
CS 671: Graph Streaming Algorithms and Lower Bounds Rutgers: Fall 2020

Lecture 4
September 29, 2020

Instructor: Sepehr Assadi Scribe: Aditi Dudeja

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

In this lecture, we will primarily focus on the following paper:

• “Ami Paz, Gregory Schwartzman, A (2 + ε)-Approximation for Maximum Weight Matching in the
Semi-Streaming Model. In SODA 2017.”

with additional backgrounds from:

• “Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, Jian Zhang, On Graph
Problems in a Semi-streaming Model. In ICALP 2004 and Theor. Comput. Sci. 2005.”

• “Michael Crouch, Daniel S. Stubbs, Improved Streaming Algorithms for Weighted Matching, via Un-
weighted Matching. In APPROX-RANDOM 2014.”

1 The Maximum Weight Matching Problem

Let G = (V,E,w) be a simple graph with non-negative edge weights w(e) ≥ 0 on each edge e. As usual, we
denote n := |V | and m := |E|. Recall that a matching M in a graph G is a set of edges so that no two edge
share a vertex. In this lecture, we consider the maximum weight matching problem, namely, the problem
of finding a matching M in G which maximizes

∑
e∈M we. Throughout this lecture, we shall assume that

weight of each edge is bounded by some poly(n) and thus can be represented with O(log n) bits1.

Recall that by what we already proved in Lecture 2 even for unweighted matching, there is no hope to find an
exact semi-streaming algorithm for maximum weight matching in a single pass. As such, we need to allow for
approximation. We will study three different algorithms that compute an approximation to the maximum
weight matching in a graph. These algorithms have successively improving approximation ratios, but as we
shall see that the underlying techniques for analyzing these algorithms is similar: charging arguments.

Warm-Up: Unweighted matching via a charging argument. Recall the following 2-approximation
semi-streaming algorithm for unweighted matching from Lecture 2:

Algorithm 1. A semi-streaming algorithm for 2-approximation of maximum cardinality matching.

1. Let M ← ∅.

2. For any edge (u, v) in the stream, add (u, v) to M if both u and v are unmatched in M .

3. Return M .

1This assumption is not necessary for any of the algorithms in this lecture and can be lifted using a standard idea: ignore
any edge with weight < W/n2 where W is the maximum-weight edge and then scale back any remaining edge by W/n2 to make
them all poly(n)-bounded—this can only change the optimal solution by a negligible amount.

1

We had discussed in Lecture 2, that this algorithm gives a 2-approximation to the maximum cardinality
matching considering it outputs a maximal matching. Let us now see a different proof for this as a warm-up
for charging arguments done in this lecture.

Lemma 1. Algorithm 1 outputs a 2-approximate maximum (cardinality) matching.

Proof. Let M? be a maximum cardinality matching of G and M be the output matching of M?. Define the
following mapping (function) σ : M? →M :

• For any edge e ∈M? ∩M , σ(e) = e ∈M .

• For any edge e ∈M∗ \M , there should be an edge f incident on one of the vertices of e as otherwise
the algorithm would have added e to M as well; in this case, let σ(e) = f (breaking the ties arbitrary).

In both cases above, we say that the edge e ∈M? is charged to the edge σ(e) ∈M (or alternatively, σ(e) ∈M
is blamed for the edge e ∈M?). Now notice that any edge in M can be charged at most twice as it is incident
on at most two edges of M∗ and we only charge an edge to an incident edge. In other words, for any edge
f ∈M , | {e ∈M? | σ(e) = f} | ≤ 2. This immediately means that |M?| ≤ 2 · |M | as every edge of M? should
be charged to some edge of M while no edge in M is charged more than twice. This concludes the proof.

Remark. The charging argument in Lemma 1 is a very simple argument which was done in an “overly
formal” way for completeness. In the remainder of the lecture, we will simple define the charging scheme
and the underlying mapping (function) σ will be implicit in the proof.

