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Abstract

In this paper, we evaluate the performance, availability, and com-
bined performability of four soft state maintenance strategies in two
multi-tier Internet services, an on-line book store and an auction
service. To take soft state and service latency into account, we pro-
pose an extension of our previous quantification methodology, and
novel availability and performability metrics. Among other inter-
esting results, we clearly isolate the effect of different faults, show-
ing that the tier of Web servers is responsible for an often dominant
fraction of the service unavailability. Overall, we find that the ser-
vices achieve between 99.9% and 99.99% availability. Our results
also demonstrate that storing the soft state in a database achieves
better performability than storing it in main memory, even when
the state is efficiently replicated. Based on our results, weconclude
that service designers need to provision the cluster and balance the
load with availability and cost, as well as performance, in mind.

1 Introduction

Popular Internet services frequently rely on clusters of commod-
ity computers as their supporting infrastructure [6]. These services
must exhibit several characteristics, including high performance,
scalability, and availability. The performance and scalability of
cluster-based servers have been studied extensively in theliterature,
e.g. [3, 6, 8]. In contrast, understanding designs for availability, be-
havior during component faults, and the relationship between per-
formance and availability of these servers have received much less
attention. In particular, no previous work that we are awareof has
quantified the relationship between state maintenance strategies and
the performance and availability of complex, multi-tier services. In
fact, the studies that addressed state maintenance in Internet ser-
vices (e.g., [13, 19]) focused solely on demonstrating performance
effects resulting from a node crash and subsequent recovery.

Given the limitations of the previous work, in this paper we
quantify the performance, availability, and combinedperformabil-
ity of four maintenance strategies forsoft state (i.e., state that can
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be reconstructed, either automatically or with user help) in the pres-
ence of an extensive fault load. Three of the maintenance strategies
arestatefulin that the servers maintain the soft state of all clients.
In the other strategy, the soft state associated with each client is
kept encrypted at the client machine and is transferred between the
client and the server cluster along with each request (and, possibly,
reply). For this reason, we refer to this strategy assoft-statelessor
simply stateless.

We study these strategies in the context of two multi-tier ser-
vices, an on-line book store and an auction service. These ser-
vices are organized into three tiers of servers: Web, application,
and database servers. Their soft state is comprised mostly by the
contents of shopping carts (book store) and the auctions of interest
to the clients (auction). Any error that causes the soft state to be
lost or become unreachable typically forces each client to repeat
several requests to re-create the state. The hard/persistent state of
these applications, such as the number of stocked copies of abook
or the highest bid for an item, is always maintained at a database
server, regardless of the soft state maintenance approach.

To quantify the performance, availability, and performability of
these services, we use an extension of the 2-phased quantification
methodology that we proposed in [24]. In the first phase of our
methodology, the service performance is benchmarked in thepres-
ence and absence of (injected) faults. In the second phase, an
analytical model is used to combine an expected fault load, mea-
surements from the first phase, and parameters of the surrounding
environment to predict availability. Finally, service performance
and availability are combined into two performability metrics, one
based on service throughput and the other on service latency.

Our performance results show that keeping the soft state in a
database causes significant performance degradation compared to
other stateful strategies and the stateless system for highserver
loads. For the auction service, the throughput degradationis highest
at 27%. In terms of availability, all strategies achieve only 99.9%
(“3 nines”) or 99.99% (“4 nines”) for both services, depending on
whether throughput or latency is the metric of interest. In fact, our
results clearly isolate the impact of a large set of faults onunavail-
ability. Unexpectedly, faults in the Web server tier causedsignifi-
cant unavailability for all strategies in terms of both throughput and
latency. Overall, storing the soft state in a database compares fa-
vorably against storing it in main memory, even when the state is
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efficiently replicated, as the former strategy reduces unavailability
by a larger factor than it degrades performance. As a result,we
find that the database strategy achieves the best performability for
both services. This is also a surprising result in light of recent re-
search suggesting (qualitatively) that storing state in main memory
with efficient replication would lead to better performancewith the
same or better availability.

The key lesson from our experiments is that offloading the bot-
tleneck tier improves performance but may also hurt availability,
if any other tier loses its ability to tolerate faults efficiently. The
common practice of over-provisioning all tiers achieves high per-
formance and availability but at high hardware and maintenance
costs. Based on this lesson, we conclude that service designers
need to provision and balance the load across the cluster tiers with
availability, cost, as well as performance, in mind. Thus, in future
work, we plan to develop a framework foravailability-aware pro-
visioning and load balancingof server clusters.

In summary, we make the following contributions:

• We extend our quantification methodology and propose new
availability and performability metrics.In its first incarna-
tion, our methodology assumed that service requests were in-
dependent, i.e. the loss of a request had no impact on future
requests seen by the server. Also, our availability and per-
formability metrics only reflected performance and availabil-
ity from the viewpoint of service throughput. Here, we extend
our availability model to consider client sessions, where sets
of requests are inter-related and so the failure of a request
impacts the future requests coming from the same client. Fur-
thermore, we propose additional availability and performabil-
ity metrics to reflect service behavior from a latency view-
point. Finally, and perhaps most importantly, we show that
our extended methodology is appropriate for evaluating to-
day’s complex multi-tiered services.

• We compare the behavior of four soft state maintenance ap-
proaches in two three-tier services.Previous state mainte-
nance studies focused on services that operate correctly inre-
sponse to a stateful node failure and recovery. However, the
spectrum of possible failures is much broader, including ser-
vice application crashes and hangs in multiple tiers, for ex-
ample; we assess the effect of several other failures on the
behavior of complex services. Furthermore, our quantifica-
tion of availability and performability allows for more precise
comparisons between different service designs than was pre-
viously possible.

The remainder of the paper is organized as follows. The next
section presents some background information on multi-tier ser-
vices, current approaches for maintaining soft state, and performa-
bility analysis. Section 3 describes the state maintenancestrate-
gies we study. Section 4 describes our quantification methodology.
Section 5 describes our experiments, including the two sample ser-
vices we study, our server infrastructure, and fault loads.Section 6
presents our performance, availability, and performability results.
Finally, Section 7 discusses related work and Section 8 concludes
the paper.

