State Maintenance

and its Impact on the

Performability of Multi-tiered Internet Servicés

G. Gamé&, K. Nagaraja, R. Bianchini, R

fDepartment of Computer Science

Rutgers University
Piscataway, NJ 08854-8019

. Martin’, W. Meira Jrt, and T. Nguyeh

iDepartment of Computer Science
Federal University of Minas Gerais
Belo Horizonte, Brazil

{knagaraj,ricardob,rmartin,tdnguyg@cs.rutgers.edu {gmcgama,meirg@dcc.ufmg.br

Abstract

In this paper, we evaluate the performance, availabilitgd @om-
bined performability of four soft state maintenance stygein two
multi-tier Internet services, an on-line book store and actian
service. To take soft state and service latency into accownpro-
pose an extension of our previous quantification methogolmad
novel availability and performability metrics. Among othater-
esting results, we clearly isolate the effect of differentlfs, show-
ing that the tier of Web servers is responsible for an oftenidant
fraction of the service unavailability. Overall, we find thhe ser-
vices achieve between 99.9% and 99.99% availability. Csulte
also demonstrate that storing the soft state in a databésevas
better performability than storing it in main memory, evehen
the state is efficiently replicated. Based on our resultssavelude
that service designers need to provision the cluster arahbalthe
load with availability and cost, as well as performance, indn

1 Introduction
Popular Internet services frequently rely on clusters ohiemd-
ity computers as their supporting infrastructure [6]. Tehssrvices
must exhibit several characteristics, including high perfance,
scalability, and availability. The performance and sciitstbof
cluster-based servers have been studied extensively litetregure,
e.g. [3, 6, 8]. In contrast, understanding designs for alsdity, be-
havior during component faults, and the relationship betwger-
formance and availability of these servers have receivechness
attention. In particular, no previous work that we are avaireas
quantified the relationship between state maintenandegies and
the performance and availability of complex, multi-tiensees. In
fact, the studies that addressed state maintenance imébteer-
vices (e.g., [13, 19]) focused solely on demonstratinggrerance
effects resulting from a node crash and subsequent recovery
Given the limitations of the previous work, in this paper we
quantify the performance, availability, and combirpetformabil-
ity of four maintenance strategies feoft state (i.e., state that can

*This research was partially supported by NSF grants #EI83022,
#EIA-9986046, and #CCR-0100798, and CNPg/Brazil undemtgra
#680.024/01-8 and #380.134/97-7.

be reconstructed, either automatically or with user helphé pres-
ence of an extensive fault load. Three of the maintenanategies
arestatefulin that the servers maintain the soft state of all clients.
In the other strategy, the soft state associated with eaehtdb
kept encrypted at the client machine and is transferreddmvthe
client and the server cluster along with each request (assijply,
reply). For this reason, we refer to this strategyafi-statelessr
simply stateless

We study these strategies in the context of two multi-tier se
vices, an on-line book store and an auction service. These se
vices are organized into three tiers of servers: Web, agijdic,
and database servers. Their soft state is comprised mogstlyeb
contents of shopping carts (book store) and the auctionsefast
to the clients (auction). Any error that causes the sofestatbe
lost or become unreachable typically forces each clienepeat
several requests to re-create the state. The hard/petsssate of
these applications, such as the number of stocked copiebadia
or the highest bid for an item, is always maintained at a cetab
server, regardless of the soft state maintenance approach.

To quantify the performance, availability, and perforntipiof
these services, we use an extension of the 2-phased quatitific
methodology that we proposed in [24]. In the first phase of our
methodology, the service performance is benchmarked iprire
ence and absence of (injected) faults. In the second phase, a
analytical model is used to combine an expected fault loash-m
surements from the first phase, and parameters of the sdiiraun
environment to predict availability. Finally, service f@mance
and availability are combined into two performability mes; one
based on service throughput and the other on service latency

Our performance results show that keeping the soft state in a
database causes significant performance degradation cednima
other stateful strategies and the stateless system for dagler
loads. For the auction service, the throughput degradétioighest
at 27%. In terms of availability, all strategies achieveyc®®.9%

(“3 nines”) or 99.99% (“4 nines”) for both services, deperglon
whether throughput or latency is the metric of interest.detfour
results clearly isolate the impact of a large set of faultsioavail-
ability. Unexpectedly, faults in the Web server tier causigphifi-
cant unavailability for all strategies in terms of both thgbput and
latency. Overall, storing the soft state in a database cogspfa-
vorably against storing it in main memory, even when theesisat



efficiently replicated, as the former strategy reduces aifevility 2 Background

by a larger factor than it degrades performance. As a reselt,

find that the database strategy achieves the best perfdity&dni Multi-tier Internet Services. The first Internet services were sup-
both services. This is also a surprising result in light aferet re-  ported by clusters of Web servers that were mostly resplnsib
search suggesting (qualitatively) that storing state imm@emory  for serving static content (HTML files and images) and a rela-
with efficient replication would lead to better performandéh the  tively small amount of dynamic content (mostly generatedCiB

same or better availability. scripts). In essence, they were single-tier systems plaekihd a
The key lesson from our experiments is that offloading the bot load-balancing switch or a round-robin DNS server.
tleneck tier improves performance but may also hurt aviitgb Current Internet services are much more complex than these

if any other tier loses its ability to tolerate faults effisiy. The  first-generation services. They are now organized in meltiprs
common practice of over-provisioning all tiers achieveghhper-  of clustered servers that cooperate to serve an increasiogra of
formance and availability but at high hardware and maimeaa dynamic content. In fact, the processing of each dynamioesig
costs. Based on this lesson, we conclude that service @esign may now have significant computing and data access requiteme
need to provision and balance the load across the clustemtith ~ that can vary greatly depending on the particular type ofiesty
availability, cost, as well as performance, in mind. Thasfuture These multi-tier services now support a multitude of e-caroa
work, we plan to develop a framework fawailability-aware pro-  applications, ranging from simple on-line stores to stoakling to
visioning and load balancingf server clusters. business-to-business commerce setrvices.
In summary, we make the following contributions: Perhaps the most common multi-tier service architecture is
o the three-tier organization, comprised of Web, applicgtiand
* We extend our quantification methodology and propose néwa¢apase servers. The Web servers provide a front-end &ethe
a}vallablllty and performability metrics.In .|ts first incarna- vice, possibly providing an authentication and securigietdn ad-
tion, our met_hodology assumed that service rc_equests were inyition to serving HTML pages. The application servers impet
dependent, i.e. the loss of a request had no impact on futurg,e ohpication logic, whereas the database server(gsstoe core
requests seen by the server. Also, our availability and perg,nsent of the service and provides access to it with ACIDasem
formability metrics only reflected performance and avaltab o - 5ome more complex three-tier architectures alsaiétecim-
ity from the viewpoint of service throughput. Here, we exten 50 servers and/or server-side caches in the same tier sethe
our availability m_odel to consider client sessions, whetss (o ars Also, the server cluster is typically placed behimo or
of requests are inter-related and so the failure of a requesh,,re gevices (one device is used for fail-over purposed)tak
impacts the future requests coming from the same client. Furypce the joad across the Web servers. For simplicity, wefonlys
_thermor_e, we propose adqlltlonal ave_ulablllty and perfdnrh_a on the basic three-tier architecture from now on.
ity metrics to reflect service behavior from a latency View-  cjient requests may flow from the first to the last tier of thehar
point. Finally, and perhaps most importantly, we show thatye .y re (and back). In more detail, a client sends an HTTRewtq
ouryextended methodology is appropriate for evaluating 0+, the service containing the appropriate URL and possiblyes
day's complex multi-tiered services. parameters. The request is initially processed by the leaded
e We compare the behavior of four soft state maintenance apWeb server. If the request is for a static file, the Web seraer c
proaches in two three-tier servicePrevious state mainte- service it immediately. If the request requires access twmayc
nance studies focused on services that operate correcty in content, the Web server passes it to one of the applicativerse
sponse to a stateful node failure and recovery. However, thdypically, this application server will issue a number okges to
spectrum of possible failures is much broader, including se the database server(s) and will format the results as an Hjadie.
vice application crashes and hangs in multiple tiers, for ex This page is passed back to the original Web server, whiathssén
ample; we assess the effect of several other failures on theo the client. Subsequent dynamic requests from the saem elie
behavior of complex services. Furthermore, our quantifica-typically served by the same application server as discusskw.