For the remainder of this lecture, we go back to the weighted matching problem. In this case, Algorithm 1
no longer works: an adversary can add heavier edges so that while e ∈ M is charged by at most two edges
of optimmum, the weight it is charged may be much greater than 2 ·w(e). An example is given in Figure 1.

Figure 1: Algorithm 1, first includes e1 into the matching M , since both endpoints of e1 are unmatched.
When e2 and e3 arrive, they are ignored by the algorithm, even though they are significantly heavier than
e1. When e4 and e5 arrive, they are included in the matching because their endpoints are unmatched. The
final matching M = {e1, e4, e5} is much lighter than the optimal matching M? = {e2, e3}

.

Therefore, while the problem of 2-approximating the maximum cardinality matching is almost a trivial
problem in the semi-streaming setting, approximating the maximum weight matching has turned out to be
significantly more challenging. In this lecture, we see several interesting algorithms for this problem and
conclude with the state-of-the-art (2 + ε)-approximation algorithm of Paz and Schwartzman [7].

2

2 A Simple 6-Approximation Semi-Streaming Algorithm

Having seen Algorithm 1, perhaps the simplest fix to try would be to modify the matching M when a heavy
edge arrives: that is, suppose e ∈M , and an edge e′ arrives in the stream such that e′ is sufficiently heavier
than e, then the right thing to do would be to remove e and include e′ in the matching. This is exactly what
the 6-approximation algorithm of Feigenbaum et.al. [4] does:

Algorithm 2. A single-pass semi-streaming algorithm for 6-approximation of maximum weight matching.

(i) Let M ← ∅.

(ii) When a new edge e arrives in the stream, compare e with C (e) where C (e) = {e′ ∈M | e ∩ e′ 6= ∅}a.

(a) If w(e) > 2 · w (C (e)), then M ←M ∪ {e} \ C (e).

(b) if w(e) ≤ 2 · w (C (e)), then ignore e.

aThese are the at most two edges incident on e already in M .

At first glance, Algorithm 2 may seem “overly conservative” in updating the matching M ; after all why not
changing e with C(e) even when w(e) > w(C(e)) (instead of w(e) > 2w(C(e)) currently)? However, it is
easy to see that such an algorithm is doomed to fail: simply consider the case when the input G is a path
with increasing weights in order of arrival, say, edges with weight 1, 2, 3, . . . ,W—the new algorithm only
picks the very last edge in M while the graph has a matching of weight Ω(W 2)! In the following, we prove
that this simple overly conservative update rule however leads to a constant factor approximation.

Lemma 2. Let M? be an optimal matching of the input graph G. Then, w (M) ≥ 1
6 · w (M?).

Proof. We need to introduce some notation:

• For an edge e ∈M , define C0(e) = {e}.

• For i > 1, consider any e′ ∈ Ci−1(e). Then, e′ may be responsible for kicking out up two edges from M
when it is added to M . Let Ci (e) be the collection of edges that are kicked out by edges from Ci−1 (e).

• Let T (e) :=
⋃
i≥1

Ci(e), i.e., all the edges that were directly or indirectly got kicked out by e.

We start by proving that the total weight of the edges got kicked out by an edge e is at most equal to w(e)
using the conservative updating rule of the algorithm.

Claim 3. For any e ∈M , w (T (e)) ≤ w (e).

Proof. Consider any i > 0, and let e′ ∈ Ci−1 (e). Then, consider the edges e2 and e3 kicked out by e′.
Observe that w(e′) ≥ 2 (w(e2) + w(e3)) by the updating rule. Further, each edge is kicked out at most once.
This implies that 2 · w (Ci (e)) ≤ w (Ci−1 (e)) and thus inductively, w(Ci(e)) ≤ 2−i · w(C0(e)) = 2−i · w(e).
Consequently, we have that:

w (T (e)) =
∑
i≥1

w (Ci(e)) ≤
∑
i≥1

2−i · w(e) ≤ w(e),

as desired. Claim 3

We now give a charging scheme to prove Lemma 2. Let M? be an optimal matching of the input graph G.
We will charge w (M?) to the edges of M , so that each edge e ∈M gets weight at most 6 ·w (e). Similar to
what we argued in Lemma 1, this necessarily implies that w(M?) ≤ 6 · w(M), thus proving the lemma.

