Maximizing Broadcast Coverage Using Range Control for Dense Wireless Networks

> Richard Martin, Xiaoyan Li, Thu Nguyen

Department of Computer Science Rutgers University

May, 2003

Range Control

1

Future Building Blocks

- Small complete systems
 - CPU, memory, stable storage, wireless network
- Low cost
 - **-** ≈ \$10
- Low power
 - Devices draw power from the environment
- Small size
 - 1cm³
- Berkeley Mote is a prototype

Motivation

- Future density
 - At \$10, tag most objects
 - At \$1 tag everything
 - Lab inventory shows 530 objects in
- Heavy use of broadcast
 - Localization (E.g. Ad-hoc Positioning system)
 - Routing (E.g. Dynamic Source Routing)
 - Management (STEM)
 - Time Synchronization

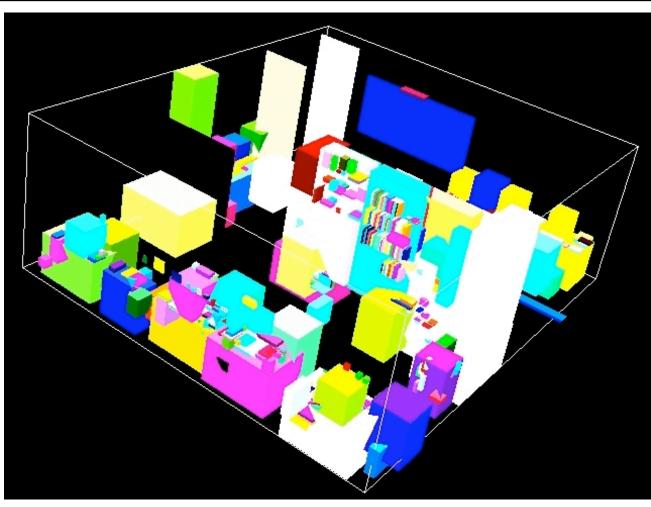
A Common Pattern

```
Foreach (time-interval) {
   Broadcast(some state);
   Wait(time-interval){
      Collect neighbour responses;
   }
   Do something;
}
```

Spatial Inventory

PANIC Lab 528 objects

137m³



Range Control

Problem Statement

- Broadcast, density and CSMA lead to channel collapse
 - Unicast better limits resource using feedback (e.g. RTS/CTS)
- Challenge: maximize number of receivers of a broadcast packet
 - Distributed
 - Low overhead
 - No Extra protocol messages, complex exchanges
 - Fair

Assumptions

- Ad-Hoc Style
- Few channels available
 - E.g. 802.11b -> 11 channels
 - not 1000's
- CMSA control for broadcasts
- Predictable mapping between range and power

Strategy

- Sharing Strategies:
 - Rate control
 - Channel control
 - Range/power control
- Our approach
 - Passive observation of local density and sending rate to set range to maximize broadcast coverage
 - Set power control to conform to range setting

Implementation Strategy

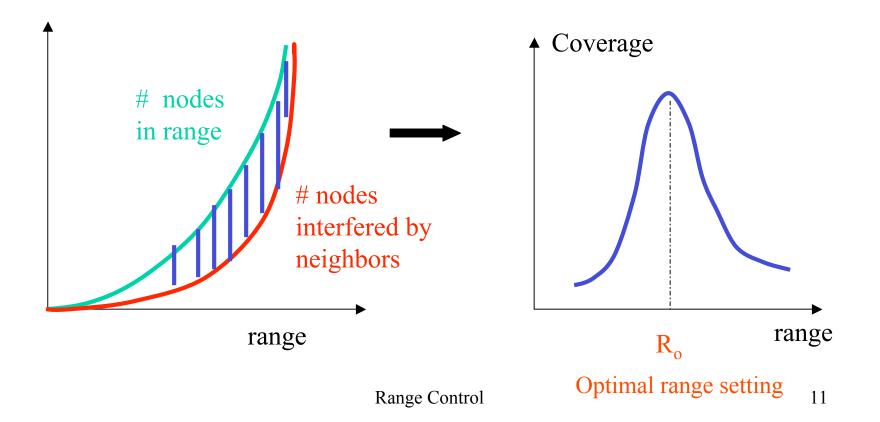
Layer 4	transport
Layer 3	network
Layer 2	LLC
	Ranging & Power
	MAC
Layer 1	Physical

Outline

- Introduction and motivation
- Analytic model of optimal Range
- Application of the model to the distributed algorithm
- Simulation Results
- Future Work and Conclusions

Finding Optimal Coverage

Coverage = # nodes in range – # nodes experiencing interference



Analytic Modeling

Want:

• Set range to R_0 , which has the highest **expected** coverage.