tion of availability and performability allows for more mise  gyate and State Maintenance in Services. In the context of
comparisons between different service designs than was pre.jiant/server systems, the notion of “state” is usually medi as

viously possible. any data that can be affected by a client request. Moderm-Inte

The remainder of the paper is organized as follows. The nexfiet services deal with two types of state: hard and soft. dtie
section presents some background information on multiste- cannot be reconstructed easily or at all, so it has to besﬂemi
vices, current approaches for maintaining soft state, mn‘[d)p’na_ and durable. Examples of hard state are: stock informatiouta
bility analysis. Section 3 describes the state maintenatrege-  the available books in an on-line book store, the email ngessa
gies we study. Section 4 describes our quantification melbgyl. ~ received by a user of an email service, and the highest bieifom
Section 5 describes our experiments, including the two tmegy-  item available in an auction service.
vices we study, our server infrastructure, and fault lo&ktion 6 Accesses to hard state may or may not require full ACID seman-
presents our performance, availability, and performgbiisults.  tics. The first and third examples above clearly do, but tiversd

Finally, Section 7 discusses related work and Section 8ladas ~ May not. For an email service, strong consistency might aseb
the paper. quired: for example, it may be fine to deliver messages to thmai

slightly out of order. Nevertheless, all hard state is tgflicstored
in databases to guarantee persistence and durability.
Soft state is state that can be easily reconstructed, eititer



matically or with user help, and so does not need to be pertgist
Modern Internet services deal with a variety of soft statiehsas
thread state (e.qg., stack), user profiles, navigation itngdkforma-
tion, the contents of multi-page HTML forms, and client sess
information. Session state is particularly interestinghiat it con-
tains information about a series of sequential requesAkras a
“session”) from a single user. If the user does not accessaihvice
for some time (e.g., 30 minutes), the session is assumedaoaker
the session state is discarded. Shopping carts are the omstan
example of session state.

In addition to being reconstructable, soft state typicdthgs not
require full ACID semantics. Thus, soft state is usuallyetioen-
tirely at the application servers or divided between thdieaon
servers and the clients themselves. More specificallyrripeteser-
vices employ some combination of five basic soft state maartee
techniques [25]: client-side cookies, parameters in URilidden
fields of HTML forms, “session objects,” or custom databade-s
tions. Cookies are usually used to store session idenidicatfor-
mation and other small pieces of client-related soft stdfeL pa-
rameters can only store a small amount of state since Welskrew
limit the length of the URLs. Using the hidden fields of HTML
forms requires browsing to be done solely through POST gque
and complicates application development since the forns oan-
tain hidden fields for all possible data. Most modern apfitica
server technologies (e.g., ASP, Servlets/JSP) also atifivgtate to
be stored in session objects, i.e., in-memory data stresspecif-
ically designed to store session soft state. When the seiviple-
ments session objects, all dynamic requests belongingetsaime
session need to be processed by the same application skuse-
stricting load balancing. Furthermore, session objeatstlegeaten
scalability due to memory constraints. The last option isrtgploy
a customized state engine using the database for storagevie
this approach may degrade performance and scalabilite shne
database can often be the bottleneck that is difficult teescal

Performability Analysis. Most of the previous work on performa-
bility, which combines performance and availability, emtaround

abilities differ by only 1%, whereas the corresponding @ilabil-
ities (1% and 0.1%, respectively) differ by an order of magpté.

The performability analysis we proposed in [24] and extesdh
departs from these traditional approaches in that it relieactual
fault-injection experiments and simple linear availdpilinodels,
and introduces simple performability metrics that peratesigns
heavily for their unavailability.

3 State Maintenance Strategies

We now describe and qualitatively compare the four stateteai
nance strategies, which we call Standard, DB State, 2ndRépli-

cation, and Stateless. Standard and DB State are the commonl

deployed approaches in today’s services, taking the ofpag-
proaches of storing soft state in the application serverstusing
it in a database. The 2nd-tier Replication strategy takemtzn-
mediate position: the soft state is stored in the applicasiervers
for performance but is replicated to increase availabilFjnally,
in Stateless each client’s soft state is stored entirelhatctient,
off-loading the responsibility for state availability tioet clients.

Standard. As already mentioned, in the Standard approach, each

client’s soft state is stored at an application server as mang
object that is tied to the server’s session control mechanis

The major advantages of Standard are scalability and inglem
tation simplicity and flexibility. With respect to scalaby it is
easy to scale the number of application servers to meetfapeei-
formance goals. With respect to implementation, Standaeadsily
implementable using today’s dynamic-content technokgieh as
PHP or Servlets/JSP. These technologies provide the rsageas
frastructure for handling sessions and allow serviceifipetate to
be attached to sessions. Furthermore, it is often easiepteessthe
soft state data structure and code in this strategy thatatisange
the data model when the soft state is stored in a database.

The main drawback of this approach is its potentially lowilava
ability. When an application server fails, all sessionsntaned

models which capture expected performance in the presehce ®Y the failed server and their accompanying states are Thsis

faults in a stochastic framework. For example, Sneittal. [31]
construct a Markovian reward model representing the elowidf

a multiprocessor system through states with different cetgper-
ational components. Each state is associated with a rewardch
performance measure such as throughput or latency. In dnis c
text, performability is defined as the distribution of theeamu-
lated reward over time. This distribution allows systemigiesrs
to explore characteristics of the system, such as the pildipais
completing a certain amount of work within a period of timée§e
analyses are usually performed analytically.

Unfortunately, such stochastic modeling approaches asn of
extremely difficult to apply because they require a detailed
derstanding of the system and the parameterization of rauser
low-level probabilistic state transitions and the rewaadsociated
with individual states. Furthermore, current performiépiinetrics
do not adequately capture the very high cost of unavaitgh(li
- availability) to today’s services [26]. In particular, avdifferent
systems can exhibit similar expected performance in theemee
of faults despite having substantially different unavailities. The
root cause of this effect is that similar availabilitieségignificant
differences in unavailability. For example, 99% and 99.9%4ila

can impact both service performance and availability. dterénce
may suffer because the affected clients may need to reectieair
soft state by re-submitting requests that have already peen
cessed. Availability is affected because the loss of stadevisible
failure that may in fact degrade user satisfaction.

DB State. DB State uses a conservative approach to storing soft

state, treating such state as regular database records¢haiain-
tained with full ACID properties.

The advantages of this approach are two-fold. First, it is no
always easy to partition the state into soft and hard states€&r-
vatively treating all state as hard state can reduce thécsetiesign
and implementation time. Second, this approach shouldgedle
best availability, since state is stored on what is typjctie most
reliable/available (and expensive) component of the servi

The disadvantages, on the other hand, include the potéog&l
of performance and scalability, as well as flexibility fooéxing the
service. Maintaining soft state in the database meansibager-
vice is maintaining stronger consistency semantics thameeded
for the data, increasing the load on the service and deageasir-
allelism. More critically, this migration of load from thepplica-



Strategy Location of State | Replication | Availability Performance

Standard Application servers No Loss of state with application server Fast and scalable

DB State Database servers No Database servers are most reliable¢ Performance of database

2nd-tier Repl.| Application servers| Yes Loss of state is rare Replica coherence

Stateless Clients No Loss of state with client Long msgs, en/decryption
flexible load balancing

Table 1:Summary of the charac

tion servers to the database may make the database thenpenfier
bottleneck; this is undesirable because scaling the de¢abaften
difficult and human-intensive. Finally, any modificationtb® soft
state structure now involves modifying the database datdeino
which can also be a difficult task.

