v ∈ V with dH(v) ≥ β−/2 and Vvc is
a minimum vertex cover of H; then Vhigh ∪ Vvc is a
vertex cover of G with size at most (2 + ε) · VC(H)
(note that VC(H) ≤ VC(G)).

Proof. We first argue that Vhigh ∪ Vvc is indeed a
feasible vertex cover of G. To see this, notice that
any edge e ∈ H is covered by Vvc, and moreover by
Property (P2) of EDCS, any edge e ∈ E \ H has at
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least one endpoint with degree at least β−/2 in H
and hence is covered by Vhigh. In the following, we
bound the size of Vhigh \ Vvc by (1 + ε) · |Vvc|, which
finalizes the proof as clearly |Vvc| = VC(H).

Define S := Vhigh \ Vvc and let N(S) be the set
of all neighbors of S in the EDCS H. Since S is
not part of the vertex cover Vvc of H, we should
have N(S) ⊆ Vvc as otherwise some edges between
S and N(S) would not be covered by the vertex
cover Vvc. Now, since any vertex in S has degree
at least β−/2, we should have that degree of any
vertex in N(S) is at most β−β−/2 in order to satisfy
Property (P1) of EDCS H. Let E(S) denote the set
of edges incident on S in H. As all vertices in S
belong to Vhigh, we have that |E(S)| ≥ |S| · β−/2.
On the other hand, as all edges incident on S are
going into N(S) by definition, and since degree of
vertices in N(S) are bounded by β − β−/2, we have
|E(S)| ≤ |N(S)| · (β − β−/2). As such,

|S| · β−/2 ≤ |N(S)| ·
(
β − β−/2

)
≤ |Vvc| · (1 + ε) · β−/2,

implying that |S| ≤ (1+ε) · |Vvc|, finalizing the proof.

3 New Properties of Edge Degree
Constrained Subgraphs

We study further properties of EDCS in this section.
Although EDCS was used prior to our work, all the
properties proven in this section are entirely new to
this paper and look at the EDCS from a different
vantage point.

Previous work in [21,22] studied the EDCS from
the perspective of how large of matching it contains
and how it can be maintained efficiently in a dynami-
cally changing graph. In this paper, we prove several
new interesting structural properties of the EDCS it-
self. In particular, while it is easy to see that in terms
of edge sets there can be many different EDCS of
some fixed graph G(V,E) (consider G being a com-
plete graph), we show that the degree distributions of
every EDCS (for the same parameters β and β−) are
almost the same. In other words, the degree of any
vertex v is almost the same in every EDCS ofG(V,E).
This is in sharp contrast with similar objects such as
b-matchings, which can vary a lot within the same
graph. This semi-uniqueness renders the EDCS ex-
tremely robust under sampling and composition as
we prove next in this section.

These new structural results on EDCS are the
main properties that allows their use in our coresets
and parallel algorithms in the rest of the paper. In
fact, our parallel algorithms in Section 5 are entirely
based on these results and do not rely at all on the

fact that an EDCS contains a large matching (i.e., do
not depend on Lemma 2.2 at all).

3.1 Degree Distribution Lemma

Lemma 3.1. (Degree Distribution Lemma) Fix
a graph G(V,E) and parameters β, β− = (1 − λ) · β
(for λ < 1/100). For any two subgraphs A and B
that are EDCS(G, β, β−), and any vertex v ∈ V ,

|dA(v)− dB(v)| = O(log n) · λ1/2 · β.

In the rest of this section, we fix the parameters
β, β− and the two EDCS A and B in Lemma 3.1.
The general strategy of the proof is as follows. We
start with a set S1 of all vertices which has the most
difference in degree between A and B. By considering
the two-hop neighborhood of these vertices in A and
B, we show that there exists a set S2 of vertices in V
such that the difference between the degree of vertices
in A and B is almost the same as vertices in S1, while
size of S2 is a constant factor larger than S1. We
then use this argument repeatedly to construct the
next set S3 and so on, whereby each set is larger
than the previous one by a constant factor, while
the gap between the degree of vertices in A and B
remains almost the same as the previous set. As this
geometric increase in the size of sets can only happen
in a “small number” of steps (otherwise we run out of
vertices), we obtain that the gap between the degree
of vertices in S1 could have not been “too large” to
begin with. We now formalize this argument, starting
with a technical lemma which allows us to obtain each
set Si from the set Si−1 in the above argument.

Lemma 3.2. Fix an integer D > 2λ1/2 · β and
suppose S ⊆ V is such that for all v ∈ S, we have
dA(v) − dB(v) ≥ D. Then, there exists a set of
vertices S′ ⊇ S such that |S′| ≥ (1 + 2λ1/2) · |S| and
for all v ∈ S′, dA(v)− dB(v) ≥ D − 2λ · β.

Proof. We define the following two sets T and T ′:

• T is the set of all neighbors of vertices in S using
only the edges in A \ B. In other words, T :=
{v ∈ V | ∃u ∈ S ∧ (u, v) ∈ A \B}.

• T ′ is the set of all neighbors of vertices in T
using only the edges in B \ A. In other words,
T ′ := {w ∈ V | ∃v ∈ T ∧ (v, w) ∈ B \A}.

We start by proving the following property on
the degree of vertices in the sets T and T ′.

Claim 3.3. We have,

• for all v ∈ T , dB(v)− dA(v) ≥ D − λ · β.
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• for all w ∈ T ′, dA(w)− dB(w) ≥ D − 2λ · β.

Proof. For the first part, since v ∈ T , it means that
there exists an edge (u, v) ∈ A \ B such that u ∈ S.
Since (u, v) belongs to A, by Property (P1) of an
EDCS we have dA(v) ≤ β − dA(u) ≤ β − dB(u)−D.
On the other hand, since (u, v) does not belong to
B, by Property (P2) of an EDCS we have dB(v) ≥
β − λ · β − dB(u), completing the proof for T .

For the second part, since w ∈ T ′, it means that
there exists an edge (v, w) ∈ B \ A such that v ∈ T .
Since (v, w) does not belong to A, by Property (P2)
of an EDCS we have dA(w) ≥ β − λ · β − dA(v).
Moreover, since (u, v) belongs to B, by Property (P1)
of an EDCS, we have, dB(w) ≤ β−dB(v). This means
that dA(w)− dB(w) ≥ dB(v)− dA(v)− λ · β which is
at least D − 2λ · β by the first part.