How:

• Derive a general formula for expected coverage in specific environments and radius setting

 \Rightarrow C = f(env, radius)

• optimal radius is the one which maximize C value

$$\stackrel{\Rightarrow}{=} \frac{df}{dr}_{(r=Ro)} = 0$$

Analytic Model Basics

- Node distribution: multi-dimension poisson distribution: λ_s
- Transmission rate: poisson packet arrival: λ_p
- Packet Length: constant size (transmission time T)
- MAC protocol: CSMA
- Transmission range: Nodes use the same radius R.
- Wireless model:
 - \Rightarrow Nodes within range R to the transmitter are able to hear the packet.

 \Rightarrow More than one transmitter within distance R to the receiver will corrupt all the packets at the receiver.

• **Goal :** Derive the optimal radius setting R_0 for specific environment $\{\lambda_s, \lambda_p, T\}$

Modeling Inaccuracy

• Mismatch with practical physical transmission model

$$\frac{\frac{P_i}{|X_i - X_j|^{\alpha}}}{N + \sum_{\substack{k \in \mathcal{T} \\ k \neq i}} \frac{P_k}{|X_k - X_j|^{\alpha}}} \ge \beta.$$

- •No accounting for unicast traffic
- Analytic model inaccuracy:

 \Rightarrow Assume all nodes use the same range

⇒ Assume transmission times arrive as a poisson process (really CSMA)

 \Rightarrow Geometric approximation Range Control

Packet Arrival Simplification

• CSMA makes node transmissions dependent

 \Rightarrow Basically slows down the transmission rate

• Simplification #1

 \Rightarrow assume nodes out of range still follow INDEPENDENT poisson transmission with density

• Effect: Conservative to **R**₀

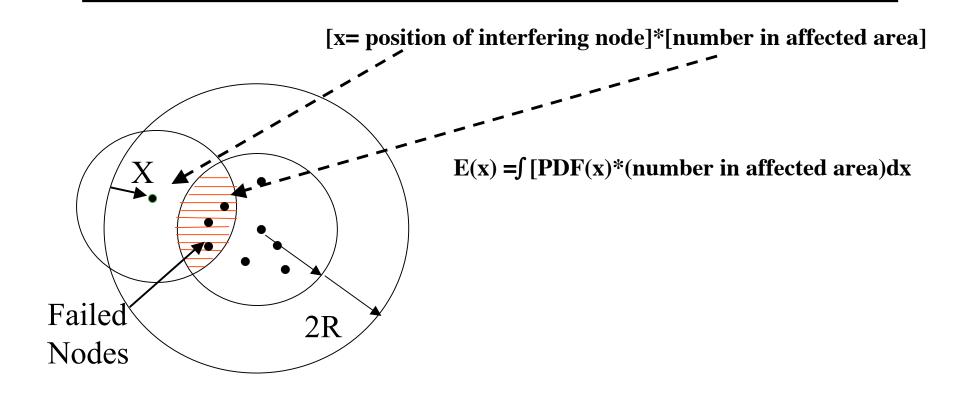
 \Rightarrow over-estimates the interference coming from neighbors

 \Rightarrow error on side of smaller **R**: prevent channel collapse over more coverage

Geometric Approach

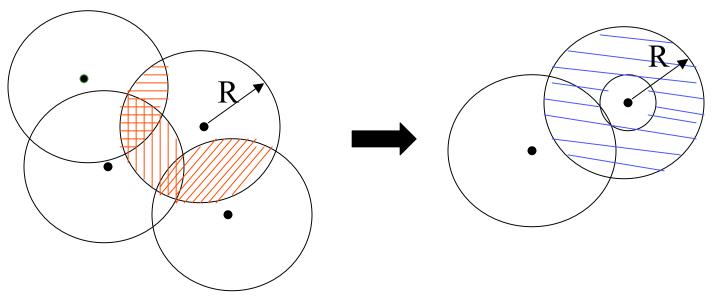
- Expected coverage of a packet = [Nodes in range]-[losses from hidden terminals]
- Random variable, X, is distance of closest interfering node
 - Compute CDF, I.e. P(x<X)
- Find expected number of failed nodes given at each point in PDF
- Subtract expected number failed from total nodes in range