2nd-Tier Replication. To explore a mid-point between the Stan-

teristics of the different strategies

are taking the conservative stance of always encryptingadtuate
this approach under the most stringent requirement.) Tbesk-
ies are transferred in the cookie part of the header of eachFHT
request and reply. When the server receives a request,rifgisc
the attached cookies and uses them to service the requesie If
server modifies the state, then it encrypts the new state emtl s
back the new cookies with the reply. Otherwise, the cookesat

dard and DB State approaches, we implemented a replicatioH‘,jwe to be sent back and the state is simply discarded.

scheme similar to [14], where the soft state of each sessi@pli-
cated on two application servers. When a session is stantedroe
application serveh, it chooses a peer serni(in round-robin fash-
ion) to hold a backup replica of the new session’s soft statee
requests associated with the session are only seAt wehich is
responsible for updating the state BnIf A fails, the failure is
detected by the Web servers, which start routing the regukat
would be going toA to B. WhenA comes back up, it re-establishes
its TCP connections with the other servers and then can takew
sessions. In addition, if any of the sessions thatas handling be-
fore its failure are still activeA resumes its role as primary server
for them. In contrast, iB fails, the updates that would be sent to it
are simply lost. WheB comes back up, it re-establishes its con-
nections with the other servers and can take on new sessiaiso
resumes its role as backup replica for any sessions thatmérom
before its failure.

The details of the replication of the soft state are as fadtow

Current technology imposes a few constraints on this agproa
(1) the encrypted state has to be coded to not contain ceasahat
are illegal in the HTTP header; (2) browsers have to be cordiju
to accept cookies; and (3) the size of the encrypted and edcod
state is limited to 80 KBytes (20 cookies of 4 KBytes each)isTh
size should be large enough for most practical purposes.efor
ample, one cookie is enough to store a user’s soft state itwitne
services we study in this paper.

Encryption, encoding, and their inverse operations cdreetie
performed by the Web servers or by the application servarsct,
the best approach is probably a hybrid one, in which Web serve
take the responsibility for these operations when theyess uti-
lized than application servers and vice-versa. For siripliour
implementations always assign these operations to the @ebrs.

The Stateless strategy has the same advantage of the $tandar
and 2nd-tier Replication approaches over DB State: omgrain-
volving the soft state do not involve the database serveadhi-

whenA fields a request that causes the soft state to change, aftet, it has two advantages over Standard and 2nd-tier &g

all changes have been made but befdsmmpletes the request and
replies to the Web serveh serializes its copy of the soft state and
sends it toB over a persistent TCP connection. Sereassumes
that B has received the soft state update after its TCP write ope
ation completes, i.eA does not wait for an acknowledgement of
the update. This replication scheme is light weight—it orgy
quires the serialization and one message—and allows thieser
to tolerate many common faults, such as node or applicat&shc
However, note that this scheme does not guarantee strorsiseon
tency. In the presence of certain sequences of faults tleslagp/(or
occur close together), the state can be lost or revert toder ger-
sion. Thus, this scheme favors higher performance in thexocmm
case in exchange for weaker semantics in the presence aplault
concurrent faults.

Stateless.Finally, we evaluate a strategy where each client store
its soft state. Since the soft state is stored outside tivesave call
this strategysoft-statelessr simply stateless

Each client’s soft state is stored in the form of one or mokeo
ies, where each cookie can hold up to 4KB of data. All cookies a
encrypted to ensure that only the server can modify the satfe.s
(Note that the two services studied here, as well as many séhne
vices, may not care whether the client can see/modify thte stWe

(1) it provides better memory scalability since statelggdiaation
servers do not have to store soft state for all active cljertd (2)
it provides more flexible load balancing because a dynangjeast
can be forwarded to any stateless application server,rtithe the
application server that holds the state for the correspondient.

The most important disadvantage of Stateless is that it does
allow any soft state that spans multiple clients to be stereithe
clients. Other disadvantages include potentially higlesponse
time and loss of availability when clients move between ipldt
machines.
larger messages and, if necessary, en/decryption andcenlidg.
Loss of availability occurs if a client starts the sessiorona com-
puter and then moves to another (possibly due to a failur&ief t
initial machine); the state has to be explicitly re-createdopied
drom one machine to the other. This might suggest that, frioen t
point of view of an individual user, service availability uld be
lower with the stateless architecture. However, note thatateful
architectures the soft state is usually discarded afteriagef user
inactivity (e.g., 30 minutes for session state). This mehasthe
user changing machines would also require state to be atette
unless the change were done “quickly enough”.

We present a summary of the characteristics of each state mai
tenance strategy in Table 1.

I

Response time may increase due to the overhead of



vA

»

T1 T2 RT

Figure 1: Yield function applied to requests’ response times; for
this paper, we used T1=1 and T2=10.

4 Quantifying Performance, Availability, and
Performability

In this section we describe our extended quantification aukth

ogy. First, we describe the baseline performance metricasee
Next, we describe our availability metrics. Finally, we ciéise our
performability metrics.

4.1 Performance Metrics

From an Internet service perspective, characterizing yetem in
terms of both throughput and response time (latency) isssacg.
From a service provider’s perspective, throughgtiié important
as it describes the amount of work that can be performed peofun

Events
1. Component fault occurs
2. Detect fault
3. Server stabilizes

Throughput

4. Component recovers
(not detected)

5. Server stabilizes
6. Operator Reset

7. All components back up
8. Normal operation

Phase A B C D E F G Time
Figure 2:The 7-stage piece-wise linear template specified by our

methodology.

4.2.1 Phase 1: Characterizing Service Behavior Under
Single-Fault Fault Loads

In this phase, the evaluator first defines the set of all ptestalolts
that can occur while the service is running. Then, the etatua
describes the system’s response to a single fault of eaetotyn-
jecting the fault, measuring the system’s behavior durirgfault,
and fitting the results to a general 7-stage piece-wise flitera-
plate.

Figure 2 illustrates our 7-stage template. Time is shownrhen t
X-axis and performance, in this case throughput, is showthen
Y-axis. The template starts with the occurrence of a faukrmvthe

time. We defin€l}, to be the average throughput in the absence ofSystem is running fault-free. Stage A models the degradedigh-

faults. However, from the client’'s perspective, the senlaency
is a more relevant metric than throughput.

Using latency as a performance metric has two undesirabfe pr
erties, however. First, itsimportance is not a linear fiorcover the
range of plausible latencies. Typically, continuing to é&matency
beyond the point of human perception is not a useful impramem
At the other end of the spectrum, returning results past ¢l pf
human patience is not valuable either. Second, improvirenty
is a decreasing function, which can be viewed as countaitive.

put or yield delivered by the system from the time when anrésro
triggered because of a component fault to when the systesctdet
the error. Stage B models the transient performance detivas
the system reconfigures to account for the error. We modé&per
mance during this transient period as the average deliyeredr-
mance for the period. After the system stabilizes, perfoaavill
likely remain at a degraded level because the faulty compidmes
not yet recovered, been repaired or replaced. Stage C mihitels
degraded performance regime. Stage D models the trangent p

To address these concerns, instead of latency we use adrelatéormance after the component recovers. After D, while thetesy

“yield” (or “utility”) function. We define a yield functionY’, to be
applied to each request, such that a reply that is produciettigu
is considered highly useful and a reply that is produced afte
long is useless. We assume the yield function describedguar€i
1, which is similar to that of previous work [29], where a respe
time of less than 1 second h&sof 1, a response time of more than
10 seconds has ¥ of 0, and a simple linear function describgs
when the response time is between 1 and 10 seconds. We Hgfine
to be the average yield in the absence of faults.

