
Model Based Validation

Presented by: Rich Martin

Joint work with: Andrew Tjang, Fabio Olivera
Thu D. Nguyen, Ricardo Bianchini,

Rutgers University

Presented at Ask.com, Piscataway, May 2006

2

Availability of Computer Systems

• Poor availability
– Typical PC 1 nine (90%, downtime: ~1 month/yr)
– Department server: 2 nines (99% ~3 days/yr)
– Large service: 2-3 nines (99%-99.9%, ~10 hours/yr)
– Mega service: 4-5 nines (99.99%-99.999%, ~ 30min/yr)

• Can high availability become ubiquitous?
• Make at least 1 order of magnitude cheaper.

– Don’t want pay $5,000/line of code
– Don’t want to hire a 1000 PhDs

3

How to improve?

• Top 2 sources of unavailability
– Software bugs
– Human/system interaction

• operator in broadest sense

• These are unchanged for decades
• Tandem Survey 1984 - DBMS admin survey, 2006

• Unlikely to improve without new paradigms,
metrics and techniques

• Resulting high cost will limit applications

4

Human-Aware System Design

• The human is part of the system
– Human mistakes a primary cause of failures in systems

• Make human-system interaction a first-class design concern
– Understand operator actions and mistakes
– Techniques to avoid, tolerate, diagnose, and correct

mistakes

• How is this related to Human-Computer Interaction (HCI)?
– (Re) design system with human mistakes in mind
– HCI efforts focused on ease-of-use and cognitive models
– Complementary since we are exploring system support for

human operation of complex systems
• E.g. better interfaces are good, but a human-mistake tolerant

system is even better

5

Talk Outline

• Motivation
• Human aware system design
• Our approach: Validation
• A language overview

– Language and implementation
• Using A
• Evaluation
• Conclusions & future work

6

Our Approach: Validation

• Previous work: Component Validation
– Avoid mistakes by testing a component before use
– Replica + trace based
– Assumed we had working replicas to compare
– Assumed we had workloads to exercise
– Human factors study: 60% mistakes caught, 40% missed

• This talk: Model based validation
– Build a model of correct behavior
– Check the model against the running system before, during

and after a human interaction
– Take action when system deviates from the model

7

Approach

• (1) Building models of a correct system
– Relevant concerns:

• Performance, Resource Allocation/Exhaustion, Connectivity,
Security, Configuration, Content

– High level modeling paradigms
– A new language to specify correctness: the A language

• General as possible to allow multiple modeling paradigms
• Language facilitates multiple people contributing to a model

– Encode steps to performing a human task
– An A program realizes the model

• (2) Checking the model
– Job of the A program runtime

8

Approach, cont

• Checking the model
– Compile an A program and run it
– A language runtime:

• Gathers state from real system and performs checks
• Presents operators a set of possible tasks
• Within each task set of actions and checks
• Outputs when assertions failed
• Outputs when actions not completed in time
• Open: Actuation when assertions failed.

9

A Language Users and Goals

• Target: describe complex computer systems and
human interactions

• Many interacting hardware/software components
• A Programmers:

• System designers
• Senior operations staff

• Users:
• Operations staff
• System auditors

• Uses:
• Description of correct behavior
• Alarms and alerts
• Future: actuation, diagnosis

10

Contributions

• Why not use a custom solution?
E.g. Ad hoc scripts and alarms

• A: Formalizes correctness checking
– Tractable to translate models into working code
– Easier to reason about coverage, complexity

• Run-time: Single observation point
– Easier development, verification, debugging

• Approach helps force proactivity as opposed to
reactivity

11

Talk Outline

• Motivation
• Human aware system design
• Our approach: Validation
• 3 Model paradigms
• A language overview

– Language and implementation
• Using A
• Evaluation
• Conclusions & future work

12

Approaching A programs

• Goal: a higher-level structure
– E.g libraries for various tasks

• Analogy: Collections, Strings in programming languages

• What are the modeling paradigms?
– No one model captures everything
– Our approach: graph representations of different

aspects of the system

13

3 Modeling Paradigms

Paradigm: method to express invariants
– Flow

• Nodes are computations, edges are messages
• Assertions: throughput, latency, connectivity, capacity

