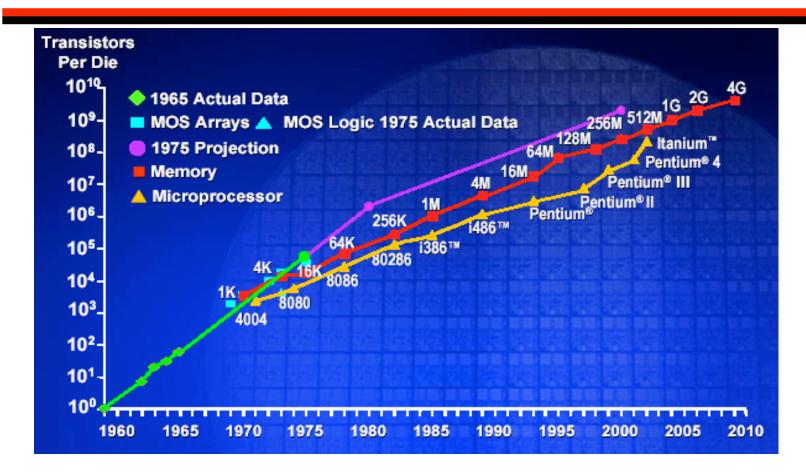
Emerging Wireless Device Localization Systems

Presented by: Rich Martin

@ InterDigital, August 2008

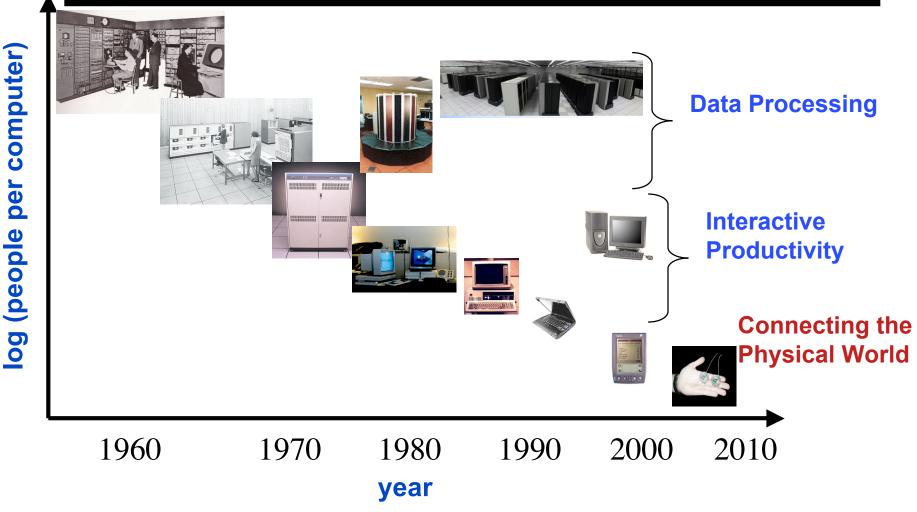

New Application Class

- Monitoring objects and conditions in physical space
- Driven by technology trends
- Will create a new class of applications
- Will drive existing IT systems in new ways

Outline

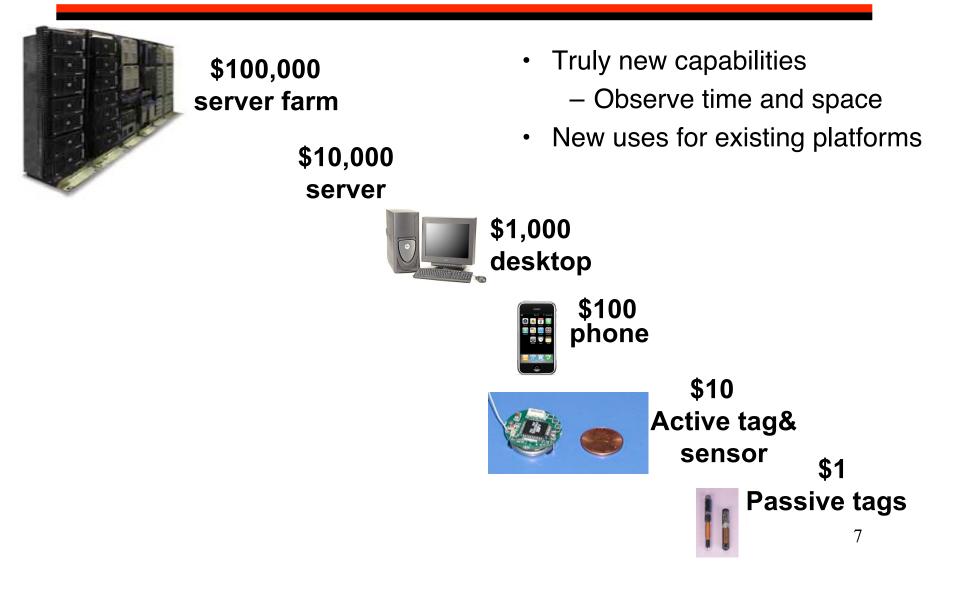
- Motivation and Context
- Defining Roles and Interests
- Localization Stack
- Results Overview
- Future Outlook