4.2 Availability Metrics

Our approach for quantifying service availability is dig@into two
phases. The first phase assesses the service's responsefénilon
at a time. The second phase combines these responses asanfunc
of the expected arrivals of each fault type, i.e. the fawsltiloBelow,
we discuss each of these phases in turn.

is now back up with all of its components, the application regly
not be able to achieve its peak performance (e.g., it was et a
to fully re-integrate the newly repaired component). Thatage E
models this period of stable but suboptimal performanceally,
stage F represents throughput or yield delivered while frezaior
resets the service, whereas stage G represents the ttgresifor-
mance immediately after reset.

For each stage, we need: (i) the average throughput or yéeld d
livered during that stage, and (ii) the length of time that $fystem
will remain in that stage. The first is always a measured diyant
In the throughput case, care should be taken to disregateses)
that are satisfied but take longer than the maximum respamse t
the user would be willing to wait (10 seconds). The secondrpar
eter may be an assumed environmental value that is suppjied b
the evaluators. For example, the time that a service willaiarm
stage B is typically measured; the time for stages D + E i<siyi
a supplied parameter. In phase 1, the evaluator measurémts
of stages that are not dependent on assumed environmehtasya
leaving the remaining times as parameters for phase 2. émess
in phase 1 the evaluator derives all measurements necdesémg
most general instantiation of the 7-stage template for é&adh



With respect to the fault injection, the service must haver-co
pletely recovered from a fault (or have been restarted)rbetoe
next one is injected. Further, each fault should last lormugh to
actually trigger an error and cause the service to exhitstaes in
the 7-stage template unless the service does not exhibé ebthe
stages for the particular fault. For example, if there arevaoming
effects, then stages B, D, and G would not exist. In thesesctse
evaluator must use his/her understanding of the servicerteatly
determine which stages are missing and set their times to 0.

4.2.2 Phase 2: Modeling Performance and Availability
Under Expected Fault Loads

In the second phase of the methodology, the evaluator usas-an
alytical model to compute the expected average performande
availability, combining the service’s behavior under natmpera-
tion, the behavior during component faults, and the ratefaudt

thez 4(P2DZ/MTTF) factor computes the expected perfor-
mance when the system is operating with a single fault of type
The F.R./MTTF., factor represents the sets of requests that will
need to be re-issued as a result of this type of fault. Theageede-
livered availability, P;/ P,,, computes the fraction of the fault-free
performance that is delivered in the presence of faults.avieeage
delivered unavailability{/,;, can then be computed as- A,.

Using this model, we can quantify availability and unawvaiilla
ity assuming either throughput or yield as the performanet-m
ric. In fact, these computations typically lead to diffarabsolute
results. Intuitively, the throughput-based unavailapils the per-
centage of requests that are not serviced successfullyessit of
faults, whereas the yield-based unavailability is the @etage de-
viation in yield due to faults. The key is that the serviceigiesr
or evaluator can select the metric to consider first depgnaoiinthe
aspect of the system that he/she wants to emphasize manglgtro

(mean time to failure, MTTF) and repair (mean time to repair,4 2 3 Correlated Faults
MTTR) of each component. To simplify the analysis, we assume

that faults of different components are not correlatedit$atnig-
ger the corresponding errors immediately, and faults “quetithe
system” so that only a single fault is in effect at any pointime.
These assumptions allow us to add together the variousdnact
of time spent in degraded modes given a 7-stage templataébr e
fault type gathered in phase 1.

Our availability quantification methodology as presenteastfar
assumes that faults do not overlap. We believe that theHiked
of overlapping faults for realistic fault rates is negligibunless
faults are correlated.

The methodology can easily be extended to consider cogcelat
faults. The key observation is that a set of correlated $azdn be

If P, is the service's performance under normal operation, (i.e.treated as a single fault in terms of the resulting servidebier.

T, orY,), c the faulty componentM TT F, the mean time to fail-
ure of component, P the average performance of each stage
Figure 2 when this fault occur®); is the duration of each stagg,
the average number of user sessions affected by the failtaoid

Thus, in phase 1 of the methodology, the evaluator needdfiteede
the sets of correlated faults that can be expected and itijese
sets one at a time to observe the system’s response. It ibl@oss
that the response will deviate from our 7-stage templatevéver,

R. the average number of requests required to re-create the sof is enough to determine the entire loss in performance a&s a r

state of each session, our model leads to the following emst
for average performance in the presence of fautg &nd average
delivered availability 44).

For throughput performance'

1‘ZW 1Pt D Z MTTFP )=
For yield performance:

Py = 1—ZWC Pn+z Z MTTF e P2))

F.R.

MTTFC)

P,
Ag= P—Z
where W, = (Z 4 D2)/MTTF.. Intuitively, W. is the ex-

sult of the correlated faults; all we lose is the ability takeate
“what-if” scenarios where we change the duration or pertoroe
of different stages independently. In phase 2, we can therate
with the performance losses (from individuaid correlated faults)
and MTTFs using a model similar to that described in the previ
subsection.

We do not consider correlated faults further in this papee,
the limited amount of publicly available data on such faults

4.3 Performability Metrics

Having presented our approach for computing performanck an

availability, we now present a performability metric thanthines

these measures into a single number. The performabilitybeam

can be used as a scoring function to rank different servisgds.
Again, the problem with standard performability metricsiyr

is that they may hide substantial differences in unavditgbirhus,

pected fraction of the time during which the system operatesye define performability as the baseline performance he.ser-

in the presence of fault. (The denominator ofi¥. is just
MTTF., instead of MTTF. + MTTR,. because, when a com-
ponent fails, another fault could arrive and “queue” at thene
ponent.
fraction of downtime as/ TTR/MTTF, not as the more typical
MTTR/(MTTF + MTTR). In practice, becaus®/TTF >>

The impact of this assumption is that we compute the

vice performance in the absence of faults) scaled by an ilahila
ity penalty factor between 0 and 1.

Per formability = P, X Penalty

The penalty factor is adjustable, since different systenay m

MTTR, the numerical impact of this difference in assumptions isPlace differentimportance on unavailability. Specifigalve adjust

minimal.) Thus, the(l — " W.)P, factor above computes the
expected performance when the system is free of any fauditeds

the delivered unavailability/, that we computed above by incor-
porating arideal unavailabilityfactor, such that there is no penalty
if the system meets this target:



auctioned items a user tracks during his/her navigatiorerd han
oo be 26 interactions with the service, the most important oictvh
Ideal Unavailability Ui . - - . o
Penalty = Delivered U Tabilite — T involve browsing items, bidding, and buying or selling iem
envered Unavaradnty d Thus, the soft state of these services is comprised eskentia
The ideal unavailability is selected by the service designe by the contents of shopping carts (bookstore) and the asctib
evaluator and should be different than 0. A reasonable ehoic  interest to users (auction). Any error that causes the &t $o be

ideal throughput-based unavailability may be 0.00001010%), lost or become unreachable may force each client to repeatade
which means that the ideal throughput-basesilability is 5 nines.  requests to re-create the state.