Geometric Approach



Geometric Simplification (#2)

Computing expected failing area is difficult



- Torus approximates overlapping intersecting circles(spheres) i.e. blue approximates area red.
- •This simplification is also conservative to R_0

Expected Coverage

CDF (x) =
$$e^{-\lambda_s * \pi * ((2R - x)^2 - R^2) * (1 - e^{-\lambda_p * 2T})}$$

$$E(C) = \lambda_s * (\pi * R^2) - \int_0^R \left[\lambda_s * \pi * (R^2 - (R - x)^2) * P(z \le x \le z + dz) \right] dz$$

Expected nodes
in range Expected number failed

Problem:

• It's not a closed form formula – can't solve the integral

 \Rightarrow Can't solve for \mathbf{R}_0 directly

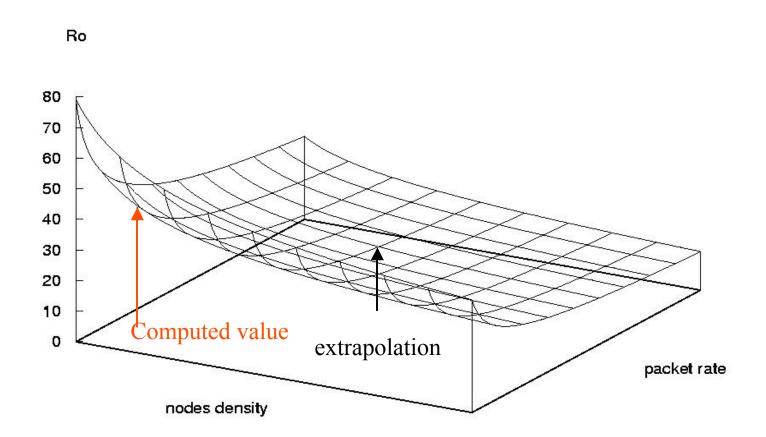
Extrapolate to find optimal

•Solve \mathbf{R}_0 for the in a specific setting { λ_s , λ_p , T} numerically (e.g. maple).

- Assume T is stable constant packet size.
- If we can extrapolate \mathbf{R}_0 for any arbitrary setting of environments from a known optimal, then we can still apply our idea.

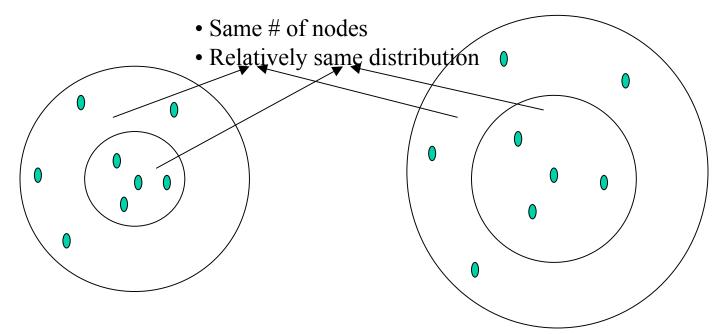
$$\implies \{\lambda_{s}, \lambda_{p}, R_{o}\} \implies \{\lambda_{s}^{'}, \lambda_{p}^{'}, R_{o}^{'}\}$$

Using extrapolations



Range Control

Extrapolation I: Constant Shape



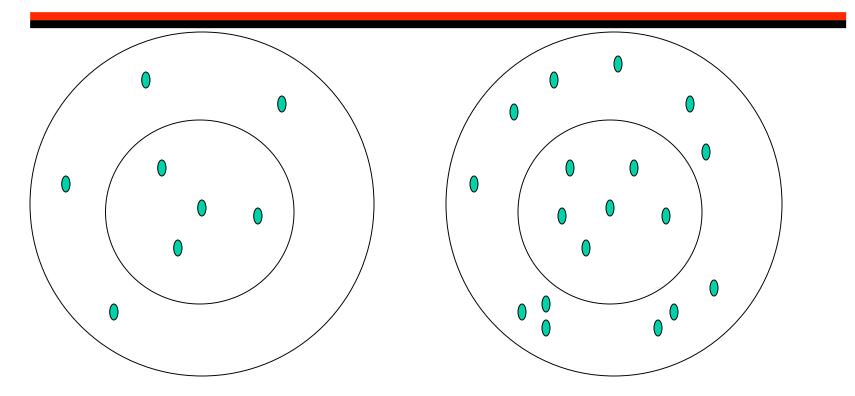
Same rate, different density

Alter R to obtain same # of expected nodes in circle and torus => Same expected coverage.