Notice that since D > 2λ · β, by Claim 3.3,
for any vertex v ∈ T , we have dB(v) > dA(v) and
hence S ∩ T = ∅ (similarly, T ∩ T ′ = ∅, but S
and T ′ may intersect). We define the set S′ in the
lemma statement to be S′ := S ∪ T ′. The bound on
the degree of vertices in S′ follows immediately from
Claim 3.3 (recall that vertices in S already satisfy the
degree requirement for the set S′). In the following,
we show that |T ′ \ S| ≥ 2λ1/2 · |S|, which finalizes the
proof.

Recall that EA\B(S) and EA\B(S, T ) denote the
set of edges in subgraph A\B incident on vertices S,
and between vertices S and T , respectively. We have,

∣∣EB\A(T, T ′ \ S)
∣∣ =

∣∣EB\A(T )
∣∣− ∣∣EB\A(T, S)

∣∣(edges in B \A incident on T are going to T ′)

≥
∣∣EA\B(T )

∣∣− ∣∣EB\A(T, S)
∣∣(by Claim 3.3)

≥
∣∣EA\B(S)

∣∣− ∣∣EB\A(S)
∣∣(edges in A \B incident on S are also incident on T )

≥ |S| ·D.
(assumption on the degrees in S across A and B)

Finally, since B is an EDCS, the maximum
degree of any vertex in T ′ \S is at most β and hence
there should be at least |S| · Dβ ≥ 2λ1/2 · |S| vertices

in T ′ \ S (as D > 2λ1/2 · β).

Proof. [Proof of Lemma 3.1] Suppose towards a con-
tradiction that there exists a vertex v ∈ V s.t.
D := dA(v) − dB(v) ≥ 3 ln (n) · λ1/2 · β (the other
case is symmetric). Let D0 = D and S0 = {v} and
for i = 1 to t := λ−1/2 · (ln (n) + 1): define the set Si
and integer Di by applying Lemma 3.2 to Si−1 and
Di−1 (i.e., Si = S′ and Di = Di−1 − 2λ · β). By the
lower bound on the value of D, for any i ∈ [t], we

have that Di ≥ D− i ·2λ ·β > 2λ1/2 ·β, and hence we
can indeed apply Lemma 3.2. As a result, we have,

|St| ≥
(

1 + 2λ1/2
)
· |St−1|

≥
(

1 + 2λ1/2
)t
· |S0| ≥ exp

(
λ1/2 · t

)
> exp (ln (n)) = n,

which is a contradiction as there are only n vertices
in the graph G. Consequently, we obtain that for
any vertex v, |dA(v)− dB(v)| = O(log n) · λ1/2 · β,
finalizing the proof.

3.2 EDCS in Sampled Subgraphs In this sec-
tion, we prove two lemmas regarding the structure of
different EDCS across sampled subgraphs. The first
lemma concerns edge sampled subgraphs. We show
that the degree distributions of any two EDCS for
two different edge sampled subgraphs of G is almost
the same no matter how the two EDCS are selected
or even if the choice of the two subgraphs are not in-
dependent. This Lemma is is used in our Result 1 on
randomized coresets (see Section 4).

Lemma 3.4. (Edge Sampled EDCS) Fix any
graph G(V,E) and p ∈ (0, 1). Let G1 and G2 be
two edge sampled subgraphs of G with probability p
(chosen not necessarily independently). Let H1 and
H2 be arbitrary EDCSs of G1 and G2 with parame-
ters (β, (1− λ) · β). Suppose β ≥ 750 · λ−2 · ln (n),
then, with probability 1 − 4/n9, simultaneously for
all v ∈ V : |dH1(v)− dH2(v)| ≤ O(log n) · λ1/2 · β.

We also prove a qualitatively similar lemma for
vertex sampled subgraphs. This is needed in Result
2 for parallel algorithms (see Section 5). The main
difference here is that there will be a huge gap
between the degree of a vertex between the two
EDCS if the vertex is sampled in one subgraph but
not the other one. However, we show that the
degree of vertices that are sampled in both subgraphs
are almost the same across the two different (and
arbitrarily chosen) EDCS for the subgraphs.

Lemma 3.5. (Vertex Sampled EDCS) Fix any
graph G(V,E) and p ∈ (0, 1). Let G1 and G2 be
two vertex sampled subgraphs of G with probability
p (chosen not necessarily independently). Let H1

and H2 be arbitrary EDCSs of G1 and G2 with
parameters (β, (1− λ)β). If β ≥ 750 · λ−2 · ln (n),
then, with probability 1−4/n9, simultaneously for all
v ∈ G1 ∩G2: |dH1

(v)− dH2
(v)| ≤ O(log n) · λ1/2 · β.

The proof of both these lemmas are along the fol-
lowing lines. We start with an EDCS H of the orig-
inal graph G with parameters (almost) (β/p, β−/p).
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We then consider the set of edges from H in each of
the sampled subgraphs G1 and G2, i.e., the two sub-
graphs H ′1 := G1 ∩H and H ′2 := G2 ∩H. We use the
randomness in the process of sampling subgraphs G1

and G2 to prove that with high probability both H ′1
and H ′2 form an EDCS for G1 and G2, respectively,
with parameters (β, β−). Finally, we use our degree
distribution lemma from Section 3.1 to argue that for
any arbitrary EDCS H1 (resp. H2) of G1 (resp. G2),
the degree distribution of H1 (resp. H2) is close to H ′1
(resp. H ′2). Since the degree distributions of H ′1 and
H ′2 are close to each other already (as they are both
sampled subgraphs of H), this finalizes the proof.

There are some technical differences in imple-
menting the above intuition between the edge sam-
pled and vertex sampled subgraphs and hence we pro-
vide a separate proof for each case.

3.2.1 EDCS in Edge Sampled Subgraphs:
Proof of Lemma 3.4

Proof. [Proof of Lemma 3.4] We first prove that edge
sampling an EDCS results in another EDCS for the
sampled subgraph.

Claim 3.6. Let H be an EDCS(G, βH , β
−
H) for pa-

rameters βH := (1− λ
2 )· βp and β−H := βH−1. Suppose

Gp := GEp (V,Ep) is an edge sampled subgraph of G
and Hp := H ∩Gp; then, with probability 1− 2/n9:

1. For any vertex v ∈ V ,
∣∣dHp

(v)− p · dH(v)
∣∣ ≤ λ

5 ·β.

