
Building Sensing Applications with
the Owl Platform

»Presented by Richard Martin

»And more, including
»Robert Moore, Bernhard Firner,
»Yanyong Zhang, Richard Howard,
»Eitan Fenson, and many others

The Opportunity

Today: 1 million transistors per $

Moore’s Law: # transistors on
cost-effective chip doubles every 18
months

years

Computers
Per Person

103:1

1:106

Laptop

Mainframe

Mini

Workstation
PC

Cell
1:1

1:103

Bell’s Law: a new computer class
emerges every 10 years

Same fabrication technology provides CMOS radios for
communication and micro-sensors

Tag

The Vision

Down the garden path of sensor networks

Programming a sensor network:
• Multi-hop

• Ad-hoc

• Aggregation and compression

• Energy conservation of whole application is paramount

• Novel operating systems, programming languages and
environments

0
1

12

2
2

22

A rose by any other name

• 1999 Smart Dust
• 2000 Sensor Networks
• 2004 Internet of Things
• 2005 Ambient Intelligence
• 2009 Swarms

• ~15 years on, we still have not realized the vision.

 What happened?

Problems

• Problems people talked about:
– Energy conservation
– Scaling number of sensors
– Efficiency of code data size in small sensors
– Routing

• More meaningful problems:
– Too expensive for application domains
– Difficult to develop applications
– Can't re-use infrastructure
– Not general purpose

Owl Platform

Novel constraint:
Enable application development by undergraduate level programmers

Standard languages, programming environments

Separation of concerns:
• Application developer: what is the data and app logic?
• Sensor designer: hardware and interface to aggregation layer
• System administrator: keeping the system running

Solves energy and scaling issues differently
• Move to the sensor designer level, leave the app out of it.

A Different Model: Layers

• Sensors connect to an
intermediate layer that hides
details

• Solvers build higher-level
representations from low-level
ones

• A uniform model of the world
allows sharing

• Applications run in standard
environments in the cloud

Layered Model – cont.

Layering allows for separation of concerns
- Sensor designers

- Deployment/ IT staff

- Solver/Algorithm developers

- Application developers

Each layer exports interfaces and methods
- libraries for different languages (Java, C++, Ruby)

 Components communicate by state in the aggregator and world
models.
- components (solvers, application) use network
- allows for proprietary solvers, open source system

Sensor examples

Chair occupancy Door open/close Kinect Skeleton

Coffeepot Temperature Power Consumption Phone Tracking

Owl sensor model

I want to add sensed data. What do I do?

An adaptation layer puts the sensor data into this format:

Physical layer, Source Sensor ID, Target ID,Time, Signal
Level, Sensed Data

Sends the above over the Internet to the aggregator

World model

World server holds a model of the world
 - Shared state between applications

 - Partitioning of the name space between applications

The world is a hierarchical name space of variables
 - Similar to LDAP, Windows Registry, SNMP MIB

 - Balance of structure, open-ness

Variables have types, times, and an origin

World Model Data Format

World Model Data Format – cont.

Object URI name:
Example: edu.rutgers.owl.makefaire.keys

Attributes/Data: - similar to fields in a data structure
Attribute is a string, data is binary

Examples:
• Mobility 0/1
• Person1 : XY points of a kinect skeleton

Origin: - who or what created the data
Could match to a public key – not done yet

Created/Expires:
When was the data created, and how long is it valid?

Owl solver chains

Semantic
Meaning

High level
Solvers

Low level
Solvers

Sensor
Data

Owl application patterns

SMS/Email AlertsSMS/Email Alerts Status MapsStatus Maps

Example Owl application patterns- cont.

ReportsReports Physical ActuationPhysical Actuation

Deployed App: Monitoring Animal Laboratories

Short timescales: Operations (notifications)

Long timescales: Veterinarians (reports)

Temperature
Light
Doors (switch)
Humidity

Deployed App: Home Monitoring

Putting it all together: Demo Panels App

Putting it all together: Demo Panels App

Door Open/ClosedDoor Open/Closed

Putting it all together: Demo Panels App

 Standing Water Standing Water
DetectedDetected

Putting it all together: Demo Panels App

Lights ON/OFFLights ON/OFF

Putting it all together: Demo Panels App

ChairChair
OccupiedOccupied

Putting it all together: Demo Panels App

Left withoutLeft without
Wallet and KeysWallet and Keys

Wallet and Keys application

 When (the door changes state to open)

 Foreach item in [wallet, keys]

 If (the item has not moved in the last 10 seconds) then

 add it to the list of missing items

 If (the list is non-empty)

 send an alert with the list of missing items.