IT growth arising from Moore's Law



• Law: Transistors per chip doubles every 12-18 months

Impacts of Moore's Law


- Increased power and memory of traditional systems
 - 386,486,Pentium I,II,III,IV, Quad core
- Corollary: Bell's Law
 - Every 10 years a new:
 - Computing platform
 - Industry around the new platform
 - Driven by cost, power, size reductions due to Moore's law

"Bell's Law"

6

Turning the Physical World into Information

Applications

- Classes
 - Monitoring
 - What is happening to people and things in various spaces?
 - Tracking
 - Where is stuff?
 - Security
 - What/who is allowed where, when?
- Sectors
 - Health care
 - Manufacturing
 - Retail
 - Consumer
 - Agriculture

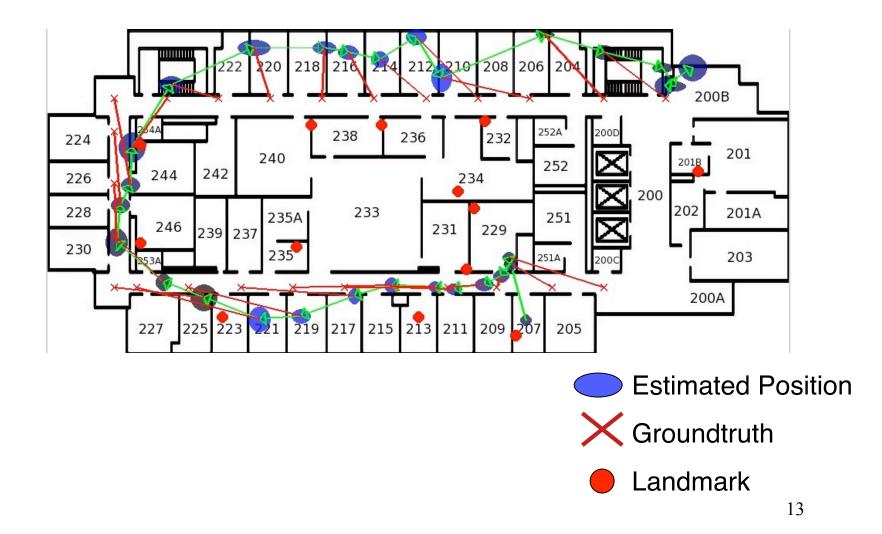
Example Applications

- Scheduling
 - Should we call in more nursing staff this afternoon?
 - Who gets an office today? Tomorrow? Next semester?
- Searching
 - Where is the closest IV pump? Patient's chart?
 - When is the next bus from Busch campus to the train station?
 How long will it take me to get from my office to InterDigital?
- Analysis
 - What did people browse, but not buy?
 - What are the distances to move things in a warehouse?
- Security:
 - Who took the IV pump last?
 - Did the diamond ring move over the last day?