2 Background

Multi-tier Internet Services. The first Internet services were sup-
ported by clusters of Web servers that were mostly responsible
for serving static content (HTML files and images) and a rela-
tively small amount of dynamic content (mostly generated byCGI
scripts). In essence, they were single-tier systems placedbehind a
load-balancing switch or a round-robin DNS server.

Current Internet services are much more complex than these
first-generation services. They are now organized in multiple tiers
of clustered servers that cooperate to serve an increasing amount of
dynamic content. In fact, the processing of each dynamic request
may now have significant computing and data access requirements
that can vary greatly depending on the particular type of request.
These multi-tier services now support a multitude of e-commerce
applications, ranging from simple on-line stores to stock trading to
business-to-business commerce services.

Perhaps the most common multi-tier service architecture is
the three-tier organization, comprised of Web, application, and
database servers. The Web servers provide a front-end to theser-
vice, possibly providing an authentication and security layer in ad-
dition to serving HTML pages. The application servers implement
the application logic, whereas the database server(s) stores the core
content of the service and provides access to it with ACID seman-
tics. Some more complex three-tier architectures also include im-
age servers and/or server-side caches in the same tier as theWeb
servers. Also, the server cluster is typically placed behind two or
more devices (one device is used for fail-over purposes) that bal-
ance the load across the Web servers. For simplicity, we onlyfocus
on the basic three-tier architecture from now on.

Client requests may flow from the first to the last tier of the archi-
tecture (and back). In more detail, a client sends an HTTP request
to the service containing the appropriate URL and possibly some
parameters. The request is initially processed by the leastloaded
Web server. If the request is for a static file, the Web server can
service it immediately. If the request requires access to dynamic
content, the Web server passes it to one of the application servers.
Typically, this application server will issue a number of queries to
the database server(s) and will format the results as an HTMLpage.
This page is passed back to the original Web server, which sends it
to the client. Subsequent dynamic requests from the same client are
typically served by the same application server as discussed below.

State and State Maintenance in Services. In the context of
client/server systems, the notion of “state” is usually defined as
any data that can be affected by a client request. Modern Inter-
net services deal with two types of state: hard and soft. Hardstate
cannot be reconstructed easily or at all, so it has to be persistent
and durable. Examples of hard state are: stock information about
the available books in an on-line book store, the email messages
received by a user of an email service, and the highest bid foreach
item available in an auction service.

Accesses to hard state may or may not require full ACID seman-
tics. The first and third examples above clearly do, but the second
may not. For an email service, strong consistency might not be re-
quired: for example, it may be fine to deliver messages to a mailbox
slightly out of order. Nevertheless, all hard state is typically stored
in databases to guarantee persistence and durability.

Soft state is state that can be easily reconstructed, eitherauto-
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matically or with user help, and so does not need to be persistent.
Modern Internet services deal with a variety of soft state, such as
thread state (e.g., stack), user profiles, navigation tracking informa-
tion, the contents of multi-page HTML forms, and client session
information. Session state is particularly interesting inthat it con-
tains information about a series of sequential requests (known as a
“session”) from a single user. If the user does not access theservice
for some time (e.g., 30 minutes), the session is assumed overand
the session state is discarded. Shopping carts are the most common
example of session state.

In addition to being reconstructable, soft state typicallydoes not
require full ACID semantics. Thus, soft state is usually stored en-
tirely at the application servers or divided between the application
servers and the clients themselves. More specifically, Internet ser-
vices employ some combination of five basic soft state maintenance
techniques [25]: client-side cookies, parameters in URLs,hidden
fields of HTML forms, “session objects,” or custom database solu-
tions. Cookies are usually used to store session identification infor-
mation and other small pieces of client-related soft state.URL pa-
rameters can only store a small amount of state since Web browsers
limit the length of the URLs. Using the hidden fields of HTML
forms requires browsing to be done solely through POST requests
and complicates application development since the forms must con-
tain hidden fields for all possible data. Most modern application
server technologies (e.g., ASP, Servlets/JSP) also allow soft state to
be stored in session objects, i.e., in-memory data structures specif-
ically designed to store session soft state. When the service imple-
ments session objects, all dynamic requests belonging to the same
session need to be processed by the same application server,thus re-
stricting load balancing. Furthermore, session objects can threaten
scalability due to memory constraints. The last option is toemploy
a customized state engine using the database for storage. However,
this approach may degrade performance and scalability since the
database can often be the bottleneck that is difficult to scale.

Performability Analysis. Most of the previous work on performa-
bility, which combines performance and availability, centers around
models which capture expected performance in the presence of
faults in a stochastic framework. For example, Smithet al. [31]
construct a Markovian reward model representing the evolution of
a multiprocessor system through states with different setsof oper-
ational components. Each state is associated with a reward,i.e. a
performance measure such as throughput or latency. In this con-
text, performability is defined as the distribution of the accumu-
lated reward over time. This distribution allows system designers
to explore characteristics of the system, such as the probability of
completing a certain amount of work within a period of time. These
analyses are usually performed analytically.

Unfortunately, such stochastic modeling approaches are often
extremely difficult to apply because they require a detailedun-
derstanding of the system and the parameterization of numerous
low-level probabilistic state transitions and the rewardsassociated
with individual states. Furthermore, current performability metrics
do not adequately capture the very high cost of unavailability (1
- availability) to today’s services [26]. In particular, two different
systems can exhibit similar expected performance in the presence
of faults despite having substantially different unavailabilities. The
root cause of this effect is that similar availabilities hide significant
differences in unavailability. For example, 99% and 99.9% avail-

abilities differ by only 1%, whereas the corresponding unavailabil-
ities (1% and 0.1%, respectively) differ by an order of magnitude.

The performability analysis we proposed in [24] and extend here
departs from these traditional approaches in that it relieson actual
fault-injection experiments and simple linear availability models,
and introduces simple performability metrics that penalize designs
heavily for their unavailability.