Solver chain for the Wallet and Keys panel

Demo Panels App

Wallet and Keys Solver

Binary State Solver
(Door)

Mobility Solver
(Keys and Wallet)

Binary State and Mobility Solvers

Binary state:
Read sensor value, put open/closed state in the world

model

Mobility detection:
Read wireless received signal power over period of N

seconds
If signal variance is over a threshold, change object's

state to moving in the world model

Owl Lines of Code

Li
ne

s
of

 C
od

e

30

Other Applications

• Leak detection

– Sense standing water, email/SMS if water detected
• Office space assignment

– Sense door open/closes, assign new students to lightly used
offices

• Fresh Coffee

– Sense temperature of coffee pot, email/SMS if a temp spike
• Chair Stolen

– Email/SMS if a chair is moved away from the owner's cubicle
• Loaner Bicycle Inventory

– Count # of bicycles in a room to see if one is available.

31

Evaluation of ease of development

Perform a user-study in next 3 months.

Have undergraduates develop simple application in Owl and
another system (Smartthings)
Send an alert when 3 door sensors are triggered in order within a time

window.

Metrics: learning time, development time, lines of code,
functionality, code quality.

Experiment has passed human subject review approval process

32

Conclusions and Future Work:

Conclusions:
● Application development simplified
● Codebase to accomplish sensor applications surprising

small

Future work:
● Leverage origin ID for security and privacy
● Continue to add applications in student seminars and

projects
● Need to add actuation layers for next version

33

Owl Resources:

Main Developer's page:

 http://www.owlplatform.com/developers.php

World Model:

 https://github.com/OwlPlatform/world-model

Aggregator:

 https://github.com/OwlPlatform/aggregator

Makerfaire Demo Application:

 https://github.com/romoore/maker-demo

Wallet and Keys solver:

 https://github.com/romoore/wallet-and-keys

Binary state solver (switch):

 https://github.com/OwlPlatform/binary_state_solver

Signal strength solvers (mobility):

 https://github.com/OwlPlatform/signal-strength-solvers

34

Backup slides

Backup slides

Lines of Code

World Model (C++): 6274

Aggregator (Java) : 1439

Makerfaire Demo Application (Java): 1142

Wallet and Keys solver (Java): 507

Binary state solver (switch) (C++): 273

Signal strength solver (mobility) (C++): 244

Finding Variables in the World Model

StepResponse mobilityResponse =
this.asClient.getStreamRequest(itemIds,

 System.currentTimeMillis(), 0, mobilityAttributes);

 StepResponse doorResponse =
this.asClient.getStreamRequest(doorIds,

 System.currentTimeMillis(), 0, doorAttributes);

 try {

 // Keep going until an error or a mobility update

 while ((!mobilityResponse.isComplete() &&

 !mobilityResponse.isError() &&

 (!doorResponse.isComplete() && !doorResponse.isError())) {

 if (mobilityResponse.hasNext()) {

Connecting to the World Model

StepResponse mobilityResponse =
this.asClient.getStreamRequest(itemIds,

 System.currentTimeMillis(), 0, mobilityAttributes);

 StepResponse doorResponse =
this.asClient.getStreamRequest(doorIds,

 System.currentTimeMillis(), 0, doorAttributes);

 try {

 // Keep going until an error or a mobility update

 while ((!mobilityResponse.isComplete() &&

 !mobilityResponse.isError() &&

 (!doorResponse.isComplete() && !doorResponse.isError())) {

 if (mobilityResponse.hasNext()) {

Example aggregator code

/** Connection to the aggregator. using "poll" */

 SolverAggregatorConnection agg = new
SolverAggregatorConnection();

 if (!this.agg.connect(10000)) {

 System.err.println("Unable to connect");

 return false;

 }

Example aggregator code

/** Connection to the aggregator. using "poll" */

 SolverAggregatorConnection agg = new
SolverAggregatorConnection();

 if (!this.agg.connect(10000)) {

 System.err.println("Unable to connect");

 return false;

 }

Connecting to the Aggregator (cont)

 SubscriptionRequestRule everythingRule = new
SubscriptionRequestRule();

 everythingRule.setUpdateInterval(0l);

everythingRule.setPhysicalLayer(SampleMessage.PHYSICAL_LAYER_AL
L);

 this.agg.addRule(everythingRule);

 SampleMessage sample = null;

 while ((sample = this.agg.getNextSample()) != null) {

 Attribute attr = new Attribute();

 // If the RSSI value is above threshold, say it's "nearby".

 if (sample.getRssi() > RSSI_THRESHOLD) {

 System.println("Chair is nearby");

 }

41

Sensor simplicity

• Sensor node cost is a limitation for many applications

– Applications enabled at sensor cost of $100, $10, $1, 10¢, 1¢ ?
• Cost assumptions based on scaling Moore's law real omit real constraints

– 15 years show these constraints are fundamental

• Cost is driven by the number and type of components, not Moore's law!

• TO reduces costs by several factors

– enough to expand the application space ($80->$10)
• Marginal costs will only go down if there is a true single-chip sensor

– But high fixed costs remain a barrier for a true single chip
solution!

42

Two wireless sensor boards

Micro controller

Radio

Battery

Antenna

Transmit-Only
TO-PIP(2013)

Classic
TelosB (2004)

43

Component counts

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 19
	Slide 20
	Slide 21
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