3

Figure 2: Suppose edge e′ = (vi, wi) is already in the matching. At some point in the stream, edge
oi = (ui, vi) ∈ M? arrives, however is ignored by the algorithm since 2 · w (e′) ≥ w (oi). Similarly, an edge
oj = (wi, vj) arrives and is ignored by the algorithm due to (wi, vi). In this case, e′ could potentially be held
responsible for two edges, and therefore it tries to distribute its charge.

As before, we charge any edge e′ = (u, v) ∈ M? ∩M to itself in M , which clearly satisfies the charging
bound. Now consider e′ = (u, v) ∈M? \M . There are two possible scenarios for the fate of (u, v):

1. Edge (u, v) was never included in M :
In this case, there are at most two edges e2 and e3 that are incident on u and v respectively, that prevent
(u, v) from being included into M (due to 2 · (w (e2) + w (e3)) ≤ w (e′)). In this case, we charge e2 and

e3 with weights
w(e2)·w(e′)
w(e2)+w(e3)

and
w(e3)·w(e′)
w(e2)+w(e3)

, respectively. This way, we charge all of w(e′) to e2 and

e3 such that each gets charged a weight of at most 2 · w (e2) and 2 · w (e3), respectively.

2. Edge (u, v) was included in M but was then removed:
Note that in this case, (u, v) ∈ T (e) for some e ∈M .

Essentially, in both the above cases, we are charging w (e′) to some edge in T (e) for some e ∈M and not to
M still. Moreover, in the above scheme, each edge o = (x, y) ∈ T (e) may get charged twice (for each of its
endpoints, see Figure 2 for an illustration). In this case, o tries to distribute its charge: suppose o = (x, y)
is charged at most 2 · w(o) due to o1 = (z, y) ∈ M? and then o is ousted from M by o2 = (w, y), then o
transfers the charge due to o1 onto o2. In this scheme o2 is charged weight at most 2 ·w (o) ≤ 2 ·w (o2). The
only way o would be charged twice is if it is never kicked out from M , that is if o ∈ M . Consequently, we
can deduce that each e′ ∈ T (e) for e ∈ M is charged at most 2 · w (e′) and each e ∈ M is charged at most
4 · w (e). This implies that:

w (M?) ≤ 2
∑
e∈M

w (T (e)) + 4
∑
e∈M

w (e)

≤ 6
∑
e∈M

w (e) = 6 · w (M) . (by Claim 3)

This proves the lemma.

4

Finally, it is immediate that Algorithm 2 uses only O(n) space as it only maintains a single matching at all
times. This allows us to conclude the following theorem from [4].

Theorem 4 ([4]). There is a semi-streaming 6-approximation algorithm for maximum weight matching.

3 A (4 + ε)-Approximation Semi-Streaming Algorithm

In this section, we will discuss an algorithm due to Crouch and Stubbs [3] that achieves a (4 + ε)-approximation
to the maximum weight matching in the input graph G. This algorithm reduces the problem of maximum

weight matching to the problem of maximum cardinality matching, and makes O
(

logn
ε

)
calls to any α-

approximation maximum cardinality matching algorithm; finally, it combines these matchings greedily to
obtain a (2 + ε)α-approximation algorithm.

Algorithm 3. An algorithm that computes (2 + ε)α-approximation to weighted matching given oracle
access to any α-approximation algorithm for unweighted matchings.

(i) Let Ei =
{
e ∈ E | w (e) ≥ (1 + ε)

i
}

and define Gi := (V,Ei)
a.