3 State Maintenance Strategies

We now describe and qualitatively compare the four state mainte-
nance strategies, which we call Standard, DB State, 2nd-tier Repli-
cation, and Stateless. Standard and DB State are the commonly
deployed approaches in today’s services, taking the opposite ap-
proaches of storing soft state in the application servers vs. storing
it in a database. The 2nd-tier Replication strategy takes aninter-
mediate position: the soft state is stored in the application servers
for performance but is replicated to increase availability. Finally,
in Stateless each client’s soft state is stored entirely at the client,
off-loading the responsibility for state availability to the clients.

Standard. As already mentioned, in the Standard approach, each
client’s soft state is stored at an application server as a memory
object that is tied to the server’s session control mechanism.

The major advantages of Standard are scalability and implemen-
tation simplicity and flexibility. With respect to scalability, it is
easy to scale the number of application servers to meet specific per-
formance goals. With respect to implementation, Standard is easily
implementable using today’s dynamic-content technologies such as
PHP or Servlets/JSP. These technologies provide the necessary in-
frastructure for handling sessions and allow service-specific state to
be attached to sessions. Furthermore, it is often easier to evolve the
soft state data structure and code in this strategy than it isto change
the data model when the soft state is stored in a database.

The main drawback of this approach is its potentially low avail-
ability. When an application server fails, all sessions maintained
by the failed server and their accompanying states are lost.This
can impact both service performance and availability. Performance
may suffer because the affected clients may need to re-create their
soft state by re-submitting requests that have already beenpro-
cessed. Availability is affected because the loss of state is a visible
failure that may in fact degrade user satisfaction.

DB State. DB State uses a conservative approach to storing soft
state, treating such state as regular database records thatare main-
tained with full ACID properties.

The advantages of this approach are two-fold. First, it is not
always easy to partition the state into soft and hard state. Conser-
vatively treating all state as hard state can reduce the service design
and implementation time. Second, this approach should provide the
best availability, since state is stored on what is typically the most
reliable/available (and expensive) component of the service.

The disadvantages, on the other hand, include the potentialloss
of performance and scalability, as well as flexibility for evolving the
service. Maintaining soft state in the database means that the ser-
vice is maintaining stronger consistency semantics than are needed
for the data, increasing the load on the service and decreasing par-
allelism. More critically, this migration of load from the applica-
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Strategy Location of State Replication Availability Performance
Standard Application servers No Loss of state with application serverFast and scalable
DB State Database servers No Database servers are most reliable Performance of database
2nd-tier Repl. Application servers Yes Loss of state is rare Replica coherence
Stateless Clients No Loss of state with client Long msgs, en/decryption,

flexible load balancing

Table 1:Summary of the characteristics of the different strategies.

tion servers to the database may make the database the performance
bottleneck; this is undesirable because scaling the database is often
difficult and human-intensive. Finally, any modification tothe soft
state structure now involves modifying the database data model,
which can also be a difficult task.

2nd-Tier Replication. To explore a mid-point between the Stan-
dard and DB State approaches, we implemented a replication
scheme similar to [14], where the soft state of each session is repli-
cated on two application servers. When a session is started on some
application serverA, it chooses a peer serverB (in round-robin fash-
ion) to hold a backup replica of the new session’s soft state.The
requests associated with the session are only sent toA, which is
responsible for updating the state onB. If A fails, the failure is
detected by the Web servers, which start routing the requests that
would be going toA to B. WhenA comes back up, it re-establishes
its TCP connections with the other servers and then can take on new
sessions. In addition, if any of the sessions thatA was handling be-
fore its failure are still active,A resumes its role as primary server
for them. In contrast, ifB fails, the updates that would be sent to it
are simply lost. WhenB comes back up, it re-establishes its con-
nections with the other servers and can take on new sessions.It also
resumes its role as backup replica for any sessions that remain from
before its failure.

The details of the replication of the soft state are as follows:
whenA fields a request that causes the soft state to change, after
all changes have been made but beforeA completes the request and
replies to the Web server,A serializes its copy of the soft state and
sends it toB over a persistent TCP connection. ServerA assumes
that B has received the soft state update after its TCP write oper-
ation completes, i.e.A does not wait for an acknowledgement of
the update. This replication scheme is light weight—it onlyre-
quires the serialization and one message—and allows the service
to tolerate many common faults, such as node or application crash.
However, note that this scheme does not guarantee strong consis-
tency. In the presence of certain sequences of faults that overlap (or
occur close together), the state can be lost or revert to an older ver-
sion. Thus, this scheme favors higher performance in the common
case in exchange for weaker semantics in the presence of multiple
concurrent faults.

Stateless.Finally, we evaluate a strategy where each client stores
its soft state. Since the soft state is stored outside the server, we call
this strategysoft-statelessor simplystateless.

Each client’s soft state is stored in the form of one or more cook-
ies, where each cookie can hold up to 4KB of data. All cookies are
encrypted to ensure that only the server can modify the soft state.
(Note that the two services studied here, as well as many other ser-
vices, may not care whether the client can see/modify this state. We

are taking the conservative stance of always encrypting to evaluate
this approach under the most stringent requirement.) Thesecook-
ies are transferred in the cookie part of the header of each HTTP
request and reply. When the server receives a request, it decrypts
the attached cookies and uses them to service the request. Ifthe
server modifies the state, then it encrypts the new state and send
back the new cookies with the reply. Otherwise, the cookies do not
have to be sent back and the state is simply discarded.

Current technology imposes a few constraints on this approach:
(1) the encrypted state has to be coded to not contain characters that
are illegal in the HTTP header; (2) browsers have to be configured
to accept cookies; and (3) the size of the encrypted and encoded
state is limited to 80 KBytes (20 cookies of 4 KBytes each). This
size should be large enough for most practical purposes. Forex-
ample, one cookie is enough to store a user’s soft state in thetwo
services we study in this paper.

Encryption, encoding, and their inverse operations can either be
performed by the Web servers or by the application servers. In fact,
the best approach is probably a hybrid one, in which Web servers
take the responsibility for these operations when they are less uti-
lized than application servers and vice-versa. For simplicity, our
implementations always assign these operations to the Web servers.