2. Hp is an EDCS of Gp with parameters
(β, (1− λ) · β).

Proof. For any v ∈ V , E
[
dHp(v)

]
= p · dH(v)

and dH(v) ≤ βH by Property (P1) of EDCS H.
Moreover, since each neighbor of v in H is sampled
in Hp independently, by Chernoff bound,

Pr

(∣∣dHp
(v)− p · dH(v)

∣∣ ≥ λ

5
β

)
≤ 2 exp

(
−λ

2 · β
75

)
≤ 2 · exp (−10 lnn)

=
2

n10
,

where the second inequality is by the lower bound
on β in Lemma 3.5 statement. In the following, we
condition on the event that:

∀v ∈ V
∣∣dHp

(v)− p · dH(v)
∣∣ ≤ λ

5
· β.(3.1)

This event happens with probability at least 1−2/n9

by above equation and a union bound on |V | = n
vertices. This finalizes the proof of the first part

of the claim. We are now ready to prove that Hp

is indeed an EDCS(Gp, β, (1− λ) · β) conditioned on
this event.

Consider any edge (u, v) ∈ Hp. Since Hp ⊆ H,
(u, v) ∈ H as well. Hence, we have,

dHp
(u) + dHp

(v) ≤
Eq (3.1)

p ·
(
dH(u) + dH(v)

)
+

2λ

5
· β

≤ p · βH +
2λ

5
· β

= (1− λ

2
) · β +

2λ

5
· β < β,

where the second inequality is by Property (P1) of
EDCS H and the equality is by the choice of βH .
As a result, Hp satisfies Property (P1) of EDCS for
parameter β.

Now consider an edge (u, v) ∈ Gp \ Hp. Since
Hp = Gp ∩H, (u, v) /∈ H as well. Hence,

dHp(u) + dHp(v) ≥
Eq (3.1)

p ·
(
dH(u) + dH(v)

)
− 2λ

5
· β

≥ p · β−H −
2λ

5
· β

= (1− λ

2
) · β − p− 2λ

5
· β

> (1− λ) · β,

where the second inequality is by Property (P2) of
EDCS H and the equality is by the choice of β−H .
As such, Hp satisfies Property (P2) of EDCS for
parameter (1 − λ) · β and hence Hp is indeed an
EDCS(Gp, β, (1− λ) · β).

We continue with the proof of Lemma 3.4. Let H
be an EDCS(G, βH , β

−
H) for the parameters βH , β

−
H

in Claim 3.6. The existence of H follows from
Lemma 2.1 as β−H < βH . Define Ĥ1 := H ∩ G1 and

Ĥ2 := H ∩ G2. By Claim 3.6, Ĥ1 (resp. Ĥ2) is an
EDCS of G1 (resp. G2) with parameters (β, (1− λ)β)
with probability 1 − 4/n9. In the following, we
condition on this event.

By Lemma 3.1 (Degree Distribution Lemma),

since both H1 (resp. H2) and Ĥ1 (resp. Ĥ2) are
EDCS for G1 (resp. G2), the degree of vertices
in both of them should be “close” to each other.
Moreover, since by Claim 3.7 the degree of each
vertex in Ĥ1 and Ĥ2 is close to p times its degree
in H, we can argue that the vertex degrees in H1 and
H2 are close. Formally, for any v ∈ V , we have,

|dH1(v)− dH2(v)| ≤∣∣∣dH1(v)− dĤ1
(v)
∣∣∣+
∣∣∣dĤ1

(v)− dĤ2
(v)
∣∣∣
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+
∣∣∣dĤ2

(v)− dH2
(v)
∣∣∣ ≤

Lemma 3.1

O(log n) · λ1/2 · β +
∣∣∣dĤ1

(v)− p · dH(v)
∣∣∣

+
∣∣∣dĤ2

(v)− p · dH(v)
∣∣∣ ≤

Claim 3.6

O(log n) · λ1/2 · β +O(1) · λ · β,

finalizing the proof.

3.2.2 EDCS in Vertex Sampled Subgraphs:
Proof of Lemma 3.5

Proof. [Proof of Lemma 3.5]

We first prove that vertex sampling an EDCS
results in another EDCS for the sampled subgraph.

Claim 3.7. Let H be an EDCS(G, βH , β
−
H) for pa-

rameters βH := (1− λ
2 )· βp and β−H := βH−1. Suppose

Gp := GVp (Vp, Ep) is a vertex sampled subgraph of G
and Hp := H ∩Gp; then, with probability 1− 2/n9:

1. For any vertex v ∈ Vp,
∣∣dHp

(v)− p · dH(v)
∣∣ ≤ λ

5 ·β.

2. Hp is an EDCS of Gp with parameters
(β, (1− λ) · β).

Proof. For any v ∈ Vp, E
[
dHp(v)

]
= p · dH(v) by the

independent sampling of vertices and dH(v) ≤ βH
by Property (P1) of EDCS H. Moreover, since each
neighbor of v in H is sampled in Hp independently,
by Chernoff bound,

Pr

(∣∣dHp
(v)− p · dH(v)

∣∣ ≥ λ

5
β

)
≤ 2 · exp

(
−λ

2 · β
75

)
≤ 2 · exp (−10 lnn)

=
2

n10
,

where the second inequality is by the lower bound
on β in Lemma 3.5 statement. In the following, we
condition on the event that:

∀v ∈ Vp
∣∣dHp

(v)− p · dH(v)
∣∣ ≤ λ

5
· β.(3.2)

which happens with probability at least 1 − 2/n9

by above equation and a union bound on |Vp| ≤ n
vertices. This finalizes the proof of the first part
of the claim. We are now ready to prove that Hp

is indeed an EDCS(Gp, β, (1− λ) · β) conditioned on
this event.

Consider any edge (u, v) ∈ Hp. Since Hp ⊆ H,
(u, v) ∈ H as well. Hence, we have,

dHp
(u) + dHp

(v) ≤
Eq (3.2)

p ·
(
dH(u) + dH(v)

)
+

2λ

5
· β

≤ p · βH +
2λ

5
· β

= (1− λ

2
) · β +

2λ

5
· β < β,

where the second inequality is by Property (P1) of
EDCS H and the equality is by the choice of βH .
As a result, Hp satisfies Property (P1) of EDCS for
parameter β.

Now consider an edge (u, v) ∈ Gp \ Hp. Since
Hp = Gp ∩H, (u, v) /∈ H as well. Hence,

dHp
(u) + dHp

(v) ≥
Eq (3.2)

p ·
(
dH(u) + dH(v)

)
− 2λ

5
· β

≥ p · β−H −
2λ

5
· β

= (1− λ

2
) · β − p− 2λ

5
· β

> (1− λ) · β,

where the second inequality is by Property (P2) of
EDCS H and the equality is by the choice of β−H .
As such, Hp satisfies Property (P2) of EDCS for
parameter (1 − λ) · β and hence Hp is indeed an
EDCS(Gp, β, (1− λ) · β).