Areasonable choice of ideal yield-based unavailability in@0.01 The services are organized into three tiers of servers: dygii-
(1%), which means that we are willing to accept an increase ircation, and database tiers. For each tier, they use the Apaelb
latency of up to roughly 10%. server (version 1.3.27), the Tomcat servlet server (verdit.18),

Further, the delivered unavailability should not be lowleart — and the MySQL relational database (version 4.12), respgti
the ideal unavailability. For yield, the combination of sketwo  The first and second tiers are comprised of multiple nodesreds
requirements can be a problem. The reason is that responee ti the third tier involves a single node running the databa3e. be
degradation due to faults may not generate a change in yi@d. realistic, in our experiments the database node is thesiaatel
example, it may happen that all response times of a serviceessly ~ most reliable machine in the cluster.) The service requarstse-
short under normal operation, leading to an yield of 1 asgufé  ceived by the Web servers and may flow towards the second and
1. Under the fault load of interest, these times may be degrad third tiers. The replies flow through the same path in thenseve
but remain classified as having an yield of 1, simply becaheg t direction. Each Web server keeps track of the requests disstn
remain less than T1 seconds. This would mean that the sysiem hthe application servers. It also tries to balance the loathese
0 yield-based unavailability, which is unlikely but not ingsible.  servers, according to its own outstanding-request inftiona
To eliminate this corner case, we can simply assume the tyenal A client emulator (also from Rice) is used to exercise the ser
factor to be 1 when the yield-based unavailability is 0. vices [1]. The workload consists of a number of concurreients

Overall, we argue that our metrics are intuitive and simpéam  that each repeatedly open sessions with the service beémgised.
sures for performability because they scale linearly tdipatrfor- ~ Each client repeatedly issues a request, receives andspihesee-
mance (be it throughput or yield) and unavailability. Twstgms  ply, “thinks” for a while, and follows a link contained in tireply.
are equal if and only if they trade off equal percentages dope A user-defined Markov model determines which link to follow.

mance and unavailability. e e . .
Y Modifications. We made a few modifications to the services, in

order to boost their performance and adjust their designdeem

5 Methodology standardized practices.
First, we used a different table type for our databases. The
5.1 Services original implementations used a performance-optimizétettype

(MylISAM) that does not provide full ACID properties and e
We Study two multi-tier SerViceS, an on-line bookstore ancac- on Single_query atomic Operations to guarantee correstn¥ge
tion service. The bookstore is modeled after the TPC-W st@ahd switched to the InnoDB table type, which provides all theszpp
benchmark for e-commerce systems [32], whereas the austion erties, at the cost of lower performance. To counter theniate
modeled after EBay. The code for both services is publicBilav  degradation in performance, we profiled the queries of beth s
able from the DynaServer project [27] at Rice University.the  vijces and tuned the database accordingly. By adding exdexés
next few paragraphs we describe these services and the aaedifi for specific queries, inverted lists to handle pattern niatgrand
tions we made to improve them in more detail. caching frequently accessed data, we were able to imprevesth
formance of the database by about 75% compared to the drigina
implementations, even though we now use the ACID-comptint
ble type.

Second, we modified the services to implement the state ezaint
nance strategies that do not store soft state in the databaste
stateless strategy, we implemented en/decryption ane:eodihg
at the Web server tier using the DES and Base64 algorithmas, re
spectively. For Standard and 2nd-tier replication, we gednthe
original implementations to use the session managemeasindic-
ture provided by the Tomcat application servers to mairttaérser-
vices’ soft states. (The hard/persistent state of the ses\vs always
maintained in the database server, regardless of the atdtrafain-
tenance approach.) These new implementations affect these
forwarding scheme in the services. On the first request cfsia®,
the Web server selects the application server to handleegsian

users, items, bids, and categories. As an optimizationjténes in round-robin fashion. Other requests belonging to theesaes
table is split into new and old items. The vast majority ofuests . ) requ ging
sion are sent to the same application server. In the otteegies,

access new items. We created an extra table to store thef list 6

Original Services. The bookstore implements the functionality
in TPC-W that affects performance [1], including transawadil
support. All persistent data, except for images, is storethe
database. The database contains eight tables, includitestéor
customers, orders, items, and authors. The shopping calsas
stored in the database. The 14 interactions with the secanée
either read-only or cause the database to be updated. Tdhenba
interactions involve accesses to the home page, listingwfaooks
and best sellers, requests for product detail, and searthegead-
write interactions include user registration, updatesiéosthopping
cart, and purchases.

The auction service implements selling, browsing, and bid-
ding [1]. There are also three kinds of user sessions: vjditgyer,
and seller. The database stores seven tables, includites tady



the Web server always selects an application server in rooipid Fault MTTF MTTR
fashion. Internal link down | 6 months| 3 minutes
Third, we changed the node failure (or unreachability) cide SCSl timeout 1year 1 hour
mechanism. Originally, the detection was based on TCP §imer Node crash 2 weeks | 3 minutes
which take unnecessarily long to timeout for clusters, soime Node freeze 2 weeks | 3 minutes
plemented a heartbeat service on the first and second tiedesN Application crash | 2 months| 3 minutes
broadcast one heartbeat per second. A fodeems another node Application hang | 2 months| 3 minutes
B to be down (or unreachable) if it fails to receive a heartHiegh Switch hang* lyear | 30 seconds
B for 10 consecutive seconds. WhBrbecomes available again, it Database crash* | 2years | 30 seconds

is re-introduced into the service.

Finally, we changed the client emulator in two major ways: (1 Table 2:Faults and their MTTFs and MTTRs per component. Ap-
we force the emulator to generate a constant workload, ememw plication hang and crash together represent an MTTF of 1 lmont
the service takes long to respond to requests; and (2) to exgdex-  for application faults. *Switch and database faults areimetcted;
iments more repeatable, we now drive the emulator with &athe  they are captured in the modeling during phase 2.
requests in the traces are produced by the old version ofitie e
lator. A few other modifications were made to implement tiotso  network cable would lead to a link fault. Likewise, many agg

and “cookie” support for the stateless strategy. tion bugs can lead to the crash of an application process.awot
focus on all potential causes because this set is too largtheR
5.2 Server Setup and Workloads we focus on the class of faults as observed by the systemg usin

an MTTF that covers all potential causes of a particulartfalihe

Our experiments with the services use a 1.9-GHz PentiunaBétd  services can recover automatically to normal performaftee the
machine with a 15K rpm SCSI disk and a Gigabit Ethernet net-faults are repaired, i.e. operator intervention in nevguired.
work interface as the database server. The other two tiersrar These faults are injected into the first and second tiers 0é10
plemented by a set of 1.2-GHz Celeron-based PCs, each with 51Because we do not have a spare network switch and a replicated
MBytes of RAM and a Gigabit Ethernet interface. All nodes run database, we cannot inject faults of these componentsalsive
Linux. only model these faults. Specifically, we assume that seschil

We run the clients on 4 other PCs connected to the same Gigawith an MTTF of 1 year and it takes 30 seconds to fail-over to a
bit Ethernet switch as the server cluster. In our experisarith spare switch, as described in [9]. During these 30 secohdser-
the bookstore, the database contains 10000 items. We exé¢h&i  vice is assumed to be completely unavailable. Similarlyassume
bookstore with a “shopping mix” of requests, where 20% of thethat the database server fails with an MTTF of 2 years andsdhe f
requests are read-write. The auction service involves 658 over to a hot spare takes 30 seconds. During these 30 sedheds,
items and 1M old items with an average 10 bids per item. For thejatabase server is completely unavailable, which in tunsesithe
auction, we use a “bidding mix” of requests, which contaiB%1 entire service to quickly become unavailable as well. Weiass
read-write requests. We set the “think” time between regus  that the performance overhead of keeping a hot spare datithas
0.5 second to reduce the number of client nodes requiredieAtcl negligible for our workloads, as demonstrated in [2].
request times out after 10 seconds without a reply.

