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WLAN-Based Localization

« Localization in indoor environments using
802.11 and Fingerprinting

- Numerous useful applications

« Dual use infrastructure: a huge advantage



Background: Fingerprinting Localization

- Classifiers/matching/learning

approaches

- Offline phase:

— Collect training data (fingerprints)
— Fingerprint vectors: [(X,y),SS]

 Online phase:

— Match RSS to existing fingerprints
probabilistically or using a distance
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Background (cont)

e
+ Qutput:
— A single location: the closest/best match
- We call such approaches “Point-based
| ocalization”
- Examples:
— RADAR

— Probabilistic approaches

[Bahl00, Ladd02, Roos02, Smailagic02, Youssef03,
Krishnan04]




Contributions: Area-based Localization

 Returned answer is area/volume

likely to contain the localized object

- Area is described by a set of tiles

» Ability to describe uncertainty

— Set of highly possible locations



Contributions: Area-based Localization

Show that it has critical advantages over point-based
localization

Introduce new performance metrics
Present two novel algorithms: SPM and ABP-c

Evaluate our algorithms and compare them against
traditional point-based approaches

Related Work: different technologies/algorithms [Want92,
Priyantha00, Doherty01, Niculescue0O1, Savvides01, Shang03, He03,
Hazas03, Lorincz04]



Why Area-based?

* Noise and systematic errors introduce position uncertainty

« Areas improve system’s ability to give meaningful alternatives
— A tool for understanding the confidence

— Ability to trade Precision (area size) for Accuracy (distance the
localized object is from the area)

— Direct users in their search
— Yields higher overall accuracy

*  Previous approaches that attempted to use areas only use them as
intermediate result - output still a single location



Area-based vs. Single-Location
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 Object can be in a single room or multiple rooms

» Point-based to areas
— Enclosing circles -- much larger
— Rectangle? no longer point-based!
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Metrics

Localization Algorithms

« Simple Point Matching (SPM)
- Area-based Probability (ABP-c)
* Interpolated Map Grid (IMG)

Experimental Evaluation
Conclusion, Ongoing and Future Work



Performance Metrics

- Traditional: Distance error between returned and true
position
— Return avg, 95" percentile, or full CDF
— Does not apply to area-based algorithms!
— Does not show accuracy-precision tradeoffs!
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New Metrics: Accuracy Vs. Precision
NN AN —§™— D

Tile Accuracy % true tile is returned

Distance Accuracy distance between ~—=
true tile and returned tiles (sort and
use percentiles to capture

distribution)

ol
/

Precision size of returned area (e.g., % |
sq.ft.) or % floor size |




Room-Level Metrics

 Applications usually operate at the level of rooms
« Mapping: divide floor into rooms and map tiles

— (Point -> Room): easy Hﬁg
\

— (Area -> Room): tricky L]
Metrics: accuracy-precision

| ——
r [
Room Accuracy % true room is the returned room
Top-n rooms Accuracy % true room is among the returned rooms
Room Precision avg number of returned rooms




1. Simple Point Matching (SPM)
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Build a regular grid of tiles, match expected fingerprints

* Find all tiles which fall within a “threshold” of RSS for each
AP

- Eager: start from low threshold (s, 2s, 3s, ...)
- Threshold is picked based on the standard deviation of the

received signal

« Similar to Maximum Likelihood Estimation



2. Area-Based Probability (ABP-c)

BuiH a regular grla o! !lles, !lle . expec!ea !lngerprln!

Using “Bayes’ rule” compute likelihood of an RSS matching the
fingerprint for each tile

p(TiIRSS) p(RSS|Ti) . p(Ti)

Return top tiles bounded by an overall probability that the object lies in
the area (Confidence: user-defined)

Confidence _ _ Areasize _




Measurement At Each Tile Is Expensive!

e
- Interpolated Map Grid: (Surface Fitting)

- (Goal: Extends original training data to cover the entire
floor by deriving an expected fingerprint in each tile

 Triangle-based linear interpolation using “Delaunay
Triangulation” 140

- Advantages:
— Simple, fast, and efficient
— Insensitive to the tile size

0 210



Impact of Training on IMG

NN AN —§™— D
- Both location and number of training samples impact
accuracy of the map, and localization performance

- Number of samples has an impact, but not strong!