We continue with the proof of Lemma 3.5. Let H
be an EDCS(G, βH , β

−
H) for the parameters βH , β

−
H

in Claim 3.7. The existence of H follows from
Lemma 2.1 as β−H < βH . Define Ĥ1 := H ∩ G1 and

Ĥ2 := H ∩ G2. By Claim 3.7, Ĥ1 (resp. Ĥ2) is an
EDCS of G1 (resp. G2) with parameters (β, (1− λ)β)
with probability 1 − 4/n9. In the following, we
condition on this event.

By Lemma 3.1 (Degree Distribution Lemma),

since both H1 (resp. H2) and Ĥ1 (resp. Ĥ2) are
EDCS for G1 (resp. G2), the degree of vertices
in both of them should be “close” to each other.
Moreover, since by Claim 3.7 the degree of each
vertex in Ĥ1 and Ĥ2 is close to p times its degree
in H, we can argue that the degree of shared vertices
in H1 and H2 are close. Formally, let v be a vertex
in both G1 and G2; we have,

|dH1
(v)− dH2

(v)| ≤∣∣∣dH1
(v)− dĤ1

(v)
∣∣∣+
∣∣∣dĤ1

(v)− dĤ2
(v)
∣∣∣

+
∣∣∣dĤ2

(v)− dH2
(v)
∣∣∣ ≤

Lemma 3.1

O(log n) · λ1/2 · β +
∣∣∣dĤ1

(v)− p · dH(v)
∣∣∣

+
∣∣∣dĤ2

(v)− p · dH(v)
∣∣∣ ≤

Claim 3.7

O(log n) · λ1/2 · β +O(1) · λ · β,

finalizing the proof.
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4 Randomized Coresets for Matching and
Vertex Cover

We introduce our randomized coresets for matching
and vertex cover in this section. Both of these results
are achieved by computing an EDCS of the input
graph (for appropriate choice of parameters) and then
applying Lemmas 2.2 and 2.3.

4.1 Computing an EDCS from Random
k-Partitions Let G(V,E) be any arbitrary graph
and G(1), . . . , G(k) be a random k-partition of G.
We show that if we compute an arbitrary EDCS of
each graph G(i) (with no coordination across differ-
ent graphs) and combine them together, we obtain
an EDCS for the original graph G.

1. Let G(1), . . . , G(k) be a random k-partition of the
graph G.

2. For any i ∈ [k], compute C(i) :=
EDCS(G, β, (1− λ) · β) for parameters

λ = Θ

(
(

ε

log n
)2

)
and β := Θ(λ−3 ·log n).

3. Let C :=
⋃k
i=1 C

(i).

Lemma 4.1. With probability 1− 4/n7, the subgraph
C is an EDCS(G, βC , β

−
C ) for parameters:

λC := O(log n) · λ1/2 βC := (1 + λC) · k · β
β−C := (1− 2λC) · k · β.

Proof. Recall that each graph G(i) is an edge sampled
subgraph of G with sampling probability p = 1

k . By

Lemma 3.4 for graphs G(i) and G(j) (for i 6= j ∈ [k])
and their EDCSs C(i) and C(j), with probability
1− 4/n9, for all vertices v ∈ V :

|dC(i)(v)− dC(j)(v)| ≤ O(log n) · λ1/2 · β = λC · β.
(4.3)

By taking a union bound on all
(
k
2

)
≤ n2 pairs of

subgraphs G(i) and G(j) for i 6= j ∈ [k], the above
property holds for all i, j ∈ [k], with probability at
least 1− 4/n7. We condition on this event.

We now prove that C is indeed an
EDCS(G, βC , β

−
C ). First, consider an edge (u, v) ∈ C

and let j ∈ [k] be such that (u, v) ∈ C(j) as well. We
have,

dC(u) + dC(v) =

k∑
i=1

dC(i)(u) +

k∑
i=1

dC(i)(v)

≤
Eq (4.3)

k (dC(j)(u) + dC(j)(v)) + kλCβ

≤ k · β + k · λCβ = βC .
(by Property (P1) of EDCS C(j) with parameter β)

Hence, C satisfies Property (P1) of EDCS for param-
eter βC . Now consider an edge (u, v) ∈ G \C and let
j ∈ [k] be such that (u, v) ∈ G(j) \ C(j) (recall that
each edge in G is sent to exactly one graph G(j) in
the random k-partition). We have,

dC(u) + dC(v) =

k∑
i=1

dC(i)(u) +

k∑
i=1

dC(i)(v)

≥
Eq (4.3)

k (dC(j)(u) + dC(j)(v))− kλCβ

≥ k · (1− λ)β − kλCβ

≥ (1− 2λC) · k · β = β−C .

(by Property (P2) of EDCS C(j) with parameter (1− λ) · β)

Hence, C also satisfies the second property of EDCS
for parameter β−C , finalizing the proof.

4.2 EDCS as a Coreset for Matching and
Vertex Cover We are now ready to present our
randomized coresets for matching and vertex cover
using the EDCS as the coreset, formalizing Result 1.

Theorem 4.1. Let G(V,E) be a graph and
G(1), . . . , G(k) be a random k-partition of G.
For any ε ∈ (0, 1), any EDCS(G(i), β, (1− λ) · β)

for λ := Θ
(

( ε
logn )2

)
and β := Θ(ε−6 · log7 n) is

a (3/2 + ε)-approximation randomized composable
coreset of size O(n · β) for the maximum matching
problem.

Proof. By Lemma 4.1, the union of the coresets, i.e.,
the k EDCSs, is itself an EDCS(G, βC , β

−
C ), such that

β−C = (1 − Θ(ε)) · βC . Hence, by Lemma 2.2, the
maximum matching in this EDCS is of size (2/3− ε)·
MM(G). The bound on the size of the coreset follows
from Property (P1) of EDCS as maximum degree in
the EDCS computed by each machine is at most β
and hence size of coreset is O(n · β) = Õε(n).

To present our coreset for the vertex cover prob-
lem, we need to slightly relax the definition of ran-
domized coreset. Following [12], we augment the def-
inition of randomized coresets by allowing the core-
sets to also contain a fixed solution (which is counted
in the size of the coreset) to be directly added to
the final solution of the composed coresets. In other
words, the coreset contains both subsets of vertices
(to be always included in the final vertex cover) and
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edges (to guide the choice of additional vertices in the
vertex cover). This definition is necessary for the ver-
tex cover problem due to the hard-to-verify feasibility
constraint of this problem; see [12] for details.