(ii) In parallel, compute an α-approximate maximum cardinality matching Ci of Gi (using the oracle).

(iii) Let M ← ∅ and W = max {w (e) | e ∈ E}.

(iv) For i = log1+εW to 1, consider e ∈ Ci and let M ←M∪{e} if both the endpoints of e are unmatched
in M ; return M at the end.

aNote that E1, E2, · · · are not a partition of the edges but rather E1 ⊆ E2 ⊆ · · · .

We now prove that Algorithm 3 outputs a (2 + ε)α-approximation to the maximum weight matching of G.

Lemma 5. Let M? be an optimal matching of the input graph G. For any choice of the α-approximation
algorithm for unweighted matching in Algorithm 3, w(M?) ≤ 2 · (1 + ε)α · w(M).

Proof. For any 1 ≤ i ≤ log1+εW , we define:

• Define Mi = M ∩ Ei and M?
i = M? ∩ Ei.

We first claim that size (and not weight) of Mi itself is at most a 2α factor smaller than size of M?
i . Formally,

Claim 6. For each 1 ≤ i ≤ log1+εW , we have |Mi| ≥ 1
2α |M

?
i |.

Proof. As Ci is an α-approximate (unweighted) matching of Gi, and M?
i ⊆ Gi, we have |Ci| ≥ 1

α · |M
?
i |.

Moreover, the algorithm builds the matching M from Ci’s greedily. Thus, the same argument as in Lemma 1,
we have |Mi| ≥ 1/2 · |Ci|. Combining these, we have that |Mi| ≥ 1

2α |M
?
i |. Claim 6

We are now ready to perform our charging argument.

Claim 7. There is a mapping σ : M? →M such that:

• for any e ∈M , |σ−1 (e) | ≤ 2α,

• for any e′ ∈M?, w (e′) ≤ (1 + ε) · w (σ (e′)).

5

Proof. Starting at the maximum value of i, we assign edges in M?
i to edges in Mi. For any e ∈ M?

i , we let
σ(e) be an edge in Mi that has fewer than 2α edges already assigned to it. Claim 6 ensures that such an
edge is always available. This guarantees the first property. Moreover, since we process M? in the decreasing
order of i, edges of M?

1 are mapped to M1, edges of M?
2 \M?

1 to M2, and generally M?
i \M?

i−1 to Mi. This
implies that w (e′) ≤ (1 + ε)w (σ(e′)). Claim 7

Finally, by Claim 7 (for first and second inequalities),

w(M?) =
∑
e∈M?

w(e) ≤
∑
e∈M?

w (σ(e)) (1 + ε) ≤ 2α (1 + ε)
∑
e∈M

w(e) = 2α (1 + ε)w (M) ,

concluding the proof.

We can now conclude the following theorem from [3].

Theorem 8 ([3]). There is a semi-streaming (4+ε)-approximation algorithm for maximum weight matching.

Proof. We run Algorithm 3 (by re-parameterizing ε witth ε/4) with the simple greedy 2-approximation
algorithm for unweighted matching (Algorithm 1) as the oracle. This requires running O(ε−1 ·log n) instances
of Algorithm 1, each with O(n) space, leading to O(ε−1 · n log n) space overall. The correctness now follows
from Lemma 5.

Remark. The Crouch-Stubbs technique [3] gives a very general and “low overhead” way of obtaining an
approximate algorithm for weighted matching from approximation algorithms for unweighted matching,
which is applicable in many settings beyond streaming algorithms as well. Similar-in-spirit reductions
from weighted to unweighted matchings, with “higher overhead”, are also given in [5] that allow for
transforming a 2-approximation of unweighted matching to a (1+ε)-approximation of weighted matching

by running the unweighted matching oracle adaptively for (1/ε)O(1/ε2) times—such an approach can be
used to obtain multi-pass algorithms for weighted matching (with 1 pass per each adaptive call to the

oracle, thus (1/ε)O(1/ε2) passes overall).