My Work: Positioning and Tracking

 Same trends creating cheap wireless communication in every computing device

- Wireless offers localization opportunity in 2D and 3D
- New capability compared to traditional communication networks


Positioning and Tracking(cont)

- Vision: Real time, physical position of everything
 - Every electronic device (will have wireless)
 - \$2 active tag plausible (including battery) (today \$15)
 - <\$0.25 passive tags</p>
- Don't we already know how to do this?
 - Many localization systems & algorithms already exist
- Yes, they can localize, but
 - Missing the big picture
 - Not general purpose

Opportunity

- Universal
 - Works with any wireless device with little/no modification
 - Supports vast range of performance
 - city, campus, building, room, shelf
 - Localize in any environment the device could be in
 - Outside, inside, under the bed
- General Purpose
 - Resulting position information can be used for a wide variety of applications
 - Returns positions to the people of concern

eeePC Tracking Example

Example Applications

- Scheduling
 - Should we call in more nursing staff this afternoon?
 - Who gets an office today? Tomorrow? Next semester?
- Searching
 - Where is the closest IV pump? Patient's chart?
 - When is the next bus from campus to the train station?
 How long will it take me to get to NYC?
- Analysis
 - What did people browse, but not buy?
 - What are the distances to move things in a warehouse?
- Security:
 - Who took the IV pump last?
 - When did the diamond ring move?

Where are we today?

Analogy: Electronic communication

 1960's Leased lines (problem solved!) ->
 1970's Packet switching ->
 1980's Internetworking ->
 1990's "The Internet":

 Universal, general purpose communication:
 Communication between any 2 devices on the planet

Universal, General purpose localization still open -like networking in the 1970's and 1980's

Where to start?

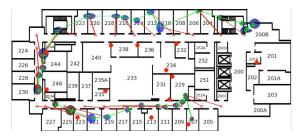
Outline

- Motivation and Context
- Defining Roles and Interests
- Localization Stack
- Results Overview
- Future Outlook

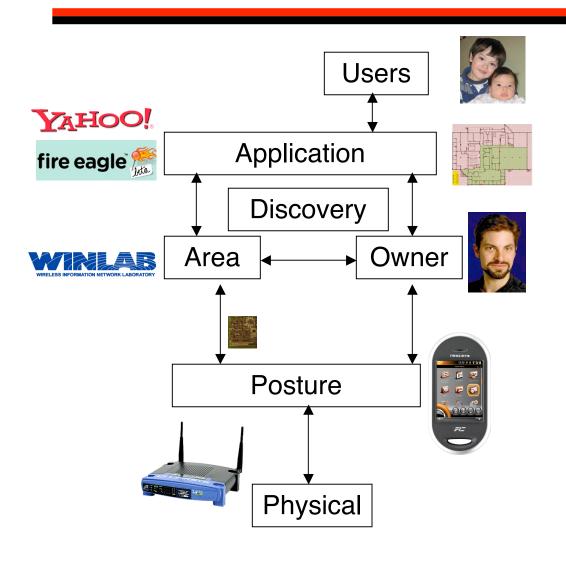
General Purpose Localization

- Previous work:
 - Algorithms
 - Specific systems, physical layers, approaches
- Different approach:
 - Define roles and vested interests
 - System stack to support those roles
 - Algorithms and physical layers support the roles

System Level Roles


12 💽

IP 65



Applications

18

Location Stack Overview

Need Standards!

- Purpose and Function
- Protocols (arrows)
- State (boxes)

Layers, Roles & Contracts

- Device owners
 - own the position information about their devices
 - controls access to this info.
- Area owners
 - own the position information about devices in their areas
 - · control access to this info
- Application Service Providers
 - Maintain Contract with device, area owners
- Network Administrators
 - Relationship to device owners unclear?

Application

- Build higher-level applications
 - What is the load in the emergency department?
 - Should we call in more staff for the next shift?
- Collects positions from device owners and area administrators
- Issues:
 - Authentication/Trust
 - Aggregation

Owner

- Questions about devices for a particular owner
 - Person
 - Organization
- All info for a set of devices ends up here.
- Separate from the application layer
- Per-Device localization fits this layer

- Placelab

Area

- Questions about devices inside an area controlled by an administrative domain
 - Areas have "owners" separate from devices.
 - E.g. Computer science dept.
 - Rutgers university
- Gather posture layer info and compute positions
- Current Real Time Location Systems fit this layer
 - GRAIL Real Time Location System (Rutgers)
 - Ubisense
 - Aeroscout

Posture

- Physical observations to position devices.
 - Mean, variance of RSS of observed packets
 - Time difference of arrival
 - Time of arrival
 - Sets of APs/Fingerprints (on a mobile device)
- From Access Point/Landmarks to a central location
- Within a device:
 - about observed landmarks/APs