Theorem 4.2. Let G(V,E) be a graph and
G(1), . . . , G(k) be a random k-partition of G.
For any ε ∈ (0, 1), any EDCS(G(i), β, (1− λ) · β) for

λ := Θ
(

( ε
logn )2

)
and β := Θ(ε−6 · log7 n) plus the

set of vertices with degree larger than (1−Θ(ε)) ·β/2
in the EDCS (to be added directly to the final
vertex cover) is a (2 + ε)-approximation randomized
composable coreset of size O(n · β) for the minimum
vertex cover problem.

Proof. By Lemma 4.1, the union of the coresets, i.e.,
the k EDCSs, is itself an EDCS(G, βC , β

−
C ) C, such

that β−C = (1−Θ(ε)) · βC . Suppose first that instead
of each coreset fixing the set of vertices to be added
to the final vertex cover, we simply add all vertices
with degree more than β−C /2 to the vertex cover and
then compute a minimum vertex cover of C. In this
case, by Lemma 2.3, the returned solution is a (2+ε)-
approximation to the minimum vertex cover of G.

To complete the argument, recall that the degree
of any vertex v ∈ V is essentially the same across
all machines (up to an additive term of ε · β) by
Lemma 3.4, and hence the set of vertices with degree
more than β−C /2 would be a subset of the set of fixed
vertices across all machines. Moreover, any vertex
added by any machine to the final vertex cover has
degree at least (1 − Θ(ε)) · β−C /2 and hence we can
apply Lemma 2.3, with a slightly smaller parameter
ε to argue that the returned solution is still a (2 +ε)-
approximation.

5 Massively Parallel Algorithms

In this section, we show that a careful adaptation of
our coresets construction together with the structural
results proven for EDCS in Section 3 can be used to
obtain MPC algorithms with much smaller memory
with a slight increase in the number of rounds.

Theorem 5.1. There exists an MPC algorithm that
with high probability computes an O(1) approximation
to both maximum matching and minimum vertex
cover in O(log log n+log

(
n
s

)
) MPC rounds with per-

machine memory s = nΩ(1).

By setting s = O(n/polylog(n)) in Theorem 5.1,
we achieve an O(1)-approximation algorithm to both
matching and vertex cover in O(log log n) MPC
rounds on machines of memory O(n/polylog(n)), for-
malizing Result 2.

In the following, for the sake of clarity, we mostly
focus on proving Theorem 5.1 for the natural case
when memory per machine is s = Õ(n), and post-
pone the proof for all range of parameter s to full
version [11]. The overall idea of our algorithm is
as follows. Instead of the edge sampled subgraphs
used by our randomized coresets, we start by pick-
ing k = O(n) vertex sampled subgraphs of G with
sampling probability roughly 1/

√
n and send each

to a separate machine. Each machine then locally
computes an EDCS of its input (with parameters
β = polylog(n) and β− ≈ β) with no coordination
across the machines. Unlike the MPC algorithm ob-
tained by our randomized coreset approach (Corol-
lary 1.2), where the memory per machine was as large
as Θ(n

√
n), here we cannot collect all these smaller

EDCSes on a single machine of memory Õ(n). In-
stead, we repartition them across the machines again
(and discard remaining edges) and repeat the previ-
ous process on this new graph. The main observa-
tion is that after each step, the maximum degree of
the remaining graph (i.e., the union of all EDCSes)
would drop quadratically (e.g., from potentially Ω(n)

to Õ(
√
n) in the first step). As such, in each sub-

sequent step, we can pick a smaller number of ver-
tex sampled subgraphs, each with a higher sampling
probability than previous step, and still each graph
fits into the memory of a single machine. Repeating
this process for O(log log n) steps reduces the maxi-
mum degree of the remaining graph to polylog(n). At
this point, we can store the final EDCS on a single
machine and solve the problem locally.

Unfortunately this approach on its own would
only yield a (3/2)O(log logn) = polylog(n) approxima-
tion to matching, since by Lemma 2.2 each recur-
sion onto an EDCS of the graph could introduce a
3/2-approximation. A similar problem exists for ver-
tex cover. In the proof of Lemma 2.3, computing
a vertex cover of G from its EDCS H involves two
steps: we add to the vertex cover all vertices with
high degree in H to cover the edges in G \ H, and
then we separately compute a vertex cover for the
edges in H. Since H cannot fit into a single machine,
the second computation is done recursively: in each
round, we find an EDCS of the current graph (which
is partitioned amongst many machines), add to the
vertex cover all high degree vertices in this EDCS,
and then recurse onto the sparser EDCS. A straight-
forward analysis would only lead to an O(log log n)
approximation.

We improve the approximation factor for both
vertex cover and matching by showing that they can
serve as witnesses to each other. Every time we
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add high-degree vertices to the vertex cover, we will
also find a large matching incident to these vertices:
we show that this can be done in O(1) parallel
rounds. We then argue that their sizes are always
within a constant factor of each other, so both are
a constant approximation for the respective problem
(by Proposition 2.1).

The rest of this section is organized as follows.
We first present our subroutine for computing the
EDCS of an input graph in parallel using vertex sam-
pled subgraphs. Next, we present a simple random-
ized algorithm for finding a large matching incident
on high degree vertices of an input graph. Finally, we
combine these two subroutines to provide our main
parallel algorithm for approximating matching and
vertex cover. We finish this section by specifying the
MPC implementation of our parallel algorithm and
finalize the proof of Theorem 5.1.

5.1 A Parallel Algorithm for EDCS We now
present our parallel algorithm for computing an
EDCS via vertex sampling. In the following, we use
a slightly involved method of sampling the vertices
using limited independence. This is due to techni-
cal reasons in the MPC implementation of this algo-
rithm. To avoid repeating the arguments, we present
our algorithm for all range of memory s = nΩ(1), but
encourage the reader to consider s = n for more in-
tuition.

ParallelEDCS(G,∆, s). A parallel algorithm for
EDCS of a graph G with maximum degree ∆ on
machines of memory Õ(s).

1. Define p = (200 log n) ·
√

s
n·∆ and k = 800 logn

p2 .

2. Create k vertex sampled subgraphs
G(1), . . . , G(k) on k different machines as
follows:

(a) Let κ := (20 log n). Each vertex v in G
independently picks a κ-wise independent
hash function hv : [k]→ [1/p].

(b) The graph G(i) is the induced subgraph of
G on vertices v ∈ V with hv(i) = 0.

3. Define parameters λ := (2 · log n)
−3

and β :=
750 · λ−2 · ln (n).

