Localization Techniques in Wireless Networks

Presented by: Rich Martin

Joint work with: David Madigan, Wade Trappe, Y. Chen, E. Elnahrawy, J. Francisco, X. Li,, K. Kleisouris, Y. Lim, B. Turgut, many others.

Rutgers University

Presented at WINLAB, May 2006

Motivation

Technology trends creating cheap wireless communication in every computing device

- Radio offers localization opportunity in 2D and 3D
- New capability compared to traditional communication networks

A Solved Problem?

- Don't we already know how to do this?
 Many localization systems already exist
- Yes, they can localize, but
 - Missing the big picture
 - Not general

Open problem

- Analogy: Electronic communication 1960's Leased lines (problem solved!) -> 1970's Packet switching -> 1980's internetworking -> 1990's "The Internet": General purpose communication
- General purpose localization still open

Research Challenge

- General purpose localization analogous to general purpose communication.
 - Work on any wireless device with little/no modification
 - Supports vast range of performance
 - · Device always "knows where it is"
 - "Lost" --- no longer a concern
- Use only the existing communication infrastructure?
 - How much can we leverage?
 - If not, how general is it?
 - What are the cost/performance trade-offs?

Outline

- Motivation
- Research Challenges
- Background
- General-purpose localization system
- Open issues
- Conclusions

Background: Localization Strategies

- Active
 - Measure a reflected signal
- Aggregate
 - Use constraints on many-course grained measurements.
- Scene matching
 - The best match on a previously constructed radio map
 - A classifier problem: "best" spot that matches the data
- Lateration and Angulation
 - Use distances, angles to landmarks to compute positions

Aggregate Approaches

 $[X_1, Y_1]$

- A field of nodes + Landmarks
- Local neighbor range or connectivity
- Formulations: •
 - Nonlinear Optimization problem
 - Multi-Dimensional Scaling
 - Energy minimization, e.g. springs
 - Classifiers

 $[X_2, Y_2]$

Scene Matching

- Build a radio map

 [X,Y,RSS₁,RSS₂,RSS₃]

 Training data
- Classifiers: Bayes' rule Max. Likelihood Machine learning (SVM)
- Slow, error prone
- Have to change when environment changes

Landmark 2

Lateration and Angulation

WIRELESS INFORMATION NETWORK LABORATORY

Observing Distances and Angles

- Received Signal Strength (RSS) to Distance
 - Path loss models
- RSS to Angle of Arrival (AoA)
 - Directional antenna models
- Time-of-Flight to distance(ToF)
 - Speed of light

RSS to Distance

Time-of-Arrival to Distance

RSS to Angle

Results Overview

- Last 6 years --- many, many varied efforts
 - Most are simulation, or trace-driven simulation
- Aggregate
 - 1/2 1-hop radio range typical.
 - Requires very dense networks (degree 6-8)
- Scene matching
 - 802.11, 802.15.4: Room/2-3m accuracy [Elnahrawy 04]
 - Need lots of training data
- Lateration and Angulation
 - 802.11, 802.15.4: Room/3-4m accuracy
 - Real deployments worse than theoretical models predict (1m)

Outline

- Motivation
- Research Challenges
- Background
- General-purpose localization system
- Open issues
- Conclusions

General Purpose Localization

- Goal: Infrastructure for general-purpose localization
- Long running, on-line system
 - Weeks, months
- Experimentation
- Data collection

Packet-level, Centralized Approach

- Deploy Landmarks
 - Monitor packet traffic at known positions
 - Observe packet radio properties
 - Received Signal Strength (RSS)
 - Angle of Arrival (AoA)
 - Time of Arrival (ToA)
 - Phase Differential (PD)
- Server collects per-packet/bit properties
 - Saves packet information over time
- Solvers compute positions at time T
 - Can use multiple algorithms
- Clients contact server for positioning information

Software Components

Award for Demo at TinyOS Technology Exchange III

Technology Innovation

- Real-time Bayesian Positioning
- Rutgers University

Landmarks

- 802.11:
 - RSS
 - AoA
 - ToA
- 802.15.4
 - RSS
- Future work:
 - Combo 802.11, 802.15.4
 - Reprogram radio boards, more accurate ToA
 - MIMO AoA?

Angle-of-Arrival Landmark

Rotating Directional Antenna

Reduces number of landmarks and training set needed to obtain good results

Does not improve absolute positioning accuracy (3m) [Elnahrawy 06]

Localization Server

- Server maintains all info for the coordinate space
 - Spanning coordinate systems future work
- Protocols to landmarks, solver and clients are simple strings-over-sockets
- Multi-threaded Java implementation
 - State saved as flat files

Localization Solvers

- Winbugs solver [Madigan 04]
- Fast Bayesian Network solver [Kleisouris 06]
- Scene Matching Solver future work
 - Simple Point Matching
 - Area-Based Probability

Example Solver: Bayesian Graphical Models

Vertices = random variables Edges = relationships

Example: Log-based signal strength propagation $S = b_1 + b_2 \log(D)$ $D = \sqrt{(x - x_b)^2 + (y - y_b)^2}$

Can encode arbitrary prior knowledge

Incorporating Angle-of-Arrival

Minus: no closed form solution for values of nodes

Computing the Probability Density using Sampling

Clients

- Text-only client
- GUI client is future work
 - CGI-scripts to contact server, update map
 - GRASS client
 - Google

Outline

- Motivation
- Research Challenges
- Background
- General-purpose localization system
- Open issues
- Conclusions & Future Work

Open Issues

- Social Issues
 - Privacy, security
- Resources for communication vs. localization
- Scalability

Social Issues

- Privacy
 - Who owns the position information?
 - Person who owns the object, or the infrastructure?
 - What are the "social contracts" between the parties?
 - Economic incentives?
 - Centralized solutions make enforcing contracts and policies more tractable.
- Security
 - Attenuation/amplification attacks [Chen 2006]
 - Tin foil, pringles can
 - No/spoofed source headers?
 - Attack detection

Communication vs. Localization

- Resource use for Localization vs. Comm.?
 - Ideal landmark positions not the same as for comm. coverage [Chen 2006]

Scalability

- Can scale to 10's of unknowns in a few seconds
- Can we do 1000s?

Future Work

- Rebuild and deploy system
 - Gain experience running over weeks, months
- Continue to improve landmarks
 - High frequency, bit-level timestamps
- Scalability
 - Parallelize sampling algorithms
- Security
 - Attack detection
 - Algorithmic agreement
- Social issues?

Conclusions

- Time to defocus from algorithmic work
- Localization of all radios will happen
 - Expect variety of deployed systems
 - Demonstration of cost/performance tradeoffs
- Technical form, social issues not understood

References

- Today's talks:
 - Kosta: Rapid sampling of Bayesian Networks
 - Yingying: Landmark placement
- E. Elnahrawy ,X. Li ,R. P. Martin, The Limits of Localization Using Signal Strength: A Comparative Study In Proceedings of the IEEE Conference on Sensor and Ad Hoc Communication Networks, SECON 2004
- D. Madigan , E. Elnahrawy ,R. P. Martin ,W. H. Ju ,P. Krishnan ,A. S. Krishnakumar, Bayesian Indoor Positioning Systems , INFOCOM 2005, March 2004
- Y. Chen, W. Trappe, R. P. Martin, The Robustness of Localization Algorithms to Signal Strength Attacks: A Comparative Study, DCOSS 2006