For the bookstore, we use 8 PC nodes: 2 nodes to run Web )
servers and 6 nodes to run application servers. For theoaycti © EXperimental Results
we use 7 PC nodes: 2 Web-server nodes and 5 applicatiorn=serve

nodes. The provisioning of the first and second tiers was efin I this section, we first compare the performance of the feates
so that each tier has the smallest number of nodes thatestiles ~ Maintenance strategies. Then, we compare their unavéifakith

the database as the performance bottleneck. In our fgaltion ~ '€SPect to our injected fault load. Finally, we comparertoeim-
experiments, we set the offered load to each service at 90teof Pined performability.

maximum throughput of the database server for the servidgth W

these settings, no node besides the database node is moB9#a 6.1 Performance

utilized (in the absence of faults) for the workloads we ideis i i ) .
Thus, these settings represent the common case of having high|§Igures 3 and 4 plot service throughput and yield, respelgtivor

utilized bottleneck resources and plenty of extra capad#gwhere. each of the strate_gles, a_ts a fu_nctlor_l of reque_st rate. Tlesséts
show that there is relatively little difference in perfomea be-

tween the strategies, except that DB State saturates muliér ea
5.3 FaultLoads in both services. The maximum throughputs of DB State are 27%
We use Mendosus [18] to inject the fault load shown in Tablet@ i and 18% lower than those of Standard for the auction and book-
live service executions. The table lists the Mean Time touFai  StOre services, respectively. In addition, DB State acgeyelds
(MTTF) and the Mean Time to Repair (MTTR) of each compo- that are up to 30% lower than those of Standar.d (auctionh@le
nent. These rates are derived from previous works that érapyyy DB State is outperformed by the other strategies becausaift-m
observed the fault rates of many systems [4, 15, 17, 20, 28is& tains the soft state in the tier that is already the systertienaick.

generic faults can be caused by a wide variety of reasonsrfeala 1 he reason the differences in performance are smaller édoaiok-
system; for example, an operator accidentally pulling bettrong store than the auction is that the percentage of accesses soft



800

700 |
s00 | /ﬂ"
500 | ’
400 |

300 -

Throughput (regs/sec)

200 - 1
DBState —+—
Standard - |
Stateless ¥
. . . . __2nd Tier Repl &
0 100 200 300 400 500 600 700 800 900
Request rate

(@)

100 -

800

700 |
600 | B K
500 |
400 |

300 -

Throughput (regs/sec)

200 - 1
DBState —+—
Standard - |
Stateless ¥
0 . . . . __2nd Tier Repl &
0 100 200 300 400 500 600 700 800 900
Request rate

(b)

100 -

Figure 3:Throughput vs. request rate for the (a) auction and (b) tiooks

0.8 -

0.6

Average Yield

04 -

02 DBState —+— |
: Standard -
Stateless ¥
. . . . __2nd Tier Repl &
0 100 200 300 400 500 600 700 800 900
Request rate

(@)

0.8 -

0.6

Average Yield

04 -

02 DBState —+— |
: Standard -
Stateless ¥
0 . . . . __2nd Tier Repl &
0 100 200 300 400 500 600 700 800 900
Request rate

(b)

Figure 4:Average yield vs. request rate for the (a) auction and (bkétmoe.

state is also smaller; in the bookstore only 27% of the reguss

cess the soft state, whereas almost 100% of the requestsabees

soft state in the auction.

6.2 Availability

Figures 5 and 6 show the unavailability of the four strategiith
respect to throughput and yield, respectively. Each badndes the
contributions of the different fault types injected at diffnt tiers.
The unavailabilities associated with each fault type aaek&d in
the same order as the legends.

These figures show that, for both throughput and yield, dvera

availability is somewhat better than 99.9%, or three nindth DB
State achieving close to 99.99%, or four nines. Either &isde
(auction) or Standard (bookstore) exhibit the highest aitalvility
in terms of both throughput and yield.

These results also demonstrate that node and applicatidts fa

are the largest contributors to unavailability, as one Waxpect,
since these faults occur most frequently. Interestinglwli strate-
gies other than DB State, faults injected into the Web seraer
counted for more than 50% of the unavailability. The reasahat

and database failures are catastrophic faults in that 1G@8& pro-
cessing capacity is lost; however, these failures have arlonpact
on unavailability because they occur much less frequenitytheir
fail-over is fast.)

Finally, note that node and application faults (especialige
crash and freeze) in both tiers degrade the availabilitytafetess
consistently. The reason is that Stateless heavily usilizh tiers,
with en/decryption and en/decoding on the first tier ancesibject
serialization and update on the second tier.

6.3 Performability

Figures 7 and 8 show service performability for the fourtegees
with respect to throughput and yield, respectively. Forhestcat-
egy, we show the performability when faults are injected invth

the first and second tiers, as compared to when faults aretégje
only into the second tier. Note however that internal swclal
database faults are considered in all cases.

These figures show that DB State achieves the best perfdkmabi

ity for both services when injecting faults into both firstdasec-
ond tiers. This is a very interesting result since, if we wenéy

there are only 2 nodes in the first tier so that when one of thentonsidering performance, we would be highly motivated toveno

becomes unavailable, the service loses 50% of its progessin
pacity in this tier. In contrast, when a node fails in the setber,
only 17-20% of the processing capacity is lost. (Of couragtch

the maintenance of soft state out of the database as showetin S
tion 6.1. However, our results show that leaving excessagpia
the first two tiers, particularly in the first tier, where teanay be



Throughput Unavailability per Fault Type

0.0006
@ Database

m Internal switch

[ 2nd Tier appl hang
m 2nd Tier appl crash
2nd Tier node freeze
Bl 2nd Tier node crash
[ 2nd Tier scsi timeout
©12nd Tier internal link
[ 1st Tier appl hang

[ 1st Tier appl crash
[@ 1st Tier node freeze
[ 1st Tier node crash

T - " 1st Tier scsi timeout
Standard DB State Stateless 2nd Tier Repl @ 1st Tier internal link

0.0005

0.0004

0.0003

0.0002

0.0001

Throughput Unavailability per Fault Type
0.0006

[ Database
m Internal switch
§ 2nd Tier appl hang
m 2nd Tier appl crash
2nd Tier node freeze
Bl 2nd Tier node crash
[ 2nd Tier scsi timeout
©12nd Tier internal link
[ 1st Tier appl hang
///“ [ 1st Tier appl crash
] [ 1st Tier node freeze
@ 1st Tier node crash
NN 11111 . 1st Tier scsi timeout
Standard DB State Stateless 2nd Tier Repl @ 1st Tier internal link

0.0005

0.0004

0.0003

0.0002

Y

N/

0.0001

@)

(b)

Figure 5:Throughput-based unavailability for the (a) auction anjdogokstore. Each bar shows the contribution of each fapk tyhen
injected at different tiers. The contributions are stacikethe same order as the legends; the horizontal line acemsslear separates the

1st and 2nd-tier faults.