Physical Layers

- Measure a physical quantity to assist in localization
- Received Signal Strength (RSS)
 - Path loss models
 - Matching on existing maps
- RSS to Angle of Arrival (AoA)
 - Directional antenna models
- Time-of-Flight to distance (ToF)
 - Speed of light (Used in UltraWide band)
- Time Difference of Arrival (TDoA)
 - Ultrasound systems
- Closest base station
 - Infrared tag

Discovery Protocols

- Owners:
 - What applications are available?
 - What areas are my devices in?
- Area administrators:
 - Who's devices are these? Where do I send the info?
- Devices need to:
 - What area am I in?
 - How do I report myself?
 - Access to local signal maps

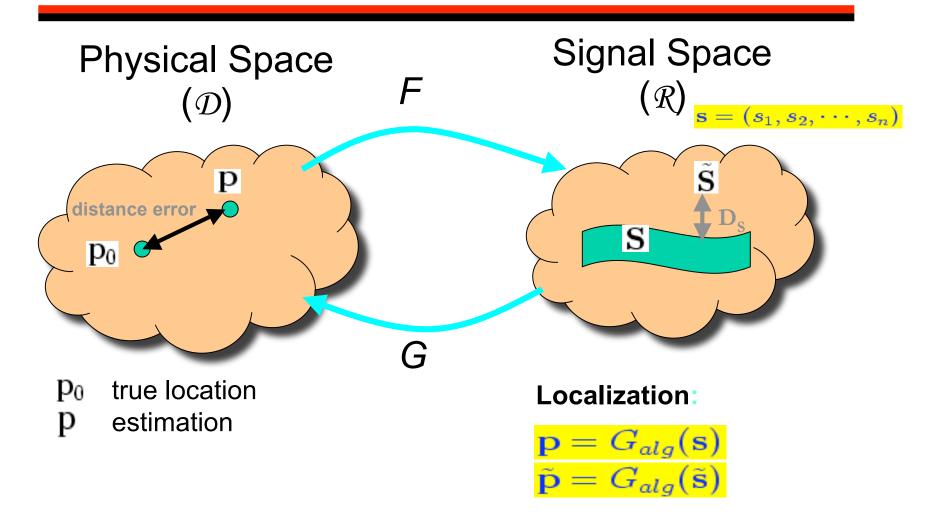
One system, Two extremes

- Powerful device: Mobile phone
 - Complete environment (Linux, JVM)
 - Multi-modal (WiFi, GPS, 3G, camera)
- Weak device: Active RFID tag
 - Only sends beacons
 - No sensing, storage, no receive
- We have some confidence the localization stack is general purpose if supports both well

Outline

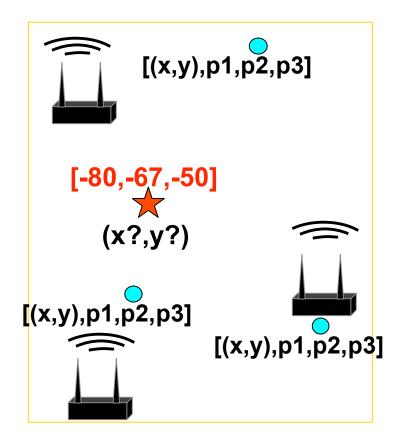
- Motivation and Context
- Defining Roles and Interests
- Localization Stack
- Results Overview
- Future Outlook

How to Localize?