4 A (2 + ε)-Approximation Semi-Streaming Algorithm

Finally, we get to the breakthrough result of Paz and Schwartzman who obtained a (2 + ε)-approximation
semi-streaming algorithm for weighted matching [7]. The authors of [7] adapt a non-streaming algorithm
based on the local-ratio technique of Bar-Yehuda and Even [2] to the streaming setting. In Section 4.1
we state the local ratio theorem for weighted matching that gives us a 2-approximation algorithm in the
sequential setting. In the subsequent section, we then show how [7] adapt this algorithm to the streaming
setting. We then prove the space complexity and the approximation ratio guaranteed by this algorithm via
a charging argument given by Ghaffari and Wajc [6].

4.1 A Simple Local-Ratio Algorithm for Weighted Matching

We first state and prove the local-ratio theorem for weighted matching that will be used to build our final
streaming algorithm:

Proposition 9 (cf. [1]). Let G = (V,E,w) be a weighted graph. Let w1 and w̄1 be two arbitrary weight
functions (possibly even negative) on the edges of G such that w = w1 + w̄1. Let M be an α-approximation
to the maximum weight matching of G with respect to w1 and w̄1 simultaneously. Then, M is also an
α-approximation to the maximum weight matching of G with respect to w.

6

Proof. LetM?, M1, and M̄1 be the optimal weight matchings ofG with respect to w, w1, and w̄1, respectively.

w (M?) = w1(M?) + w̄1(M?) ≤ w1(M1) + w̄1(M̄1)
(Since M1 and M̄1 are optimal with respect to w1 and w̄1, respectively.)

≤ α · w1(M) + α · w̄1(M) = α · w(M),
(Since M is an α-approximate solution for both w1 and w̄1.)

proving the result.

A 2-approximation local-ratio algorithm. Proposition 9 naturally suggests a recursive algorithm for
weighted matching. Let e be any arbitrary edge in G with w(e) > 0 and define N+(e) to be the set of edges
that share an endpoint with e plus e itself. Define the weight function w̄1 as follows: for any edge f ∈ E:

w̄1(f) =

{
w(e) if f ∈ N+(e)

0 otherwise
.

Also, define w1 = w − w̄1. Now suppose we recursively find a 2-approximate matching M1 for G under the
weight function w1 (and letting M1 = ∅ if w1(e) ≤ 0 for all e ∈ G). To apply Proposition 9, we need M1 to
also be an α-approximate matching of G under w̄1. Now, notice that w̄1 gives the same weight of w(e) to
all edges in N+(e) and is otherwise 0. Moreover, all these non-zero weight edges are incident on e and thus
the maximum weight matching of G under w̄1 has weight at most 2w(e). This means that if M1 ∩N+(e) is
non-empty, M1 is already a 2-approximate matching for w̄1 also as w̄1(M1) ≥ w(e) in that case. Otherwise,
both endpoints of e are unmatched in M1 and thus we can consider directly adding e to M1 to have the
matching M = M1 ∪ {e}: As w1(e) = 0, we have w1(M1 ∪ {e)} = w1(M1) (hence M is still a 2-approximate
matching for w1) and w̄1(M1∪{e)} = w̄1(e) = w(e) (hence M is now a 2-approximate matching for w̄1 also).
By Proposition 9, in both case, we obtain a 2-approximate maximum weight matching of G under w as well.

Let us now define the same algorithm sequentially instead of recursively as follows:

Algorithm 4. A simple 2-approximation local-ratio algorithm for maximum weight matching.

(i) Let w1 = w, i = 1, and define the stack S initialized to be empty.

(ii) Iterate over the edges e one by one in an arbitrary order:

(a) If wi(e) ≤ 0 go to the next edge directly.

(b) Otherwise, let ei = e and push ei to the stack S;

(b) For each f ∈ N+(ei), let wi+1(f)← wi(f)− wi(ei).
(c) Set i← i+ 1 and go to the next edge.