$$\lambda_{p1} = \lambda_{p2}, \ \lambda_{s1} * R_1^2 = \lambda_{s2} * R_2^2 \quad \Rightarrow \quad E(C_1) = E(C_2)$$

Range Connor

Extrapolation II: Constant Packet Volume



Fewer nodes sending frequently is equivalent to more nodes sending infrequently

$$\lambda_{s1} * (1 - e^{-\lambda_{p1} * 2T}) = \lambda_{s2} * (1 - e^{-\lambda_{p2} * 2T}), R_1 = R_2 \quad \Rightarrow \frac{E(C_1)}{E(C_2)} = \frac{\lambda_{s1}}{\lambda_{s2}}$$

Range Control

Extrapolation accuracy

- Extrapolation I (spatial) is exact
- Extrapolation II (network volume) is approximate

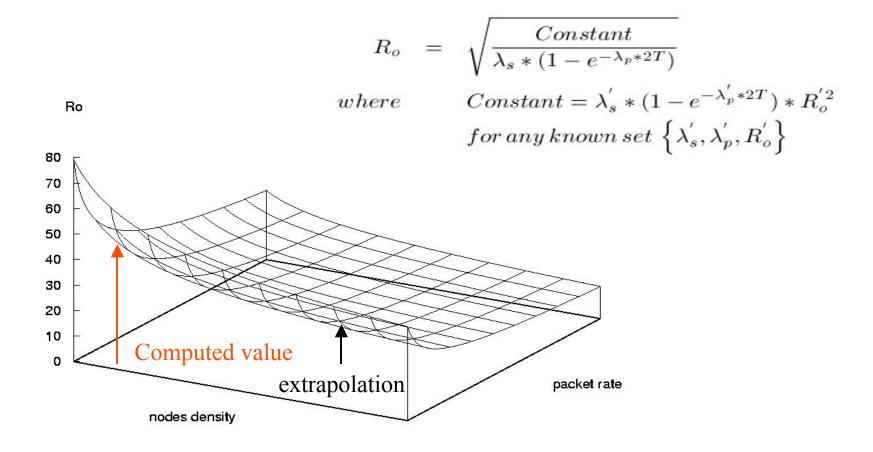
⇒assume nodes' transmissions are still independent in spite of CSMA

 \Rightarrow More nodes, more collisions

 \Rightarrow Higher density, less collisions

 \Rightarrow Not clear which effect is stronger

Combining Extrapolations



Range Control

Verification of extrapolations

Node density (nodes/m ³)	Packet rate	R _o extrapolation error
0.002 – 0.01	0.4 – 2.0	11% - 20%

Conservative assumptions:

- constant fudge factor of +5% "safe"

The Distributed Algorithm

- Over an adjustment interval
 - (20 broadcasts)
 - Collect neighbor list
 - Neighbors expire if not refreshed for 5 intervals
 - Average send rate
- Compute density at end of interval
 - Use assume spheres
- Set R_o for the next interval
- If only it were that easy ...

Handling Imprecision

- Analytic model assumes perfect information
- Approaches to handling imprecision:
 - Warm up period
 - Overload/underload disambiguation
 - Outlier consideration
 - Minimize impact of outliers
 - Longer-range push and pull messages
 - Insure accurate density estimates
 - Accounts for non-uniform densities

Initialization/warm up

- Initial guess of R
- Wait at least one interval
- Adjust R until there are sufficient neighbors (N)
- If the channel is in overload:
 - Reduce R to cover half the volume
- If not enough expected nodes based on density (underload):
 - Increase R to double volume
 - Expected N = $\pi \frac{C_o}{(1 e^{-\lambda_p 2T})}$)
- Once neighbor list is >= N, set R_0
 - continue to set each interval based only on last desity and rate

Outliers

- Keep outliers from impacting local density estimate
- Use median
 - Sort neighbours based on distance
 - Keep a running density computation
 - Take median density