The Stateless strategy has the same advantage of the Standard
and 2nd-tier Replication approaches over DB State: operations in-
volving the soft state do not involve the database server. Inaddi-
tion, it has two advantages over Standard and 2nd-tier Replication:
(1) it provides better memory scalability since stateless application
servers do not have to store soft state for all active clients; and (2)
it provides more flexible load balancing because a dynamic request
can be forwarded to any stateless application server, rather than the
application server that holds the state for the corresponding client.

The most important disadvantage of Stateless is that it doesnot
allow any soft state that spans multiple clients to be storedat the
clients. Other disadvantages include potentially higher response
time and loss of availability when clients move between multiple
machines. Response time may increase due to the overhead of
larger messages and, if necessary, en/decryption and en/decoding.
Loss of availability occurs if a client starts the session onone com-
puter and then moves to another (possibly due to a failure of the
initial machine); the state has to be explicitly re-createdor copied
from one machine to the other. This might suggest that, from the
point of view of an individual user, service availability would be
lower with the stateless architecture. However, note that in stateful
architectures the soft state is usually discarded after a period of user
inactivity (e.g., 30 minutes for session state). This meansthat the
user changing machines would also require state to be re-created,
unless the change were done “quickly enough”.

We present a summary of the characteristics of each state main-
tenance strategy in Table 1.
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Figure 1: Yield function applied to requests’ response times; for
this paper, we used T1=1 and T2=10.

4 Quantifying Performance, Availability, and
Performability

In this section we describe our extended quantification methodol-
ogy. First, we describe the baseline performance metrics weuse.
Next, we describe our availability metrics. Finally, we describe our
performability metrics.

4.1 Performance Metrics

From an Internet service perspective, characterizing the system in
terms of both throughput and response time (latency) is necessary.
From a service provider’s perspective, throughput (T ) is important
as it describes the amount of work that can be performed per unit of
time. We defineTn to be the average throughput in the absence of
faults. However, from the client’s perspective, the service latency
is a more relevant metric than throughput.

Using latency as a performance metric has two undesirable prop-
erties, however. First, its importance is not a linear function over the
range of plausible latencies. Typically, continuing to lower latency
beyond the point of human perception is not a useful improvement.
At the other end of the spectrum, returning results past the point of
human patience is not valuable either. Second, improving latency
is a decreasing function, which can be viewed as counter-intuitive.

To address these concerns, instead of latency we use a related
“yield” (or “utility”) function. We define a yield function,Y , to be
applied to each request, such that a reply that is produced quickly
is considered highly useful and a reply that is produced after too
long is useless. We assume the yield function described in Figure
1, which is similar to that of previous work [29], where a response
time of less than 1 second hasY of 1, a response time of more than
10 seconds has aY of 0, and a simple linear function describesY
when the response time is between 1 and 10 seconds. We defineYn

to be the average yield in the absence of faults.

4.2 Availability Metrics

Our approach for quantifying service availability is divided into two
phases. The first phase assesses the service’s response to one fault
at a time. The second phase combines these responses as a function
of the expected arrivals of each fault type, i.e. the fault load. Below,
we discuss each of these phases in turn.

Throughput

CBAPhase

2. Detect fault

(not detected)

5. Server stabilizes

6. Operator Reset

4. Component recovers

Events

3. Server stabilizes

7. All components back up

Time

8. Normal operation

D E F G

1. Component fault occurs
5 6 71 2 3 4 8

Figure 2:The 7-stage piece-wise linear template specified by our
methodology.

4.2.1 Phase 1: Characterizing Service Behavior Under
Single-Fault Fault Loads

In this phase, the evaluator first defines the set of all possible faults
that can occur while the service is running. Then, the evaluator
describes the system’s response to a single fault of each type by in-
jecting the fault, measuring the system’s behavior during the fault,
and fitting the results to a general 7-stage piece-wise linear tem-
plate.

Figure 2 illustrates our 7-stage template. Time is shown on the
X-axis and performance, in this case throughput, is shown onthe
Y-axis. The template starts with the occurrence of a fault when the
system is running fault-free. Stage A models the degraded through-
put or yield delivered by the system from the time when an error is
triggered because of a component fault to when the system detects
the error. Stage B models the transient performance delivered as
the system reconfigures to account for the error. We model perfor-
mance during this transient period as the average deliveredperfor-
mance for the period. After the system stabilizes, performance will
likely remain at a degraded level because the faulty component has
not yet recovered, been repaired or replaced. Stage C modelsthis
degraded performance regime. Stage D models the transient per-
formance after the component recovers. After D, while the system
is now back up with all of its components, the application maystill
not be able to achieve its peak performance (e.g., it was not able
to fully re-integrate the newly repaired component). Thus,stage E
models this period of stable but suboptimal performance. Finally,
stage F represents throughput or yield delivered while the operator
resets the service, whereas stage G represents the transient perfor-
mance immediately after reset.

For each stage, we need: (i) the average throughput or yield de-
livered during that stage, and (ii) the length of time that the system
will remain in that stage. The first is always a measured quantity.
In the throughput case, care should be taken to disregard requests
that are satisfied but take longer than the maximum response time
the user would be willing to wait (10 seconds). The second param-
eter may be an assumed environmental value that is supplied by
the evaluators. For example, the time that a service will remain in
stage B is typically measured; the time for stages D + E is typically
a supplied parameter. In phase 1, the evaluator measures thetimes
of stages that are not dependent on assumed environmental values,
leaving the remaining times as parameters for phase 2. In essence,
in phase 1 the evaluator derives all measurements necessaryfor the
most general instantiation of the 7-stage template for eachfault.
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With respect to the fault injection, the service must have com-
pletely recovered from a fault (or have been restarted) before the
next one is injected. Further, each fault should last long enough to
actually trigger an error and cause the service to exhibit all stages in
the 7-stage template unless the service does not exhibit some of the
stages for the particular fault. For example, if there are nowarming
effects, then stages B, D, and G would not exist. In these cases, the
evaluator must use his/her understanding of the service to correctly
determine which stages are missing and set their times to 0.