Yield Unavailability per Fault Type

0.0005
[ Database

Internal switch

[ 2nd Tier appl hang
2nd Tier appl crash
2nd Tier node freeze
B 2nd Tier node crash
[ 2nd Tier scsi timeout
B12nd Tier internal link
[ 1st Tier appl hang

O 1st Tier appl crash
@ 1st Tier node freeze
[ 1st Tier node crash
B 1st Tier scsi timeout

Standard DB State Stateless 2nd Tier Repl @ 1st Tier internal link

0.0004

0.0003 +

0.0002

0.0001

Yield Unavailability per Fault Type

0.0004

[ Database

Internal switch

2nd Tier appl hang
2nd Tier appl crash
2nd Tier node freeze

% B 2nd Tier node crash
[ 2nd Tier scsi timeout
B12nd Tier internal link
[ 1st Tier appl hang
[0 1st Tier appl crash
[ 1st Tier node freeze
[ 1st Tier node crash
1st Tier scsi timeout

DB State Stateless 2nd Tier Repl @ 1st Tier internal link

0.0003

0.0002

0.0001

(@)

(b)

Figure 6:Yield-based unavailability for the (a) auction and (b) bstoke. Each bar shows the contribution of each fault typenvitijected
at different tiers. The contributions are stacked in theesander as the legends; the horizontal line across each parates the 1st and

2nd-tier faults.

the least amount of redundancy to tolerate faults, is qoifgortant
in the presence of faults. Thus, optimizing the system byintgpv
functionality out of the database has a cost in availab#gityl there-
fore performability, because when serving a higher thrpugthe
system has less spare capacity to tolerate faults.

It is also interesting to note that if we only consider fautts
the second tier, 2nd-Tier Replication exhibits higher perfability
than DB State in all but one case, yield-based performgliditthe
auction. (The reason for this exception is that the fadéefyield of
DB State is already lower at the load we offer to this strajeglis
is consistent with intuition, since the 2nd-tier replicatistrategy is
specifically designed to tolerate such faults through itdication.

6.4 Discussion

Our experiments were performed on small clusters of 8 (Hoo&s
and 7 (auction) nodes. Scaling the systems to handle hdasigs
would require database replication as in [2]. Under the comm
provisioning scheme we assume (section 5.2), we expectiise
ilar trends for large clusters with replicated databasethese re-
ported here. The reason is two-fold: the database tier watilldbe
the performance bottleneck and the resource demand fotliee o
tiers would be lowest for DB State.

Generalizing our results, we find that service provisioramgl
load balancing have to consider their associated avatiabilpli-
cations. For example, an availability-oblivious load dizition ap-
proach may cause lower unavailability and performabilRgrfor-
mance optimizations, such as offloading of bottleneck tieesd
to consider two key issues: the availability propertieshsf tiers
that will receive the load and their ability to handle faultsder
the higher load. In particular, designers may want an umicaic
system, in which they heavily load highly available compuse
and leave more spare capacity for components that are likely
fail more often. Thus, service designers must considerethes
opposing forces to achieve the best performability. By m®rs
ing these forces explicitly, designers will be able to avuiday’s
common practice of achieving high performance and avditgabi
through substantial over-provisioning and its associadware
and maintenance costs.

7 Related Work

State Maintenance.Modern Internet services require high perfor-
mance, scalability, and availability, among other impotizharac-
teristics. To achieve these characteristics, severahrelsgrojects
and commercial products have moved away from keeping all ser

10



Throughput Performability

80 -

60 -

40

20 4

Standard DB State

‘ @ (1st+2nd) Tier

Stateless
W 2nd Tier ‘

2nd Tier Repl

Throughput Performability

80
70 -
60 -
50
40 4
30

20
10
04

Standard

DB State Stateless 2 Tier Repl

‘ @ (1st+2nd) Tier | 2nd Tier ‘

(@)

(b)

Figure 7: Throughput-based performability for the (a) auction anpghfokstore. In each pair of bars, the one on the left quastifie
performability when faults can occur on both the first andbseldiers, whereas the bar on the right only includes faultthe second tier.

Switch and database faults are considered in all cases.

Yield Performability

450
400 4
350 4
300
250 4
200
150 -
100 -

50 -

Standard DB State Stateless 2nd Tier Repl

‘ @ (1st+2nd) Ter  m2nd Tier ‘

Yield Performability
250

200 4

150 -

100 -

50 -

Standard DB State Stateless 2 Tier Repl

‘ @ (1st+2nd) Tier W 2nd Tier ‘

(@)

(b)

Figure 8:Yield-based performability for the (a) auction and (b) bstoke. In each pair of bars, the one on the left quantifyiefopma-
bility when faults can occur on both the first and second twrsereas the bar on the right only includes faults on thersbtier. Switch

and database faults are considered in all cases.

vice state using transactions and databases with ACID prope

ties [12], which typically favor strong consistency ovenfpe

Our work extends these previous works by quantifying the
performance, availability, and performability of sevesalt state

mance and availability. For example, a few systems [10, 2B, 1 maintenance strategies that share the same concepts. Uans q

have proposed in-core data management layers that profliebé-a
ble and efficient access to (soft and/or hard) state with eieedn-
sistency semantics. High concurrency and availabilityesrsured

tification shows, for example, that the major source of uitava
ability may not really the tier where the state is kept. Meep
it shows that keeping the soft state in the database actigmtis

by managing multiple replicas of data. The Porcupine [28] an to higher availability when the database has a hot spare If2].

Neptune [29] systems pursued similar goals.

Industrial Internet service platforms, such as the IBM \ilese
[16] and the BEA WebLogic [5], support various state maiatese
schemes for both hard and soft state, either through EJBdngs
or other proprietary mechanisms. The soft state is usuefdi-r
cated using the primary-secondary scheme, and copies pirede
herent using strict two-phase commit. ASP.NET [22] alsoved]

on-demand backing up of state to an independent node caked

StateServer. All these platforms also support databaséspance
and client-side cookies for minimal session state.

Unfortunately, these projects and products never realgngu

tified the availability aspects of their proposed state tesiance

strategies. Their focus was always on demonstrating higtope

mance, tolerance to failures, and correct behavior on exees/
Furthermore, their experiments always limited to the tibere the
state was kept.

11

terms of performance, we indeed observe that storing thetié

in the database produces lower throughput and yield undagr hi
load. However, we demonstrate that the performance detipada
of the database scheme is actually outweighed by its highabila
ity, when performability is considered.

Availability and Performability. Our work also extends the pre-

{ Vious research on the evaluation and modeling of avaitgtaind

performability. In particular, the quantification methdatyy we
present here is an extension of the approach we proposed]in [2
The extension involved an additional performance metrinpa
model for quantifying availability, and new availabilityn@ per-
formability metrics.

Our quantification approach differs from other previousi&s
in that we focus on multi-tiered, cluster-based services, @se a
completely different set of metrics to evaluate avail&p#ind per-



formability. Perhaps most similar to our work is [7], whichte
lines a methodology for benchmarking systems’ availghif@ither
works have proposed robustness [30] and reliability beracks

[33] that quantify the degradation of system performancdeun

faults.

Our work provides a formal but simple methodology to evauat

service performability in multi-tier systems. The prevdouork on
performability analysis [11, 21, 31] involved a rich set tdchas-
tic process models that describe system dependencies Jikaul

lihoods over time, and performance. Compared to these @mpl
stochastic models, our models are much simpler, and thus awsr

cessible to practitioners. Furthermore, as we mentionagdtion
2, our performability analysis relies on actual fault-otjen exper-
iments and introduces simple performability metrics thenglize
service designs heavily for their unavailability.

8 Conclusions

In this paper, we quantified the performance, availabiityl per-
formability of four soft state maintenance strategies io t@mplex
cluster-based Internet services. Using a fault injectioth model-
ing methodology, we isolated the effect of different fawdts the
availability of the two services. This isolation demontdrhthat
most of the unavailability of the services is due to faultthie first
tier of nodes. When comparing the different soft state neaiahce
strategies, we found that storing the soft state in a datedetsieves
better performability than storing it in main memory, evemen the
state is efficiently replicated.