(iii) Unwind S, and create the matching M greedily in the stack order.

It is easy to see that Algorithm 4 is just a different implementation of the recursive algorithm:

• For any i in Algorithm 4, we can define the weight function w̄i+1 to be

w̄i+1(f) =

{
wi(e) if f ∈ N+(ei)

0 otherwise
,

which results in wi = wi+1 + w̄i+1. This is exactly the same weight function in the recursive algorithm.

• Unwinding the stack and creating the matching M at the end has the same exact effect as checking if
any endpoint of edge ei is already matched by the matching Mi of wi+1 (in which case the recursive
algorithm does not change Mi), or not (in which case the recursive algorithm let M ←Mi ∪ {ei}).

As a result, we can prove the 2-approximation guarantee of Algorithm 4 verbatim as before.

7

Figure 3: Consider the graph H, whose edges arrive as a stream: E (G1) ◦ E (G2) ◦ E (G3) ◦ E (G4). The
algorithm initially adds all the edges of E (G1) to the stack. After processing E (G1), the weight of edge
e ∈ E (Gi) for i ≥ 2 is reduced by 2. This implies that w5 (e) = 1 for all e ∈ E (G2). It follows that edges
of E (G2) are also added to the stack. After processing E (G2), w9 (e) = 2 for e ∈ E (G3). This implies that
when E (G3) arrive, all of these are added to the stack and so on until the stack size becomes Ω(n2).

4.2 Adapting the Local-Ratio Algorithm to the Semi-Streaming Model

Let us discuss what are the potential obstacles to adapting Algorithm 4 to the semi-streaming setting, and
how [7] overcome these:

1. The main obstacle is the fact that size of the stack can grow to Ω(n2). An example of this is shown in
Figure 3. To overcome this, authors of [7] make sure to only add an edge (u, v) to the stack if it causes
the total weight of the edges around u and v that were added to the stack to grow by a factor of (1 + ε).
Since we assume that all edges have weights that are polynomial in n, it follows that the total number

of edges added per vertex is O
(

logn
ε

)
. This will allows us to bound the space by O

(
ε−1 · n log n

)
.

2. The iterative weight reduction done by Algorithm 4 cannot be implemented directly in the semi-
streaming setting, since some edges f ∈ N+(ei) may arrive only after the edge ei has been pro-
cessed. In order to take care of this, the algorithm maintains potentials at each vertex, where
φi(v) =

∑
v∩ej 6=∅,j≤i

wj(ej). As a result now, for any edge in the stream, the weight reduction pro-

cess can be done retroactively.

With these solutions in mind, we now give the algorithm that we want to implement:

Algorithm 5. A semi-streaming (2 + ε)-approximation algorithm for maximum weight matching.

1. Define a stack S = ∅. Also, for each vertex v ∈ V , let φv ← 0 initially.

2. For any arriving edge e = (u, v) ∈ E in the stream:

(a) If w(e) ≤ (1 + ε) (φu + φv), then move onto the next edge in the stream.

(b) Otherwise, push e to the stack S and set:

w′(e) = w(e)− (φu + φv) , φu ← φu + w′ (e) , φv ← φv + w′ (e) .

3. Unwind the stack, and create the matching M greedily in the stack order.

Before we prove the approximation guarantee of Algorithm 5, we will discuss what exactly this algorithm
is doing by comparing it with Algorithm 4. Consider Algorithm 4, and suppose the stack S, right before

8

unwinding contains edges {e1, · · · , ek}, where ei was added before ej to the stack if i < j. As discussed
before, each of these ei’s is defining a weight function on the edges of the graph. These weight functions
w1, · · · , wk+1 are defined inductively, starting from w1 = w, and

wi+1(e) =

{
wi(e) if e /∈ N+(ei)

wi(e)− wi(ei) if e ∈ N+(ei)
.

