Only for the personal use of students registered in CS 671, Fall 2020 at Rutgers University. Redistribution out of this class without the Instructor's permission is not permitted.

CS 671: Graph Streaming Algorithms and Lower Bounds Rutgers: Fall 2020

Problem set 5

Due: 11:59PM, October 13, 2020

Problem 1. The arboricity of an undirected graph G = (V, E), denoted by $\alpha(G)$, is the minimum number of spanning forests needed to cover all the edges of G. By Nash-Williams theorem, we alternatively have:

$$\alpha(G) = \max_{U \subseteq V} \left\lceil \frac{|E(U)|}{|U| - 1} \right\rceil,\tag{1}$$

where E(U) is the set of edges with both endpoints in U.

The goal of this problem is to design a semi-streaming algorithm in *dynamic* streams for $(1\pm\varepsilon)$ -approximation of the arboricity (albeit in exponential time). Throughout this problem, let n and m denote the number of vertices and edges, respectively, and assume $\varepsilon \in (0, 1)$ is a sufficiently small constant.

(i) Suppose $m \ge c \cdot \varepsilon^{-2} \cdot n \log n$ for a sufficiently large constant c > 0. Let $p := \Theta(\varepsilon^{-2} \cdot \log n) \cdot \frac{n}{m}$. Prove that if H is obtained from G by sampling each edge independently with probability p, then $\alpha(H)$ is a $(1 \pm \varepsilon)$ -approximation of $\alpha(G)$.

Hint: Use the formula for $\alpha(G)$ in Eq (1). Prove that the "density" of any set U in H, i.e., $|E_H(U)|/|U| - 1$ is a good "proxy" for its density in G—this claim can only be true for sets U with sufficiently large density (i.e., at least m/(n-1)); for other choices of U, prove that this value is sufficiently smaller than the new density (in H) of the originally high density sets (in G).

(*ii*) Use part (*i*) to design a semi-streaming algorithm for estimating $\alpha(G)$ to within a $(1\pm\varepsilon)$ -approximation in dynamic streams.

Hint: You should find a way of using ℓ_0 -samplers to "simulate" sampling *every* edge independently and uniformly at random with probability p as in part (i).