— Little difference going from 30-115, no difference using > 115
training samples

- Different strategies [Fixed spacing vs. Average spacing]:
as long as samples are “uniformly distributed” but not
necessarily “uniformly spaced” methodology has no
measurable effect




Experimental Setup
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% accuracy

Area-based Approaches: Accuracy-Precision Tradeoffs
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 Improving Accuracy worsens Precision (tradeoftf)
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A Deeper Look Into “Accuracy”
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Sample Outputs

ABP-50 ABP-75

SPM ABP-95
Area expands into the true room

Areas illustrate bias across different dimensions (APs’ location)



Comparison With Point-based localization: Evaluated
Algorithms

- RADAR

— Return the “closest” fingerprint to the RSS in the training set
using “Euclidean Distance in signal space” (R1)

. Averaged RADAR (R2), Gridded RADAR (GR)

» Highest Probability

— Similar to ABP: a typical approach that uses “Bayes’ rule”
but returns the “highest probability single location” (P1)

+ Averaged Highest Probability (P2), Gridded Highest
Probability (GP)




Comparison With Point-based Localization: Performance

Metrics
[

- Traditional error along with percentiles CDF
for area-based algorithms (min, median, max)

* Room-level accuracy



Error CDF Across Algorithms

o
N

0.6
=
3
S 0.5
e
o
0.4
0.3 —_— ABP-75 Minimum
—_— ABP-75 Median
—_— ABP-75 Maximum
0_2 .................................................................. B R1
- - R2
GR
O 1 - [ s s s e s e - P1
- m P2
o ] ] ] ] ] T I ]
30 40 50 60 70 80 Q0 100

Distance in feet

CDFs for point-based algorithms fall in-between the min, max CDFs for
area-based algorithms

Point-based algorithms perform more or less the same, closely
matching the median CDF of area-based algorithms



Within Room Accuracy Stack
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Similar top-room accuracy

Area-based algorithms are superior at returning multiple rooms,
yielding higher overall room accuracy

If the true room is missed in point-based algorithms the user has no
clue!




Conclusion

- Area-based algorithms present users a more
intuitive way to reason about localization
uncertainty

* Novel area-based algorithms and performance
metrics

- Evaluations showed that qualitatively all the
algorithms are quite similar in terms of their
accuracy

- Area-based approaches however direct users in
their search for the object by returning an ordered
set of likely rooms and illustrate confidence



System for LEASE: Location Estimation
Assisted by Stationary Emitters for Indoor
RF wireless Networks

P. Krishnan, A.S. Krishnakumar, W.H.
Ju, C. Mallows, S. Ganu

Avaya Labs and Rutgers



LEASE components

« Access Points
— Normal 802.11 access points

- Stationary Emitters
— Emit packets, placed throughout floor

« Sniffers

— Read packets sent by AP, report signal strength
fingerprint

» Location Estimation Engine (LEE)
— Server to compute the locations



LEASE system
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LEASE methodology

A S S  h—§€IS
- SE emit packets
- Sniffers report fingerprints to LEE

- LEE builds a radio map via interpolation

— Divide floor into a grid of tiles

— Estimate RSS of each SE for each tile

— Result is an estimated fingerprint for each tile
 Client sends packet

— Sniffers measure RSS of client packet

— LEE computes location of client based on the map.



Building the map

* For a each sniffer:
— have X, Y, RSS (“height”) for each AP

— Use a generalized adaptive model to smooth the
data.

— Use Akima splines to build an interpolated
“surface” from the set of “heights” over the grid of
tiles

— Each tile(3ftx3ft) has a predicted RSS for the
sniffer
* Note complexity vs. the Delaunay triangles for
SPM, APB algorithms.



Matching the Clients

e
- Sniffers receive RSS of a client packet

* Find the tile with the closest matching set of
RSSs

- Compute the distance in “signal space”
+ Sgrt( (RSS-RSS) A2 + (RSS-RSS) ...

« Full-NNS: match the entire vector for each
RSS

» Top-K: match only the strongest K-signals



Error vs. # of SEs
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Metric

- Want to combine several factors into a single

numeric value to judge the localization
system

- Factors:
— Area covered (A)
* (more -> better)
— # of fingerprints (k)
* (more -> worse)

— Localization error (m)
* (more -> worse)



Metric (lower is better)

# of fingerprints  Rejative weights

Scaling Constant \ /

8( i, ]) _ ijZ/li_Median error
!

Area of location system




Using the Metric

Technique e(l,3) (ft) e(2,3) (fi)
RADAR [4] 21.2 [ 484.0
Ref. [25] [.7 | 88.6
LEASE(12) @BR [.2 8.7
LEASE(28) @BR [.5 41.8
LEASE(38) @BR [.3 50.1

Note, areas for first 2 are normalized to the
Corridors (whole floor doesn’t count)



Questions:

NN AN —§™— D
» What are meaningful numbers?

« What to count in A?

— Corridor only?

— What happens to m vs A?

- E.g. if we measure only in the corridors, but then try to
localize in the rooms?

- What should the weights be?