On the other hand, this is not quite how the weight functions are being defined by Algorithm 5. We first
state what are the weight functions being imposed on G by the edges in the stack, and then give some
intuition behind why these are the right weight functions. Let S = {e1, e2, · · · , ek}, where ei is pushed in
the stack before ej if i < j. For i ∈ [k + 1], let wi+1 be the weight function imposed by ei, starting with
w1 = w; then,

wi+1(e) =

{
wi(e) if e /∈ N+(ei) (1a)

wi(e)− wi(ei) or wi(e)− (1 + ε) · wi(ei) if e ∈ N+(ei) (1b)

While the definition in Case (1b) may seem arbitrary at the first glance, there is a valid reason behind this.
To see this, it is important to think of condition (2a) of Algorithm 5 as analogous to condition ((ii)a) of
Algorithm 4. Suppose at some time after we have processed edge ei, and before we are processing ei+1, we
consider an edge e. Let Se = {e1, · · · , ei} ∩N(e); then, condition (2a) states the following:

• If w(e) −
∑
ej∈Se

(1 + ε) · wj(ej) ≤ 0, then ignore e. So, for such e’s we may think of wj+1(e) as

being defined inductively by subtracting (1 + ε)wj(ej) from wj(e) iff e ∈ N+(ej). Then, analogous to
condition (ii)a of Algorithm 4, we may then say that we are ignoring e because wi+1(e) ≤ 0.

• On the other hand, if w(e)−
∑
ej∈Se

(1+ε) ·wj(ej) > 0 we define wi+1(ei) by subtracting
∑
ej∈Se

wj(ej)

from w(e). To see this, consider step (2b) of Algorithm 5: φ(u) + φ(v) =
∑
ej∈Se

wj(ej), w
′(e) =

w(e) − φ(u) − φ(v) = w(e) −
∑
ej∈Se

wj(ej) is just wi(ei) (so, in this case, wi(ei) is defined as in

Algorithm 4). Then, w′(e) = wi(ei) is added to φu and φv, thus defining wi+1(ei) implicitly.

With this discussion in mind, we now move on to proving the approximation guarantees.

Lemma 10. Let M? be a maximum weight matching in G and M be the output of Algorithm 5. Then,
w(M?) ≤ 2(1 + ε)w(M).

Proof. Our proof technique will be similar to the charging argument that we have used in past. In particular,
we show that we can charge the weights of the edges of M? to the edges of M , so that each e ∈M is charged
with weight at most 2(1 + ε)w(e).

We prove this inductively. Before this, some notation is in order. Let S = {e1, · · · , ek} be the state of the
stack right before the last step of the algorithm. Let wi+1 be the weight function defined by edge ei on the
graph for i ∈ [k], and let w1 = w. Let Mr be the matching maintained by the algorithm after er is unwound
from the stack. Let M1 = M , and Mk+1 = ∅. We have the following inductive statement, whose r = 1 case
proves our charging argument.

Claim 11. For r ∈ [k+ 1], we can charge wr(M
∗) to Mr so that e ∈Mr gets weight at most 2(1 + ε)wr(e).

Proof of Claim 11. The statement holds for r = k + 1 since wk+1(M∗) = 0. Assume that the statement
holds for Mr+1. That is, we can charge wr+1(M∗) to Mr+1 so that each e ∈ Mr+1 gets weight at most
2(1 + ε)wr+1(e). We want to show that this is true for Mr as well.