4. For i = 1 to k in parallel: Compute C(i) =
EDCS(G(i), β, (1− λ) · β) locally on machine i.

5. Define the multi-graph C(V,EC) with EC :=⋃k
i=1 C

(i) (allowing for multiplicities). Notice
that this multi-graph is edge partitioned across
the machines.

For any vertex v ∈ V , define I(v) ⊆ k as the
set of indices of the subgraphs that sampled vertex
v. Indices in I(v) are κ-wise independent random
variables. Each graph G(i) is a vertex sampled
subgraph of G with sampling probability p.

We state some simple properties of ParallelEDCS
(the proof appear in full version [11]).

Proposition 5.1. For ∆ ≥
(
n
s

)
·
(
400 · log12 (n)

)
,

with probability 1− 2/n8,

1. For any vertex v ∈ V , |I(v)| = p · k ± λ · p · k.

2. For any edge e ∈ E, there exists at least one index
i ∈ [k] such that e belongs to G(i).

We now prove that the graph C defined in the
last line of ParallelEDCS is also an EDCS of G with
appropriate parameters. The proof is quite similar to
that of Lemma 4.1 with some additional care to han-
dle the difference between vertex sampled subgraphs
and edge sampled ones (see full version [11]).

Lemma 5.1. For ∆ ≥
(
n
s

)
·
(
400 · log12 (n)

)
, with

probability 1 − 5/n7, C is an EDCS(G, βC , β
−
C ) for

parameters:

λC := λ1/2 ·Θ(log n) = o(1), βC := pk · (1 + λC)β,

β−C = pk · (1− λC)β.

Before moving on, we also show that the mem-
ory of Õ(s) per machine in ParallelEDCS is enough
for storing each subgraph G(i) and computing C(i)

locally.

Claim 5.2. With probability 1 − 1/n18, the total
number of edges in each subgraph G(i) of G in
ParallelEDCS(G,∆, s) is O(s · log2 n).

Proof. Let v be a vertex in G(i). By the independent
sampling of vertices in a vertex sampled subgraph,
we have that E [dG(i)(v)] = p · dG(v) ≤ p · ∆ =

Θ(
√

s·∆
n ·log n). By Chernoff bound, with probability

1 − 1/n20, degree of v is O(
√

s·∆
n · log n). We can

then take a union bound on all vertices in G(i) and
have that with probability 1 − 1/n19, the maximum

degree of G(i) is O(
√

s·∆
n · log n). At the same time,

the expected number of vertices sampled in G(i) is at
most p · n = Θ(

√
s·n
∆ · log n). Another application

of Chernoff bound ensures that the total number
of vertices sampled in G(i) is O(

√
s·n
∆ · log n) with

probability 1 − 1/n19. As a result, the total number

of edges in G(i) is O(
√

s·∆
n · log n) ·O(

√
s·n
∆ · log n) =

O(s · log2 n) with probability at least 1− 1/n18.
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5.2 Random Match Algorithm We design a
subroutine for finding a large matching incident on
the set of “high” degree vertices of a given graph G
which its edges are distributed across many machines.

RandomMatch(G,S,∆). A parallel algorithm for
finding a matching M incident on given vertices S
in a graph G with maximum degree ∆.

1. Sample each vertex in S with probability 1/2
independently to obtain a set S′.

2. For each vertex in S′ pick one of its incident
edges to G \ S′ uniformly at random. Let Esmpl

be the set of these edges.

3. Let M be the matching in Esmpl consists of all
edges with unique endpoints; these are edges
(u, v) ∈ Esmpl such that neither u nor v are
incident on any other edge of Esmpl.

We prove that if the set S consists of high degree
vertices of G, then RandomMatch(G,S,∆) finds a
large matching in S.

Lemma 5.3. Suppose G(V,E) is a graph with maxi-
mum degree ∆ ≥ 100 log n and S ⊆ V is such that
for all v ∈ S, dG(v) ≥ ∆/3. The size of the match-
ing M := RandomMatch(G,S,∆) is in expectation
E |M | = Θ(|S|).

Proof. Fix any vertex v ∈ S′; we argue that with high
probability, degree of v to vertices in G\S′ is at least
∆/7. This follows immediately as in expectation, at
most half of the neighbors of v belong to S′ and we
can apply Chernoff bound as ∆ ≥ 100 log n. We
apply a union bound on all vertices in S′ and in
the following we condition on the event that all these
vertices have at least ∆/7 edges to G \ S′.

By construction, any vertex in S′ has degree
exactly one in Esmpl. As such, to lower bound the
size of M , we only need to lower bound the number
of vertices in G \ S′ that have degree exactly one in
Esmpl. Fix a vertex v ∈ S′ and consider the neighbor
u ∈ G \ S′ of v in Esmpl. We know that u has at
most ∆ − 1 other neighbors in S′ and each of these
neighbors are choosing u with probability at most
7/∆ (as each of them has at least ∆/7 neighbors).

Pr (u has degree 1 in Esmpl) ≥
(

1− 7

∆

)∆−1

= Θ(1).

As such, in expectation, Θ(S) vertices in G \ S′
also have degree exactly one in Esmpl, which implies
E |M | = Θ(|S|).

5.3 A Parallel Algorithm for Matching and
Vertex Cover We now present our main parallel
algorithm. For sake of clarity, we present and analyze
our algorithm here for the case when the memory
allowed per each machine is Õ(n). In the full version
of the paper [11], we show how to easily extend this
algorithm to the case when memory per machine is
O(s) for any choice of s = nΩ(1).

ParallelAlgorithm(G,∆). A parallel algorithm for
computing a vertex cover Valg and a matching
Malg of a given graph G with maximum degree
at most ∆.

1. If ∆ ≤
(
400 · log12 n

)
send G to a single machine

and run the following algorithm locally: Com-
pute a maximal matching Malg in G and let Valg
be the set of vertices matched by Malg. Return
Valg and Malg.

2. If ∆ >
(
400 · log12 n

)
, we run the following

algorithm.

3. Compute an EDCS C := ParallelEDCS(G,∆, n)
in parallel. Let βC , β

−
C be the parameters of this

EDCS (as specified in Claim 5.4 below).

4. Define Vhigh :=
{
v ∈ V | dC(v) ≥ β−C /2

}
be the

set of “high” degree vertices in C.

5. Compute a matching Mhigh :=
RandomMatch(C, Vhigh, βC).

6. Define V − := V \
(
Vhigh ∪ V (Mhigh)

)
as the

set of vertices that are neither high degree in C
nor matched by Mhigh. Let C− be the induced
subgraph of C on vertices V − with parallel edges
removed.