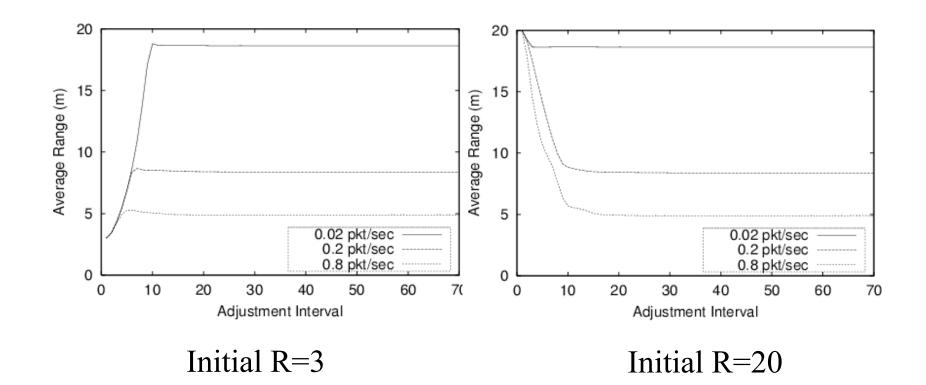
Increasing accuracy with extended range messages

- Pull and Push messages
 - just extend range of a normal broadcast
- Pulls account for hidden terminals
 - Density estimate should include hidden terminals
 - Range set to 2x volume
- Pushes account for asymmetric ranges
 - Nodes should account for all affected nodes
 - Range set to distance of furthest node
 - Accounts for non-unform densities
- 2% of broadcasts are push or pulls
 - Neighbors from push/pull expire after 25 intervals

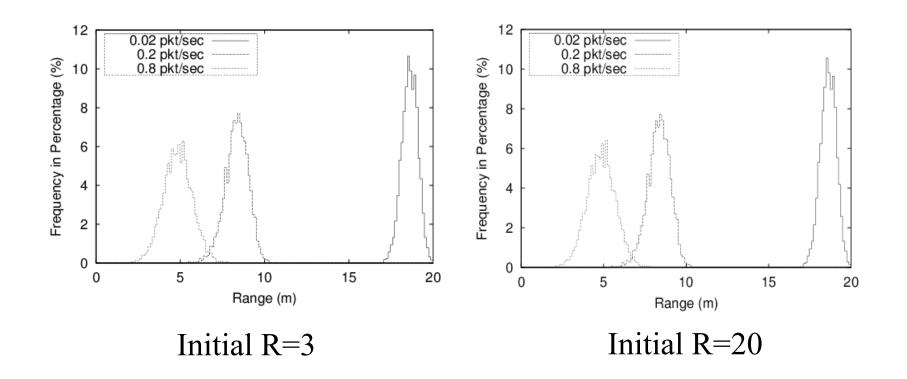
Simulation Results

- Simulated 3-D environment
 - Simulations of 5K nodes, 100m³
- Tested robustness to initial conditions
 - Ranges too high, too low, random
 - Observe convergence speed, final ranges and coverage
- Tested robustness to non-uniform density
 - Used topology based on lab inventory
- Observed impact on a higher-level protocol
 A hop-by-hop localization protocol