4.2.2 Phase 2: Modeling Performance and Availability
Under Expected Fault Loads

In the second phase of the methodology, the evaluator uses anan-
alytical model to compute the expected average performanceand
availability, combining the service’s behavior under normal opera-
tion, the behavior during component faults, and the rates offault
(mean time to failure, MTTF) and repair (mean time to repair,
MTTR) of each component. To simplify the analysis, we assume
that faults of different components are not correlated, faults trig-
ger the corresponding errors immediately, and faults “queue at the
system” so that only a single fault is in effect at any point intime.
These assumptions allow us to add together the various fractions
of time spent in degraded modes given a 7-stage template for each
fault type gathered in phase 1.

If Pn is the service’s performance under normal operation, (i.e.,
Tn or Yn), c the faulty component,MTTFc the mean time to fail-
ure of componentc, P s

c the average performance of each stages in
Figure 2 when this fault occurs,Ds

c is the duration of each stage,Fc

the average number of user sessions affected by the fault ofc, and
Rc the average number of requests required to re-create the soft
state of each session, our model leads to the following equations
for average performance in the presence of faults (Pd) and average
delivered availability (Ad).

For throughput performance:

Pd = (1 −

∑

c

Wc)Pn +
∑

c

(

G∑

s=A

(
Ds

c

MTTFc

P s

c ) −
FcRc

MTTFc

)

For yield performance:

Pd = (1 −

∑

c

Wc)Pn +
∑

c

(

G∑

s=A

(
Ds

c

MTTFc

P s

c ))

Ad =
Pd

Pn

whereWc = (
∑

G

s=A
Ds

c)/MTTFc. Intuitively, Wc is the ex-
pected fraction of the time during which the system operates
in the presence of faultc. (The denominator ofWc is just
MTTFc instead ofMTTFc + MTTRc because, when a com-
ponent fails, another fault could arrive and “queue” at the com-
ponent. The impact of this assumption is that we compute the
fraction of downtime asMTTR/MTTF , not as the more typical
MTTR/(MTTF + MTTR). In practice, becauseMTTF >>
MTTR, the numerical impact of this difference in assumptions is
minimal.) Thus, the(1 −

∑
c
Wc)Pn factor above computes the

expected performance when the system is free of any fault, whereas

the
∑

G

s=A
(P s

c Ds
c/MTTFc) factor computes the expected perfor-

mance when the system is operating with a single fault of typec.
TheFcRc/MTTFc factor represents the sets of requests that will
need to be re-issued as a result of this type of fault. The average de-
livered availability,Pd/Pn, computes the fraction of the fault-free
performance that is delivered in the presence of faults. Theaverage
delivered unavailability,Ud, can then be computed as1 − Ad.

Using this model, we can quantify availability and unavailabil-
ity assuming either throughput or yield as the performance met-
ric. In fact, these computations typically lead to different absolute
results. Intuitively, the throughput-based unavailability is the per-
centage of requests that are not serviced successfully as a result of
faults, whereas the yield-based unavailability is the percentage de-
viation in yield due to faults. The key is that the service designer
or evaluator can select the metric to consider first depending on the
aspect of the system that he/she wants to emphasize more strongly.

4.2.3 Correlated Faults

Our availability quantification methodology as presented thus far
assumes that faults do not overlap. We believe that the likelihood
of overlapping faults for realistic fault rates is negligible, unless
faults are correlated.

The methodology can easily be extended to consider correlated
faults. The key observation is that a set of correlated faults can be
treated as a single fault in terms of the resulting service behavior.
Thus, in phase 1 of the methodology, the evaluator needs to define
the sets of correlated faults that can be expected and injectthose
sets one at a time to observe the system’s response. It is possible
that the response will deviate from our 7-stage template. However,
it is enough to determine the entire loss in performance as a re-
sult of the correlated faults; all we lose is the ability to evaluate
“what-if” scenarios where we change the duration or performance
of different stages independently. In phase 2, we can then operate
with the performance losses (from individualandcorrelated faults)
and MTTFs using a model similar to that described in the previous
subsection.

We do not consider correlated faults further in this paper, due to
the limited amount of publicly available data on such faults.

4.3 Performability Metrics

Having presented our approach for computing performance and
availability, we now present a performability metric that combines
these measures into a single number. The performability number
can be used as a scoring function to rank different service designs.

Again, the problem with standard performability metrics orPd

is that they may hide substantial differences in unavailability. Thus,
we define performability as the baseline performance (i.e.,the ser-
vice performance in the absence of faults) scaled by an unavailabil-
ity penalty factor between 0 and 1.

Performability = Pn × Penalty

The penalty factor is adjustable, since different systems may
place different importance on unavailability. Specifically, we adjust
the delivered unavailabilityUd that we computed above by incor-
porating anideal unavailabilityfactor, such that there is no penalty
if the system meets this target:
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Penalty =
Ideal Unavailability

Delivered Unavailability
=

Ui

Ud

The ideal unavailability is selected by the service designer or
evaluator and should be different than 0. A reasonable choice of
ideal throughput-based unavailability may be 0.00001 (0.001%),
which means that the ideal throughput-basedavailability is 5 nines.
A reasonable choice of ideal yield-based unavailability may be 0.01
(1%), which means that we are willing to accept an increase in
latency of up to roughly 10%.

Further, the delivered unavailability should not be lower than
the ideal unavailability. For yield, the combination of these two
requirements can be a problem. The reason is that response time
degradation due to faults may not generate a change in yield.For
example, it may happen that all response times of a service are very
short under normal operation, leading to an yield of 1 as in Figure
1. Under the fault load of interest, these times may be degraded
but remain classified as having an yield of 1, simply because they
remain less than T1 seconds. This would mean that the system has
0 yield-based unavailability, which is unlikely but not impossible.
To eliminate this corner case, we can simply assume the penalty
factor to be 1 when the yield-based unavailability is 0.

Overall, we argue that our metrics are intuitive and simple mea-
sures for performability because they scale linearly to both perfor-
mance (be it throughput or yield) and unavailability. Two systems
are equal if and only if they trade off equal percentages of perfor-
mance and unavailability.

5 Methodology

5.1 Services

We study two multi-tier services, an on-line bookstore and an auc-
tion service. The bookstore is modeled after the TPC-W standard
benchmark for e-commerce systems [32], whereas the auctionis
modeled after EBay. The code for both services is publicly avail-
able from the DynaServer project [27] at Rice University. Inthe
next few paragraphs we describe these services and the modifica-
tions we made to improve them in more detail.