The key lesson from our experiments is thétoading the bot-
tleneck tier certainly improves performance, but it maythavail-

ability by a larger factor Service designers have to evaluate the

impact of these offloading decisions on all other tiers. Irtipalar,
itis important to guarantee that the other tiers will be tdgaf tol-
erating failures efficiently, especially when they are muorene to
failures. Unfortunately, the common practice of over-psmning
all tiers achieves high performance and availability binigh hard-

ware and maintenance costs. Thus, we conclude the prowigion

and load balancing of server clusters needs to consideliahitai
ity, cost, and performance explicitly. In future work, weaplto
develop a framework for availability-aware provisioningdaload
balancing of server clusters.

References

(1]

(2]

(3]

C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety, R, Gil
J. Marguerite, K. Rajamani, and W. Zwaenepoel. Specifica-[
tion and Implementation of Dynamic Web Site Benchmarks.
In Proceedings of the 5th Annual Workshop on Workload
Characterization Nov. 2002.

C. Amza, A. Cox, and W. Zwaenepoel. Conflict-Aware
Scheduling for Dynamic Content Applications. Broceed-

ings of the 4th USENIX Symposium on Internet Technologies
[18

and SystemdMar. 2003.

M. Aron, D. Sanders, P. Druschel, and W. Zwaenepoel. -Scal
able Content-Aware Request Distribution in Cluster-Based
Network Servers. IProceedings of USENIX'2000 Techni-
cal ConferencegSan Diego, CA, June 2000.

12

[4]

[5]

(6]

[7]

(8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

16]

(17]

S. Asami. Reducing the cost of system administration of a
disk storage system built from commodity components. Tech-
nical Report CSD-00-1100, University of California, Berke
ley, June 2000.

BEA. BEA WebLogic. Available
http://www.bea.com/products/weblogic, Sept. 2003.

at

E. Brewer. Lessons from Giant-Scale Servid&EE Internet
Computing July/August 2001.

A. Brown and D. A. Patterson. Towards Availability Bench
marks: A Case Study of Software RAID Systems. Fro-
ceedings of the 2000 USENIX Annual Technical Conference,
San Diego, CAJune 2000.

E. V. Carrera and R. Bianchini. Efficiency vs. Portalyilin
Cluster-Based Network Servers. Rroceedings of the 8th
Symposium on Principles and Practice of Parallel Program-
ming (PPoPP)Snowbird, UT, June 2001.

Cisco. Failover Configuration for LocalDirector.
http://www.cisco.com/warp/public/cc/pd/cxsr/400héocdf_wp.htm
2003.

A. Fox, S. Gribble, Y. Chawathe, and E. Brewer. Cluster-
Based Scalable Network Services. Mmoceedings of the
16th ACM Symposium on Operating Systems Princides.
1997.

S. Garg, A. Puliafito, M. Telek, and K. S. Trivedi. Anaiys
of preventive maintenance in transactions based software s
tems. IEEE Transactions on Computers7(1):96-107, Jan.
1998.

J. Gray and A. Reutefransaction Processing: Concepts and
TechniquesMorgan Kaufmann, 1993.

S. D. Gribble, M. Welsh, R. von Behren, E. A. Brewer,
D. Culler, N. Borisov, S. Czerwinski, R. Gummadi, J. Hill,
A. Joseph, R. Katz, Z. Mao, S. Ross, and B. Zhao. The Ninja
Architecture for Robust Internet-Scale Systems and Sesvic
To appear in a Special Issue of Computer Networks on Per-
vasive Computing

F. Hanik. In memory session replication in tom-
cat4. http://www.theserverside.com/resources/arfipe
?l=Tomcat, 2002.

T. Heath, R. Martin, and T. D. Nguyen. Improving Cluster
Availability Using Workstation Validation. IrProceedings
of the ACM SIGMETRICS 200®1arina Del Rey, CA, June
2002.

IBM. IBM  WebSphere. Available at
http://www.ibm.com/websphere, Sept. 2003.

M. Kalyanakrishnam, Z. Kalbarczyk, and R. lyer. Fadur
Data Analysis of a LAN of Windows NT Based Computers.
In Proceedings of the 18th Symposium on Reliable and Dis-
tributed Systems (SRDS '99P99.

] X.Li, R. P. Martin, K. Nagaraja, T. D. Nguyen, and B. Zlgan

Mendosus: A san-based fault-injection test-bed for the con
struction of highly available network services.|limProceed-

ings of the 1st Workshop on Novel Uses of System Area Net-
works (SAN-1)Cambridge, MA, Jan. 2002.



[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

B. Ling and A. Fox. A Self-tuning, Self-protecting, $el
healing Session State Management Layer. Ptoceedings
of the 5th Annual Workshop on Active Middleware Services
June 2003.

D. D. E. Long, J. L. Carroll, and C. J. Park. A Study of the
Reliability of Internet Sites. IProceedings of the Tenth Sym-
posium on Reliable Distributed Systempages 177-186, Pisa,

Italy, Sept. 1991.

J. F. Meyer. Performability evaluation: Where it is and
what lies ahead. IfProceedings of the IEEE International
Computer Performance and Dependability Sympospages
334-343, Erlangen, Germany, Apr. 1995.

Microsoft. ASP.NET. Available at http://www.asp.hebept.
2003.

B. Murphy and B. Levidow. Windows 2000 Dependabil-
ity. Technical Report MSR-TR-2000-56, Microsoft Research
June 2000.

K. Nagaraja, N. Krishnan, R. Bianchini, R. P. Martin,dan

T. D. Nguyen. Using Fault Injection and Modeling to Evalu-
ate the Performability of Cluster-Based ServicesPtaceed-
ings of the 4th USENIX Symposium on Internet Technologies
and Systemdviar. 2003.

B. Olges. Simplify State Maintenance with ASP.NET.
http://www.ftponline.com/wss/20Q20/online/bolges/, Oct.
2002.

D. A. Patterson, A. Brown, P. Broadwell, G. Candea,
M. Chen, J. Cutler, P. Enriquez, A. Fox, E. Kiciman,
M. Merzbacher, D. Oppenheimer, N. Sastry, W. Tetzlaff,
J. Traupman, and N. Treuhaft. Recovery-Oriented Computing
(ROC): Mativation, Definition, Techniques, and Case Stsdie
Technical Report UCB//CSD-02-1175, University of Califor
nia, Berkeley, March 2002.

Rice University. DynaServer Project.
http://www.cs.rice.edu/CS/Systems/DynaServer/inuex,
2003.

Y. Saito, B. N. Bershad, and H. M. Levy. Manageability,
Availability and Performance in Porcupine: A Highly Scal-
able Internet Mail Service. IRroceedings of the 17th ACM
Symposium on Operating Systems Principleages 1-15,
Charlston, SC, Dec. 1999.

K. Shen, H. Tang, T. Yang, and L. Chu. Integrated ressurc
management for cluster-based internet servicefraceed-

ings of the 5th USENIX Symposium on Operating Systems
Design and Implementation (OSDI'QZoston, MA, Dece-
meber 2002.

D. Siewiorek, J. Hudakund, B. Suh, and Z. Segall. Devel-
opment of a benchmark to measure system robustness. In
In Proceedings 23rd International Symposium Fault-Tahéra
Computing pages 88-97, 1993.

R. M. Smith, K. S. Trivedi, and A. V. Ramesh. Performéjil
Analysis: Measures, an Algorithm, and a Case StU&EE
Transactions on Computer37(4), April 1998.

Transaction Processing Performance Council. TPC-W.

http://lwww.tpc.org/, 2003.

13

[33] T. K. Tsai, R. K. lyer, and D. Jewitt.

An Approach to-
wards Benchmarking of Fault-Tolerant Commercial Systems.
In Symposium on Fault-Tolerant Computjmges 314—-323,
1996.