Observe that wr(e) 6= wr+1(e) iff e ∈ N+(er). This is implied by the definition of wr+1 (see (1a) and (1b)).
So, for all f ∈ M∗ \ N+(er), we have in fact charged wr(f) = wr+1(f) to the edges of Mr+1 ⊆ Mr by
the induction hypothesis. In M∗ there are at most two edges, f ′, f ′′ ∈ N+(er), whose weights we are now

9

required to charge to Mr. For f ′ and f ′′, we have already, by induction hypothesis, charged wr+1(f ′) and
wr+1(f ′′) to edges of Mr. So, the remaining charge is at most 2(1 + ε)wr(er) since

wr(f
′)− wr+1(f ′) + wr(f

′′)− wr+1(f ′′) ≤ 2(1 + ε)wr(er),

by (1b). To distribute this remaining charge, we consider the following two cases:

1. Edge er is included in the matching Mr. Considering er is in Mr but not Mr+1 as it is only
processed from the stack in step r, there is no charge on er currently. So we can charge the weight on
f ′ and f ′′ which is at most 2(1 + ε)wr(er) to er, satisfying the induction hypothesis for r.

2. Edge er is not included in the matching Mr. In this case, there is an edge e′ ∈ N+(er) that is
already in Mr+1. By induction hypothesis, the total charge on e′ at the moment is ≤ 2(1 + ε)wr+1(e′).
So, it can take an additional charge of 2(1 + ε)wr(er), and the net charge on it will be at most
2(1 + ε)wr(e

′) because wr+1(e′) +wr(er) ≤ wr(e′) by the definition of wr+1 in (1b). So, the remaining
weight due to f ′ and f ′′ may be charged to e′ in this scenario. Claim 11

Claim 11 for r = 1 shows that each edge e ∈ M is charged a weight of at most 2(1 + ε)w(e), thus implying
that w(M?) ≤ 2(1 + ε)w(M) and concluding the proof of Lemma 10.

Lemma 12. The space complexity of Algorithm 5 is O
(
ε−1 · n log n

)
.

Proof. Suppose that the maximum weight of any edge is W which is some poly(n) by our assumption at
the beginning of the lecture. Then, the maximum possible value φu can attain for any u, is at most n ·W .
Moreover, each time an edge incident on u is added to the stack, φu grows by a (1 + ε) factor. Hennce, the
number edges added per vertex can be at most log1+ε (n ·W) which implies the space of O

(
ε−1n · log n

)
.

We can now conclude the following theorem from [7].

Theorem 13 ([7]). There is a semi-streaming (2+ε)-approximation algorithm for maximum weight matching.

References

[1] R. Bar-Yehuda, K. Bendel, A. Freund, and D. Rawitz. Local ratio: A unified framework for approxmation
algrithms in memoriam: Shimon even 1935-2004. ACM Comput. Surv., 36(4):422–463, 2004. 6

[2] R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the weighted vertex cover problem.
Annals of Discrete Mathematics, 25(27-46):50, 1985. 6

[3] M. Crouch and D. M. Stubbs. Improved streaming algorithms for weighted matching, via unweighted
matching. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques (APPROX/RANDOM 2014). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014. 5, 6

[4] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On graph problems in a semi-streaming
model. Theoretical Computer Science, 348(2-3):207–216, 2005. 3, 5

[5] B. Gamlath, S. Kale, S. Mitrovic, and O. Svensson. Weighted matchings via unweighted augmentations. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto,
ON, Canada, July 29 - August 2, 2019, pages 491–500, 2019. 6

[6] M. Ghaffari and D. Wajc. Simplified and space-optimal semi-streaming (2+epsilon)-approximate match-
ing. In 2nd Symposium on Simplicity in Algorithms, SOSA@SODA 2019, January 8-9, 2019 - San Diego,
CA, USA, pages 13:1–13:8, 2019. 6

[7] A. Paz and G. Schwartzman. A (2+ε)-approximation for maximum weight matching in the semi-streaming
model. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2153–2161. SIAM, 2017. 2, 6, 8, 10

10

	1 The Maximum Weight Matching Problem
	2 A Simple 6-Approximation Semi-Streaming Algorithm
	3 A (4+)-Approximation Semi-Streaming Algorithm
	4 A (2+)-Approximation Semi-Streaming Algorithm
	4.1 A Simple Local-Ratio Algorithm for Weighted Matching
	4.2 Adapting the Local-Ratio Algorithm to the Semi-Streaming Model