Original Services. The bookstore implements the functionality
in TPC-W that affects performance [1], including transactional
support. All persistent data, except for images, is stored in the
database. The database contains eight tables, including tables for
customers, orders, items, and authors. The shopping cart isalso
stored in the database. The 14 interactions with the servicecan be
either read-only or cause the database to be updated. The read-only
interactions involve accesses to the home page, listing of new books
and best sellers, requests for product detail, and searches. The read-
write interactions include user registration, updates to the shopping
cart, and purchases.

The auction service implements selling, browsing, and bid-
ding [1]. There are also three kinds of user sessions: visitor, buyer,
and seller. The database stores seven tables, including tables for
users, items, bids, and categories. As an optimization, theitems
table is split into new and old items. The vast majority of requests
access new items. We created an extra table to store the list of

auctioned items a user tracks during his/her navigation. There can
be 26 interactions with the service, the most important of which
involve browsing items, bidding, and buying or selling items.

Thus, the soft state of these services is comprised essentially
by the contents of shopping carts (bookstore) and the auctions of
interest to users (auction). Any error that causes the soft state to be
lost or become unreachable may force each client to repeat several
requests to re-create the state.

The services are organized into three tiers of servers: Web,appli-
cation, and database tiers. For each tier, they use the Apache Web
server (version 1.3.27), the Tomcat servlet server (version 4.1.18),
and the MySQL relational database (version 4.12), respectively.
The first and second tiers are comprised of multiple nodes, whereas
the third tier involves a single node running the database. (To be
realistic, in our experiments the database node is the fastest and
most reliable machine in the cluster.) The service requestsare re-
ceived by the Web servers and may flow towards the second and
third tiers. The replies flow through the same path in the reverse
direction. Each Web server keeps track of the requests it sends to
the application servers. It also tries to balance the load onthese
servers, according to its own outstanding-request information.

A client emulator (also from Rice) is used to exercise the ser-
vices [1]. The workload consists of a number of concurrent clients
that each repeatedly open sessions with the service being exercised.
Each client repeatedly issues a request, receives and parses the re-
ply, “thinks” for a while, and follows a link contained in thereply.
A user-defined Markov model determines which link to follow.

Modifications. We made a few modifications to the services, in
order to boost their performance and adjust their design to more
standardized practices.

First, we used a different table type for our databases. The
original implementations used a performance-optimized table type
(MyISAM) that does not provide full ACID properties and relies
on single-query atomic operations to guarantee correctness. We
switched to the InnoDB table type, which provides all these prop-
erties, at the cost of lower performance. To counter the potential
degradation in performance, we profiled the queries of both ser-
vices and tuned the database accordingly. By adding extra indexes
for specific queries, inverted lists to handle pattern matching, and
caching frequently accessed data, we were able to improve the per-
formance of the database by about 75% compared to the original
implementations, even though we now use the ACID-compliantta-
ble type.

Second, we modified the services to implement the state mainte-
nance strategies that do not store soft state in the database. For the
stateless strategy, we implemented en/decryption and en/decoding
at the Web server tier using the DES and Base64 algorithms, re-
spectively. For Standard and 2nd-tier replication, we changed the
original implementations to use the session management infrastruc-
ture provided by the Tomcat application servers to maintainthe ser-
vices’ soft states. (The hard/persistent state of the services is always
maintained in the database server, regardless of the soft state main-
tenance approach.) These new implementations affect the request
forwarding scheme in the services. On the first request of a session,
the Web server selects the application server to handle the session
in round-robin fashion. Other requests belonging to the same ses-
sion are sent to the same application server. In the other strategies,
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the Web server always selects an application server in round-robin
fashion.

Third, we changed the node failure (or unreachability) detection
mechanism. Originally, the detection was based on TCP timers,
which take unnecessarily long to timeout for clusters, so weim-
plemented a heartbeat service on the first and second tiers. Nodes
broadcast one heartbeat per second. A nodeA deems another node
B to be down (or unreachable) if it fails to receive a heartbeatfrom
B for 10 consecutive seconds. WhenB becomes available again, it
is re-introduced into the service.

Finally, we changed the client emulator in two major ways: (1)
we force the emulator to generate a constant workload, even when
the service takes long to respond to requests; and (2) to makeexper-
iments more repeatable, we now drive the emulator with traces. The
requests in the traces are produced by the old version of the emu-
lator. A few other modifications were made to implement timeouts
and “cookie” support for the stateless strategy.

5.2 Server Setup and Workloads

Our experiments with the services use a 1.9-GHz Pentium IV-based
machine with a 15K rpm SCSI disk and a Gigabit Ethernet net-
work interface as the database server. The other two tiers are im-
plemented by a set of 1.2-GHz Celeron-based PCs, each with 512
MBytes of RAM and a Gigabit Ethernet interface. All nodes run
Linux.

We run the clients on 4 other PCs connected to the same Giga-
bit Ethernet switch as the server cluster. In our experiments with
the bookstore, the database contains 10000 items. We exercise the
bookstore with a “shopping mix” of requests, where 20% of the
requests are read-write. The auction service involves 65784 new
items and 1M old items with an average 10 bids per item. For the
auction, we use a “bidding mix” of requests, which contains 15%
read-write requests. We set the “think” time between requests to
0.5 second to reduce the number of client nodes required. A client
request times out after 10 seconds without a reply.

For the bookstore, we use 8 PC nodes: 2 nodes to run Web
servers and 6 nodes to run application servers. For the auction,
we use 7 PC nodes: 2 Web-server nodes and 5 application-server
nodes. The provisioning of the first and second tiers was defined
so that each tier has the smallest number of nodes that still leaves
the database as the performance bottleneck. In our fault-injection
experiments, we set the offered load to each service at 90% ofthe
maximum throughput of the database server for the service. With
these settings, no node besides the database node is more than 80%
utilized (in the absence of faults) for the workloads we consider.
Thus, these settings represent the common case of having highly
utilized bottleneck resources and plenty of extra capacityelsewhere.