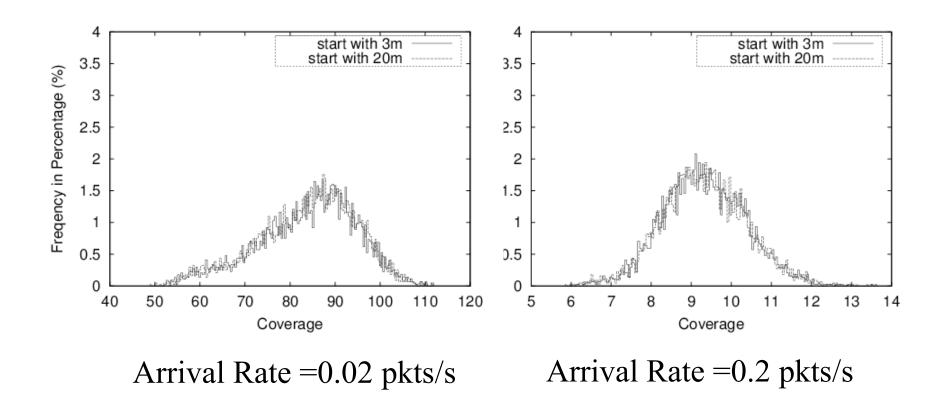
Convergence speed



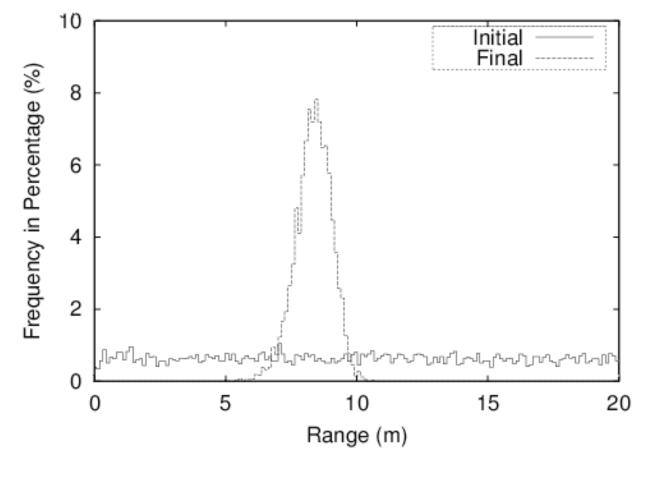
Robustness to Initial Ranges



Final Coverages

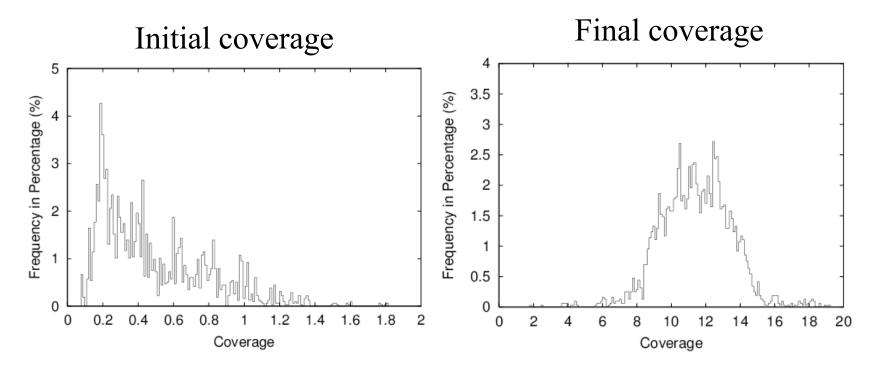


Robustness to Random Initial Ranges



Range Control

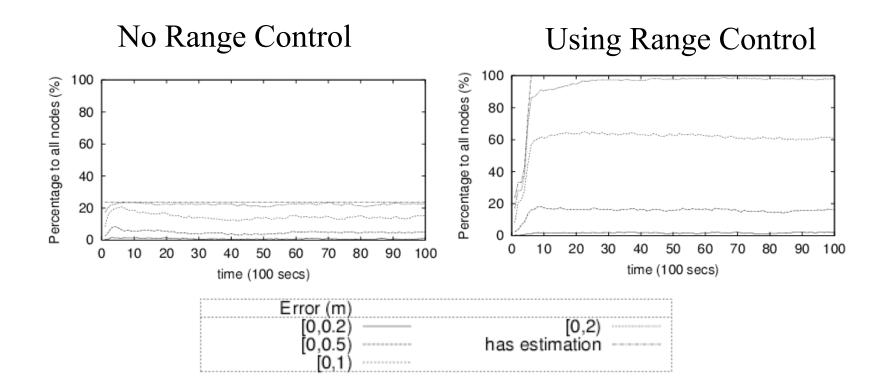
Non-uniform networks



3100 nodes (lab replicated 6x),

Range Control

Impact on a localization protocol



Future work and Conclusions

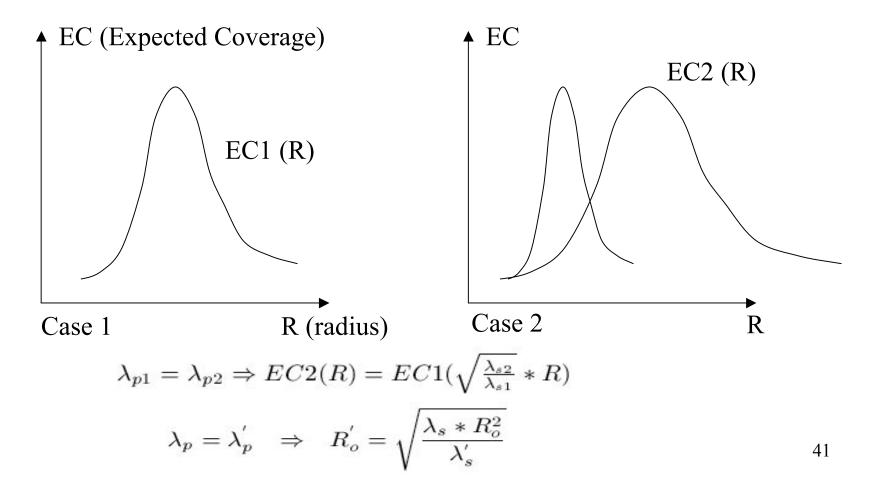
- Range control promising approach
- Continue validations:
 - Floor and building-wide simulations