7. Recursively compute (Vrec,Mrec) :=
ParallelAlgorithm(C−, βC).

8. Return Valg := Vhigh ∪ V (Mhigh) ∪ Vrec and
Malg := Mhigh ∪Mrec.

The following claim is a corollary of Lemma 5.1.

Claim 5.4. C := ParallelEDCS(G,∆, n) computed in
ParallelAlgorithm(G,∆) is an EDCS(G, βC , β

−
C ) for

parameters:

λC := o(1) βC :=
√

∆·O(log5 n) β−C := (1−λC)·βC

with probability at least 1− 1/n5.

Similarly, the following follows from Lemma 5.3.
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Claim 5.5. Conditioned on C = EDCS(G, βC , β
−
C ),

matching Mhigh = RandomMatch(C, Vhigh, βC) has
expected size E |Mhigh| = Ω(|Vhigh|).

Let T be the number of recursive calls made by
ParallelAlgorithm(G,∆). We refer to any t ∈ [T ] as a
step of ParallelAlgorithm. We bound the total number
of steps as follows. The proof is straightforward.

Claim 5.6. The total number of steps made by
ParallelAlgorithm(G,∆) is T = O(log log ∆).

In each step, ParallelAlgorithm runs the subrou-
tines ParallelEDCS and RandomMatch once. We say
that a run of ParallelEDCS is valid in this step iff the
high probability event in Claim 5.4 happens. Roughly
speaking, this means that ParallelEDCS is valid when
it returns the “correct” output. Additionally, we say
that a step of ParallelAlgorithm is valid if ParallelEDCS
subroutine in this step is valid. We define Evalid as the
event that all T steps of ParallelAlgorithm(G,∆) are
valid. By Claims 5.4 each step of ParallelAlgorithm is
valid with probability at least 1− 1/n5. As there are
in total T = O(log log n) steps by Claim 5.6, Evalid
happens with probability at least 1− 1/n4.

We are now ready to prove the correctness of
ParallelAlgorithm.

Lemma 5.7. ParallelAlgorithm(G,n) with constant
probability outputs an O(1)-approximate matching
Malg and O(1)-approximate vertex Valg of G.

Proof. It is clear that the second parameter in
ParallelAlgorithm(G,n) is an upper bound on the
maximum degree of G and hence G satisfies the
requirement of ParallelAlgorithm. In the follow-
ing, we condition on the event Evalid which hap-
pens with high probability by the above discussion.
As such, we also have that any recursive call to
ParallelAlgorithm(C−, βC) is valid (i.e., βC is indeed
an upper bound on degree of C−) simply because C−

is a subgraph of an EDCS and hence its maximum
degree is bounded by βC .

We first argue that Valg and Malg are respec-
tively a feasible vertex cover and a feasible matching
of G. The case for Malg is straightforward; the set of
vertices matched byMhigh is disjoint from the vertices
in Mrec as all vertices matched by Mhigh are removed
in C−, and hence (by induction)Malg = Mhigh∪Mrec

is a valid matching in G. Now consider the set of ver-
tices Valg. By conditioning on the event Evalid, C is in-
deed an EDCS(G, βC , β

−
C ). Hence, by Property (P2)

of EDCS C, any edge e ∈ G \ C has at least one
neighbor in Vhigh and is thus covered by Vhigh. Ad-
ditionally, as we pick V (Mhigh) in the vertex cover,

any edge incident on these vertices are also covered.
This implies that Vhigh ∪ V (Mhigh) plus any vertex
cover of the remaining graph C− is a feasible vertex
cover of G. As Vrec is a feasible vertex cover of C−

by induction, we obtain that Valg is also a feasible
vertex cover of G (the base case in step 1 where a
maximal matching is computed locally is trivial).

We now show that sizes of Malg and Valg are
within a constant factor of each other with constant
probability. By Proposition 2.1 this implies that
both are an O(1)-approximation to their respective
problem. At each step, the set of vertices added to
the Valg are of size |V (Mhigh)| + |Vhigh| ≤ 3 |Vhigh|
(as Mhigh is incident on Vhigh). The set of edges
added to matching Malg are of size Mhigh which is
in expectation equal to Θ(|Vhigh|) by Claim 5.5. As
such, by induction and linearity of expectation, this
implies that E |Malg| = Θ(|Valg|) (the base case is
again trivial). To conclude, we can apply a Markov
bound (on size of |Valg| − |Malg|) and obtain that
with constant probability |Malg| = Θ(|Valg|), which
finalizes the proof.

We note that in Lemma 5.7, we only
achieved a constant factor probability of success for
ParallelAlgorithm. We can however run this algorithm
in parallelO(log n) times and pick the best solution to
achieve a high probability of success while still having
Õ(n) memory per machine and O(log log n) rounds.

5.4 MPC Implementation of the Parallel Al-
gorithm In this section, we briefly specify the details
in implementing ParallelAlgorithm in the MPC model
on machines of memory Õ(n). Throughout this sec-
tion, we assume that the event Evalid defined in the
previous section holds and hence we are implicitly
conditioning on this (high probability) event.

Our implementation is based on using by now
standard tools in the MPC model for sorting and
search in parallel introduced originally by [42] as
specified in [29]. On machines with memory nΩ(1),
the sort operation in [42] allows us to sort a set of key-
value pairs of size polylog(n) in O(1) MPC rounds.
We can also do a parallel search: given a set A of
key-value pairs and a set of queries each containing a
key of an element in A, we can annotate each query
with the corresponding key-value pair from A, again
in O(1) MPC rounds.

We follow the approach of [29] by using these
operations to broadcast information from vertices to
their incident edges. We build a collection of key-
value pairs, where each key is a vertex and the value
is the corresponding information. Then, each edge
(u, v) may issue two queries to obtain the information
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associated with u and v. For more details, we refer
the reader to Section 6 in [29]. The following lemma
states the main properties of our implementation.

Lemma 5.8. For a given graph G(V,E), one can im-
plement the following algorithms in the MPC model
with at most O(n) machines with memory Õ(n) with
probability 1− 1/n4:

1. Each call to ParallelEDCS in ParallelAlgorithm(G,n)
in O(1) MPC rounds.

2. Each call to RandomMatch in
ParallelAlgorithm(G,n) in O(1) MPC rounds.

3. ParallelAlgorithm(G,n) in O(log log n) MPC
rounds.

We prove each part of this lemma separately.