5.3 Fault Loads

We use Mendosus [18] to inject the fault load shown in Table 2 into
live service executions. The table lists the Mean Time to Failure
(MTTF) and the Mean Time to Repair (MTTR) of each compo-
nent. These rates are derived from previous works that empirically
observed the fault rates of many systems [4, 15, 17, 20, 23]. These
generic faults can be caused by a wide variety of reasons for areal
system; for example, an operator accidentally pulling out the wrong

Fault MTTF MTTR
Internal link down 6 months 3 minutes
SCSI timeout 1 year 1 hour
Node crash 2 weeks 3 minutes
Node freeze 2 weeks 3 minutes
Application crash 2 months 3 minutes
Application hang 2 months 3 minutes
Switch hang* 1 year 30 seconds
Database crash* 2 years 30 seconds

Table 2:Faults and their MTTFs and MTTRs per component. Ap-
plication hang and crash together represent an MTTF of 1 month
for application faults. *Switch and database faults are notinjected;
they are captured in the modeling during phase 2.

network cable would lead to a link fault. Likewise, many applica-
tion bugs can lead to the crash of an application process. We cannot
focus on all potential causes because this set is too large. Rather,
we focus on the class of faults as observed by the system, using
an MTTF that covers all potential causes of a particular fault. The
services can recover automatically to normal performance after the
faults are repaired, i.e. operator intervention in never required.

These faults are injected into the first and second tiers of nodes.
Because we do not have a spare network switch and a replicated
database, we cannot inject faults of these components. Instead, we
only model these faults. Specifically, we assume that switches fail
with an MTTF of 1 year and it takes 30 seconds to fail-over to a
spare switch, as described in [9]. During these 30 seconds, the ser-
vice is assumed to be completely unavailable. Similarly, weassume
that the database server fails with an MTTF of 2 years and the fail-
over to a hot spare takes 30 seconds. During these 30 seconds,the
database server is completely unavailable, which in turn causes the
entire service to quickly become unavailable as well. We assume
that the performance overhead of keeping a hot spare database is
negligible for our workloads, as demonstrated in [2].

6 Experimental Results

In this section, we first compare the performance of the four state
maintenance strategies. Then, we compare their unavailability with
respect to our injected fault load. Finally, we compare their com-
bined performability.

6.1 Performance

Figures 3 and 4 plot service throughput and yield, respectively, for
each of the strategies, as a function of request rate. These results
show that there is relatively little difference in performance be-
tween the strategies, except that DB State saturates much earlier
in both services. The maximum throughputs of DB State are 27%
and 18% lower than those of Standard for the auction and book-
store services, respectively. In addition, DB State achieves yields
that are up to 30% lower than those of Standard (auction). Clearly,
DB State is outperformed by the other strategies because it main-
tains the soft state in the tier that is already the system bottleneck.
The reason the differences in performance are smaller for the book-
store than the auction is that the percentage of accesses to the soft
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Figure 3:Throughput vs. request rate for the (a) auction and (b) bookstore.
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Figure 4:Average yield vs. request rate for the (a) auction and (b) bookstore.

state is also smaller; in the bookstore only 27% of the requests ac-
cess the soft state, whereas almost 100% of the request access the
soft state in the auction.

6.2 Availability

Figures 5 and 6 show the unavailability of the four strategies with
respect to throughput and yield, respectively. Each bar includes the
contributions of the different fault types injected at different tiers.
The unavailabilities associated with each fault type are stacked in
the same order as the legends.

These figures show that, for both throughput and yield, overall
availability is somewhat better than 99.9%, or three nines,with DB
State achieving close to 99.99%, or four nines. Either Stateless
(auction) or Standard (bookstore) exhibit the highest unavailability
in terms of both throughput and yield.

These results also demonstrate that node and application faults
are the largest contributors to unavailability, as one would expect,
since these faults occur most frequently. Interestingly, in all strate-
gies other than DB State, faults injected into the Web servers ac-
counted for more than 50% of the unavailability. The reason is that
there are only 2 nodes in the first tier so that when one of them
becomes unavailable, the service loses 50% of its processing ca-
pacity in this tier. In contrast, when a node fails in the second tier,
only 17-20% of the processing capacity is lost. (Of course, switch

and database failures are catastrophic faults in that 100% of the pro-
cessing capacity is lost; however, these failures have a lower impact
on unavailability because they occur much less frequently and their
fail-over is fast.)

Finally, note that node and application faults (especiallynode
crash and freeze) in both tiers degrade the availability of Stateless
consistently. The reason is that Stateless heavily utilizes both tiers,
with en/decryption and en/decoding on the first tier and state object
serialization and update on the second tier.

6.3 Performability

Figures 7 and 8 show service performability for the four strategies
with respect to throughput and yield, respectively. For each strat-
egy, we show the performability when faults are injected into both
the first and second tiers, as compared to when faults are injected
only into the second tier. Note however that internal switchand
database faults are considered in all cases.

These figures show that DB State achieves the best performabil-
ity for both services when injecting faults into both first and sec-
ond tiers. This is a very interesting result since, if we wereonly
considering performance, we would be highly motivated to move
the maintenance of soft state out of the database as shown in Sec-
tion 6.1. However, our results show that leaving excess capacity in
the first two tiers, particularly in the first tier, where there may be
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Figure 5:Throughput-based unavailability for the (a) auction and (b) bookstore. Each bar shows the contribution of each fault type when
injected at different tiers. The contributions are stackedin the same order as the legends; the horizontal line across each bar separates the
1st and 2nd-tier faults.
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Figure 6:Yield-based unavailability for the (a) auction and (b) bookstore. Each bar shows the contribution of each fault type when injected
at different tiers. The contributions are stacked in the same order as the legends; the horizontal line across each bar separates the 1st and
2nd-tier faults.

the least amount of redundancy to tolerate faults, is quite important
in the presence of faults. Thus, optimizing the system by moving
functionality out of the database has a cost in availability, and there-
fore performability, because when serving a higher throughput the
system has less spare capacity to tolerate faults.