 - Dynamic Network (join and leave)
 - Real implementations
 - 802.11 and motes
- Need more higher-level protocols
- Need realistic traffic patterns
 - Chicken and egg problem

Backup slides

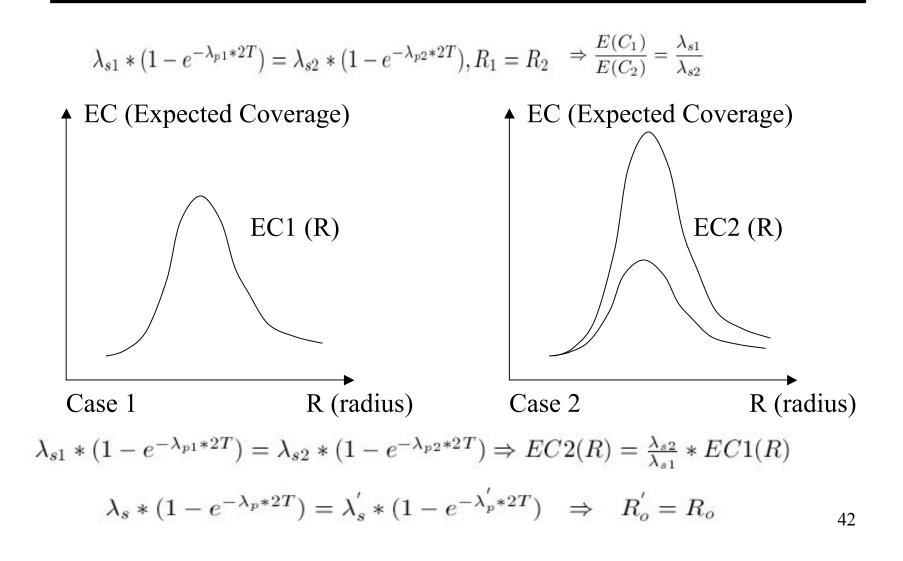
 These slides are for questions and answers

Extrapolation based on rule I

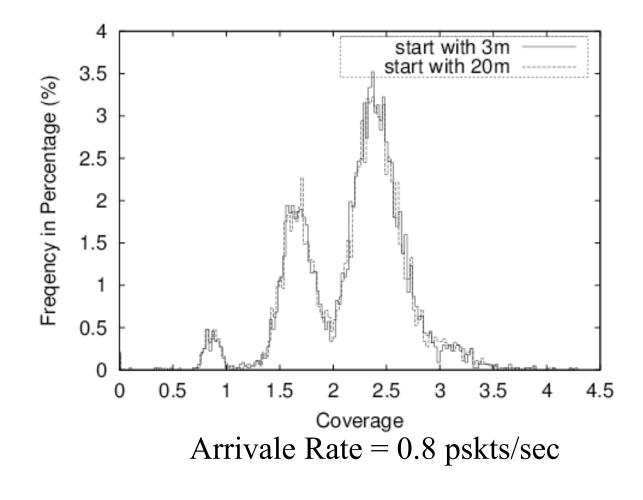
$$\lambda_{p1} = \lambda_{p2} , \, \lambda_{s1} * R_1^2 = \lambda_{s2} * R_2^2 \quad \Rightarrow \quad E(C_1) = E(C_2)$$



Extrapolation based on rule II



Uniform Coverage



Range Control