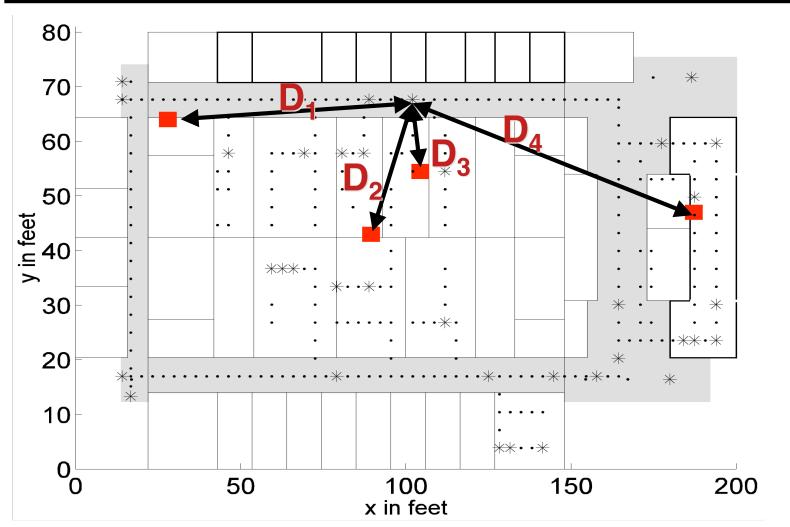

Key distinctions: Model and Observations

- Model -> Algorithmic strategy
 - What observations are needed?
 - Ability to handle uncertainty
 - Precision/accuracy tradeoffs
- Observations-> Physical measurements
 - Observation quality->accuracy, latency,power
 - Limitations on areas, devices

Algorithmic Strategies


- Lateration and Angulation
 - Use distances, angles to landmarks to compute positions
- Scene matching
 - The best match on a previously constructed radio map
 - A classifier problem: "best" spot that matches the data
- Aggregate
 - Use constraints on many-course grained measurements.

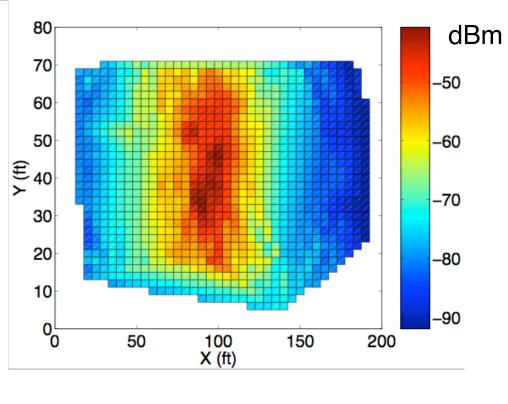
Generic Paradigm for RSS algorithms



Generic Approach

- Devices to localize
- Physical measurements to known locations (landmarks)
 - Fingerprint vectors: $[(x,y),P_1,P_2,P_n]$
 - Set of neighbors + landmarks

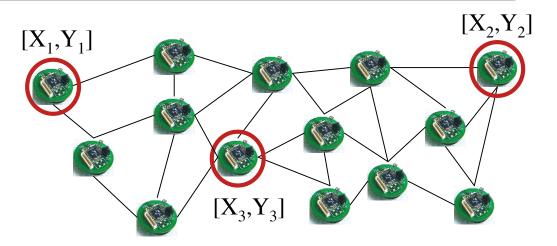
Lateration and Angulation



Scene Matching

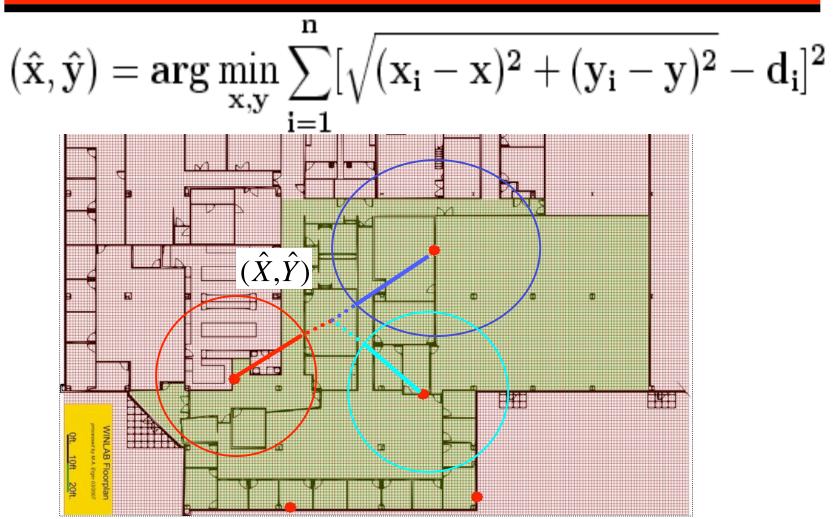
- Build a radio map

 [X,Y,RSS₁,RSS₂,RSS₃]


 Training data
- Classifiers: Bayes' rule Max. Likelihood Machine learning (SVM)
- Slow, error prone
- Have to change when environment changes