It is also interesting to note that if we only consider faultsin
the second tier, 2nd-Tier Replication exhibits higher performability
than DB State in all but one case, yield-based performability for the
auction. (The reason for this exception is that the fault-free yield of
DB State is already lower at the load we offer to this strategy.) This
is consistent with intuition, since the 2nd-tier replication strategy is
specifically designed to tolerate such faults through its replication.

6.4 Discussion

Our experiments were performed on small clusters of 8 (bookstore)
and 7 (auction) nodes. Scaling the systems to handle heavierloads
would require database replication as in [2]. Under the common
provisioning scheme we assume (section 5.2), we expect to see sim-
ilar trends for large clusters with replicated databases asthose re-
ported here. The reason is two-fold: the database tier wouldstill be
the performance bottleneck and the resource demand for the other
tiers would be lowest for DB State.

Generalizing our results, we find that service provisioningand
load balancing have to consider their associated availability impli-
cations. For example, an availability-oblivious load distribution ap-
proach may cause lower unavailability and performability.Perfor-
mance optimizations, such as offloading of bottleneck tiers, need
to consider two key issues: the availability properties of the tiers
that will receive the load and their ability to handle faultsunder
the higher load. In particular, designers may want an unbalanced
system, in which they heavily load highly available components
and leave more spare capacity for components that are likelyto
fail more often. Thus, service designers must consider these two
opposing forces to achieve the best performability. By consider-
ing these forces explicitly, designers will be able to avoidtoday’s
common practice of achieving high performance and availability
through substantial over-provisioning and its associatedhardware
and maintenance costs.

7 Related Work

State Maintenance.Modern Internet services require high perfor-
mance, scalability, and availability, among other important charac-
teristics. To achieve these characteristics, several research projects
and commercial products have moved away from keeping all ser-
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Figure 7: Throughput-based performability for the (a) auction and (b) bookstore. In each pair of bars, the one on the left quantifies
performability when faults can occur on both the first and second tiers, whereas the bar on the right only includes faults on the second tier.
Switch and database faults are considered in all cases.
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Figure 8:Yield-based performability for the (a) auction and (b) bookstore. In each pair of bars, the one on the left quantifyies performa-
bility when faults can occur on both the first and second tiers, whereas the bar on the right only includes faults on the second tier. Switch
and database faults are considered in all cases.

vice state using transactions and databases with ACID proper-
ties [12], which typically favor strong consistency over perfor-
mance and availability. For example, a few systems [10, 13, 19]
have proposed in-core data management layers that provide aflexi-
ble and efficient access to (soft and/or hard) state with weaker con-
sistency semantics. High concurrency and availability areensured
by managing multiple replicas of data. The Porcupine [28] and
Neptune [29] systems pursued similar goals.

Industrial Internet service platforms, such as the IBM Websphere
[16] and the BEA WebLogic [5], support various state maintenance
schemes for both hard and soft state, either through EJB interfaces
or other proprietary mechanisms. The soft state is usually repli-
cated using the primary-secondary scheme, and copies are kept co-
herent using strict two-phase commit. ASP.NET [22] also allows
on-demand backing up of state to an independent node called the
StateServer. All these platforms also support database persistence
and client-side cookies for minimal session state.

Unfortunately, these projects and products never really quan-
tified the availability aspects of their proposed state maintenance
strategies. Their focus was always on demonstrating high perfor-
mance, tolerance to failures, and correct behavior on recoveries.
Furthermore, their experiments always limited to the tier where the
state was kept.

Our work extends these previous works by quantifying the
performance, availability, and performability of severalsoft state
maintenance strategies that share the same concepts. This quan-
tification shows, for example, that the major source of unavail-
ability may not really the tier where the state is kept. Moreover,
it shows that keeping the soft state in the database actuallyleads
to higher availability when the database has a hot spare [2].In
terms of performance, we indeed observe that storing the soft state
in the database produces lower throughput and yield under high
load. However, we demonstrate that the performance degradation
of the database scheme is actually outweighed by its high availabil-
ity, when performability is considered.

Availability and Performability. Our work also extends the pre-
vious research on the evaluation and modeling of availability and
performability. In particular, the quantification methodology we
present here is an extension of the approach we proposed in [24].
The extension involved an additional performance metric, anew
model for quantifying availability, and new availability and per-
formability metrics.

Our quantification approach differs from other previous studies
in that we focus on multi-tiered, cluster-based services, and use a
completely different set of metrics to evaluate availability and per-
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formability. Perhaps most similar to our work is [7], which out-
lines a methodology for benchmarking systems’ availability. Other
works have proposed robustness [30] and reliability benchmarks
[33] that quantify the degradation of system performance under
faults.

Our work provides a formal but simple methodology to evaluate
service performability in multi-tier systems. The previous work on
performability analysis [11, 21, 31] involved a rich set of stochas-
tic process models that describe system dependencies, fault like-
lihoods over time, and performance. Compared to these complex
stochastic models, our models are much simpler, and thus more ac-
cessible to practitioners. Furthermore, as we mentioned insection
2, our performability analysis relies on actual fault-injection exper-
iments and introduces simple performability metrics that penalize
service designs heavily for their unavailability.

8 Conclusions

In this paper, we quantified the performance, availability,and per-
formability of four soft state maintenance strategies in two complex
cluster-based Internet services. Using a fault injection and model-
ing methodology, we isolated the effect of different faultson the
availability of the two services. This isolation demonstrated that
most of the unavailability of the services is due to faults inthe first
tier of nodes. When comparing the different soft state maintenance
strategies, we found that storing the soft state in a database achieves
better performability than storing it in main memory, even when the
state is efficiently replicated.

The key lesson from our experiments is thatoffloading the bot-
tleneck tier certainly improves performance, but it may hurt avail-
ability by a larger factor. Service designers have to evaluate the
impact of these offloading decisions on all other tiers. In particular,
it is important to guarantee that the other tiers will be capable of tol-
erating failures efficiently, especially when they are moreprone to
failures. Unfortunately, the common practice of over-provisioning
all tiers achieves high performance and availability but athigh hard-
ware and maintenance costs. Thus, we conclude the provisioning
and load balancing of server clusters needs to consider availabil-
ity, cost, and performance explicitly. In future work, we plan to
develop a framework for availability-aware provisioning and load
balancing of server clusters.
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