Implementation of ParallelEDCS. To perform
the vertex sampling approach in ParallelEDCS, we
need to annotate each edge with the subgraph(s) it is
assigned to. To do this, each vertex v in the current
graph only needs to specify which subgraphs it resides
on and broadcast this to its adjacent edges. Recall
that unlike in [29], in our way of vertex sampling,
each vertex can resides in multiple subgraphs (up to

Õ(
√
n) ones). Broadcasting this amount of informa-

tion directly to adjacent edges of each vertex is not
possible within the memory restrictions of the MPC
model. However, recall that we are using an O(log n)-
wise independent hash function for determining the
subgraphs each vertex v is going to reside on. Hence,
the vertex v only needs to broadcast this hash func-
tion to its adjacent edges which requires polylog(n)
bits for representation (see, e.g. [64]) and thus can be
done in O(1) MPC rounds on machines of memory
nΩ(1).

We then send all edges assigned to one subgraph
to a dedicated machine. By Claim 5.2, the number of
edges assigned to each machine is at most Õ(n) with
high probability and hence it can fit the memory of
the machine. We can then locally compute an EDCS
of this subgraph and annotate the edges in this EDCS
as the edges of the final multigraph C. All this can
be easily done in O(1) MPC rounds, hence finalizing
this part of the proof.

Implementation of RandomMatch. Each ver-
tex in S′ simply needs to annotate one of its edges
uniformly at random, and each annotated edge only
needs to “mark” its other endpoint in G \ S′. Any
vertex in G \ S′ which is marked exactly once then
inform the edge that marked it to join the matching
M . This part can again be done in only O(1) rounds
on machines with memory nΩ(1).

Implementation of ParallelAlgorithm. We can
now combine the results in the previous two parts
to show how to implement ParallelAlgorithm in the
MPC model. Consider a step of ParallelAlgorithm. We
saw that ParallelEDCS and RandomMatch can both be
implemented in O(1) MPC models. In particular, all
edges in subgraph C computed by ParallelEDCS are
now annotated and hence we can ignore all remaining
edges. We can also compute the degree of each vertex
in this subgraph in O(1) rounds using a simple sort
and search technique (see Lemma 6.1 in [29]). We
can hence compute the set of vertices Vhigh and pass
it to RandomMatch as the set S. Finally, we can mark
vertices in Vhigh∪V (Mhigh) and remove them from the
graph (by broadcasting this information to all their
neighbors). After this, we know which vertices belong
to C− for the next step and which edges are still
active. We can hence recursively solve the problem
on the graph C− in the next steps. As each step
requires O(1) MPC rounds and there are O(log log n)
steps in total by Claim 5.6, this results in an MPC
algorithm with O(log log n) rounds.

This concludes the proof of Theorem 5.1 for the
case of s = Õ(n). The extension to all ranges of
s = nΩ(1) and further optimizing the number of
machines appear in the full version [11].

5.5 Further Improvements In the remainder of
this section, we show that using standard techniques,
one can improve the approximation ratio of our
matching algorithm significantly. In particular,

Corollary 5.1. There exists an MPC algorithm
that given a graph G and ε ∈ (0, 1), with high proba-
bility computes a (2 + ε)-approximation to maximum
matching of G in O(log (1/ε) · log log n) MPC rounds
using only O(n/polylog(n)) memory per machine.

Corollary 5.2. There exists an MPC algorithm
that given a graph G and ε ∈ (0, 1), with high
probability computes a (1 + ε)-approximation to the
maximum matching of G in (1/ε)O(1/ε) · (log log n)
MPC rounds using only O(n/polylog(n)) memory per
machine.

We note that above corollaries hold for all range
of per machine memory s = nΩ(1) similar to Theo-
rem 5.1; however, for simplicity, we only consider the
most interesting case of s = O(n/polylog(n)).

5.5.1 Proof of Corollary 5.2 The idea is to
simply run our MPC algorithm in Theorem 5.1,
to compute a matching Malg, remove all vertices
matched by Malg from the graph G, and repeat.
Clearly, the set of all matchings computed like this is
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itself a matching of G. In the following, we show that
only after O(log 1/ε) repetition of this procedure, one
obtains a (2 + ε)-approximation to the maximum
matching of G.

Let α = O(1) be the approximation ratio of the
algorithm in Theorem 5.1. Suppose we repeat the
above process for T := (α · log (1/ε)) steps. For any
t ∈ [T ], let Mt be the matching computed so far,
i.e., the union of the all the matchings in the first t
applications of our α-approximation algorithm. Also
let Gt+1 := G \V (Mt), i.e., the graph remained after
removing vertices matched by Mt. Note that Mt+1

is an α-approximation to the maximum matching of
Gt+1. Moreover, MM(Gt+1) ≥ MM(G) − 2 |Mt| as
each edge in Mt can only match (and hence remove)
two vertices of any maximum matching of G. This
implies that |Mt+1| ≥ |Mt| + 1

α · (MM(G)− 2 |Mt|)
for all t ∈ [T ]. We now have,

MM(G)− 2 |MT | ≤
(

1− 2

α

)
· (MM(G)− 2 · |MT−1|)

≤
(

1− 2

α

)2

(MM(G)− 2 · |MT−2|)

(by applying the second equation to MT−1)

≤
(

1− 2

α

)T
·MM(G)

(by recursively applying the previous equation)

≤ exp

(
− 2

α
· α · log (1/ε)

)
·MM(G)

≤ ε ·MM(G).

Hence, after T = O(log 1/ε) steps, the match-
ing computed by the above algorithm is of size
(2 + ε) · MM(G). It is immediate to verify that
the new algorithm can be implemented in the MPC
model with machines of memory O(n/polylog(n))
and O(log (1/ε) · log log n) MPC rounds.

5.5.2 Proof of Corollary 5.2 Corollary 5.2 can
be proven using Theorem 5.1 plus a simple adap-
tion of the multi-pass streaming algorithm of McGre-
gor [58] for maximum matching to the MPC model.
The high level approach in [58] is to reduce the prob-
lem of finding a (1+ε)-approximate maximum match-
ing in G to many instances of finding a maximal
matching in multiple adaptively chosen subgraphs of
G. It was then shown that there exists a single pass
streaming algorithm that can both determine the ap-
propriate subgraph of G needed in each step of this
reduction and compute a maximal matching of this
subgraph. Hence, after by this streaming algorithm
in multiple passes over the stream, we obtain a (1+ε)-
approximation to the maximum matching.

We show that essentially the same approach can
also be used in the MPC model. The main difference
is to switch from computing a maximal matching
to finding an O(1)-approximate maximum matching
using our Theorem 5.1. The details of this reduction
are postponed to the full version of the paper [11].
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