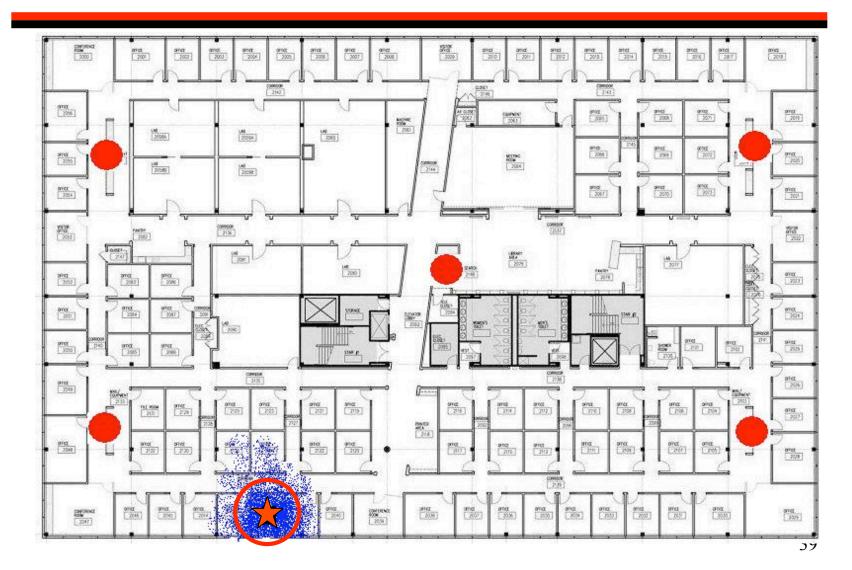
Landmark 2

Aggregate Approaches


- A field of nodes + Landmarks
- Local neighbor range or connectivity
 - Formulations:
 - Nonlinear Optimization problem
 - Multi-Dimensional Scaling
 - Energy minimization, e.g. springs
 - Classifiers

Managing Uncertainty

- Physical measurements are unreliable:
 - Measurement error
 - Noise
 - Bias
 - Missing data
- Give the user feedback on the uncertainty
- Reporting positions as areas allows precision/accuracy tradeoffs


Lateration with Least Squares

Lateration with Bayesian Graphical Models

Vertices = random variables Edges = relationships(conditional probabilities) XYExample: Log-based signal strength propagation D $S = b_1 + b_2 \log(D)$ $D = \sqrt{(x - x_h)^2 + (y - y_h)^2}$ S **Can encode arbitrary prior knowledge** b_1 b_2

Handling Uncertainty using Bayesian Networks and Monte-Carlo Sampling

Performance Metrics

- Accuracy
 - Distance between reported and true location
- Stability
 - Change in reported position vs. motion of device
- Precision
 - Size of returned area

System Metrics

- Latency
 - How long does it take to get a position?
- Scalability
 - # of devices?
- Range
 - What kinds of areas can I cover?
- Generality
 - What devices can be localized?
- Lifetime
 - how long before power runs out?
- Costs
 - hardware, software, installation, maintence,
- Privacy? Security?

Present Results Overview

- Past 16 years --- 1000's of efforts
 - Most have a narrow systems view, focus on alg. or phy.
 - Simulation, or trace-driven simulation
- Aggregate
 - 1/2 1-hop radio range typical.
 - Requires very dense networks (degree 6-8, 12 better)
- Scene matching
 - 802.11, 802.15.4: Room/2-3m accuracy [Elnahrawy 04]
 - Need a lot of training (measured signal maps)
- Lateration and Angulation
 - 802.11, 802.15.4: Room/3-4m accuracy
 - Real deployments worse than theoretical models predict (0.25-1m)
 - Recent results show 1ft accuracy possible with A LOT of resources

Additional Research Work

- Local Area Layer: GRAIL
 - Rich Martin, Eiman Elnahrawy (Kordinate)
- Improving Accuracy:
 - Rich Martin, Marco Gruteser, Yingying Chen (Stevens), Xiaoyan Li (Lafayette)
- Privacy:
 - Marco Gruteser
- Secure localization:
 - Yingying Chen, Wade Trappe
- Low Power Active Tags:
 - Rich Howard, Yangyong Zhang

Outline

- Motivation and Context
- Defining Roles and Interests
- Localization Stack
- Results Overview
- Future Outlook

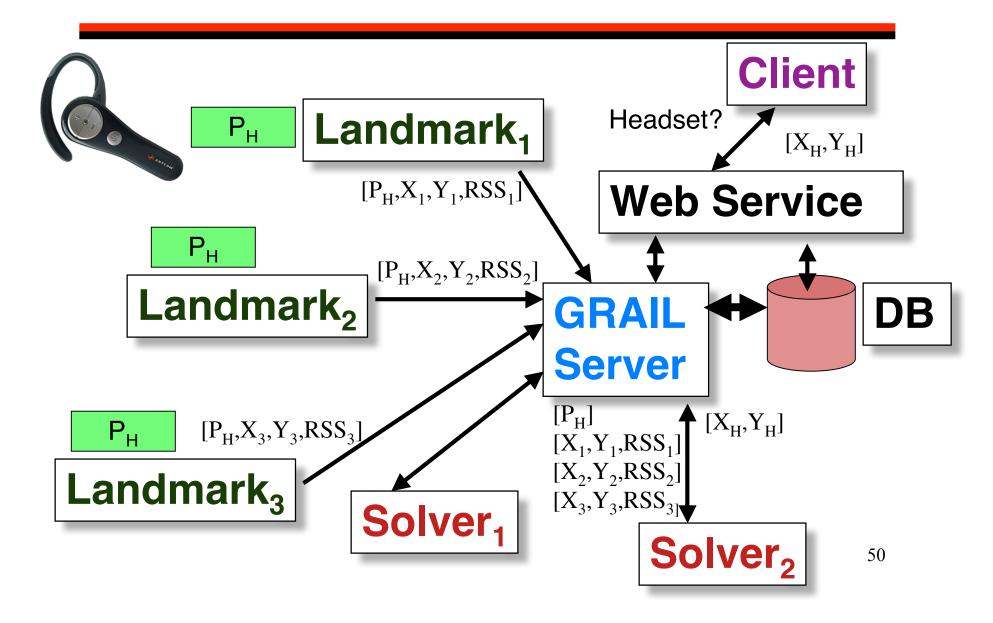
Future Challenges

- What are the broader roles & contracts
 - Who needs to be involved to realize universal localization?
 - Who owns the information, how do they control it?
 - Can we build systems to match these expectations?
- Community
 - Fragmentation between ubicomm, WLAN, Telecom
- Location stacks
 - Standards between technologies and roles?
- Increasing accuracy to 1 meter
 - Add to the communication stack's physical layer?
 - Finer clocks, reflectors, angular measurements
 - Additional infrastructure to communication layers?

Conclusions

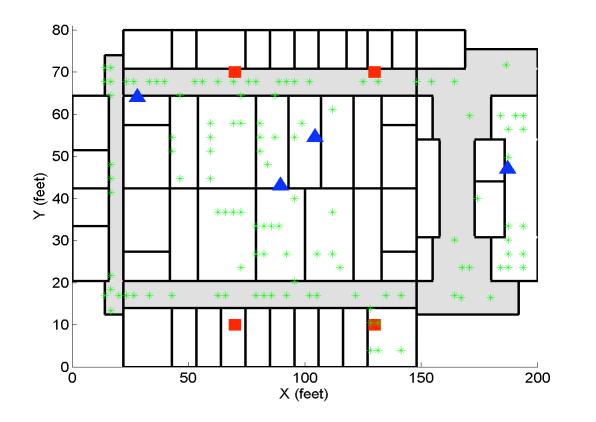
- Time to defocus from algorithmic work
- Localization of all Wireless will happen
 - Expect variety of deployed systems
 - Demonstration of cost/performance tradeoffs
 - Islands first, then interconnect the islands
- Technical form, social issues not understood

Backup Slides


Communities

- Ubiquitous Computing
 - Mark Weiser's *Scientific American* article (1991)
- Sensor Networks
 - E.g. Sensys conference
- Mobile Computing
 - E.g. Mobicom, Mobisys conferences
- Local Area Wireless
 - E.g. Infocom, Local Computer Networks (LCN)
- Telecom
 - E.g. Globecom

Leverage communication as much as possible


- Add to the communication physical layer
 - High frequency clocks
 - Precise echo (measure RTT)
 - Coarse angle estimation (sectors)
- How to expose at layer-2

Area Layer: GRAIL

Communication vs. Localization

- Resource use for Localization vs. Comm.?
 - Ideal landmark positions not the same as for comm. coverage [Chen 2006]