– Sub-Component
• Nodes are computations, edges are sub-components
• Assertions: type/number of subs failed implies overall is is failed

– Security
• Access Control Matrix
• Nodes are users and resources
• Edges: allows/access
• Assertions: sets of allowable edges

14

Flow model

Client
Requests

Web ServerWeb Server

Application
Server

Application
Server

Application
Server

Database

•Applies to any message
passing system
•Reason about flows of
messages
•Load introduces flow
•Elements introduce capacity
restrains

15

Flow Assertions

• High-level flow assertion concepts:
X connected to Y
Flow <= capacity of a component
Flow >= 0
Flow in == flow out
Flow.regression < max_slope
Flow.std_dev < max_deviation

• Each of these must be fleshed out with low-
level assertions
– E.g. what does “assert connected” mean?

• Ping, HTTP response, Special heartbeat, etc.

16

Sub-Component Model

Entire Service working?

Web, Application Servers, Databases

Nodes, Links, Switches, Routers

Process, Files, Tables

Sites, ISP, Power, AC OK?

CPU, Disk, memory

Busses, Cache, Channels

DAG

17

Security Model

Rich

Andrew

Fabio

Class Roster

Final Grades

Assignments

Users Resources

Access Control Matrix
Bipartite Graph

18

Talk Outline

• Motivation
• Human aware system design
• Our approach: Validation
• 3 Model paradigms
• A language overview

– Language and implementation
• Using A
• Evaluation approaches
• Conclusions & future work

19

A: Program Structure

• General purpose assertions bound to run-
time system state

• Libraries for specific objects and properties
– Connectivity
– Flow
– Capacity
– Latency
– Users
– Resources

20

A: Language Abstractions

• System state: (3 types)
• Elements (hardware/software components)
• Static Input (Configuration files)
• Stream output (Logs)

• Bindings
• Elements/Configs/Logs bound to real system objects

• Assertions
• Tasks (Sequential human execution)

21

Example A code

element loadbalancer {
 (IP address);
 stat net.requests;
 stat net.responses;
}

element webserver {
 (IP address);
 stat requests;
 stat responses;
 stat throughput;
 stat utilization;
 element CPU;
}

element CPU {
 stat utilization;
 stat idle;
}

ws1::webserver(“/192.168.1.1/");
ws2::webserver("/192.168.1.2/");
wsboth::webserver("/[192.168.1.1|192.168.1.2]/");
wsall::webserver("/192.168.*/") ;
lb::loadbalancer("192.168.0.1");

assert overload (wsall..CPU.utilization < 0.90) { }
else {

log(“A webserver is overloaded”)
}
assert balanced
 (ws1.CPU.utilization == {20} ws2.CPU.utilization) {

freq=1s;
ON;

} else {
log(“Backends are not balanced”);

}

22

Example A code

element loadbalancer {
 (IP address);
 stat net.requests;
 stat net.responses;
}

element webserver {
 (IP address);
 stat requests;
 stat responses;
 stat throughput;
 stat utilization;
 element CPU;
}

element CPU {
 stat utilization;
 stat idle;
}

ws1::webserver(“/192.168.1.1/");
ws2::webserver("/192.168.1.2/");
wsboth::webserver("/[192.168.1.1|192.168.1.2]/");
wsall::webserver("/192.168.*/") ;
lb::loadbalancer("192.168.0.1");

assert overload (wsall..CPU.utilization < 0.90)
else {

log(“A webserver is overloaded”);
}
assert balanced
(ws1.CPU.utilization == {20} ws2.CPU.utilization) ({

freq=1s;
ON;

} else {
log(“Backends are not balanced”);

}

Element

23

Example A code

element loadbalancer {
 (IP address);
 stat net.requests;
 stat net.responses;
}

element webserver {
 (IP address);
 stat requests;
 stat responses;
 stat throughput;
 stat utilization;
 element CPU;
}

element CPU {
 stat utilization;
 stat idle;
}

ws1::webserver(“/192.168.1.1/");
ws2::webserver("/192.168.1.2/");
wsboth::webserver("/[192.168.1.1|192.168.1.2]/");
wsall::webserver("/192.168.*/") ;
lb::loadbalancer("192.168.0.1");

assert overload (wsall..CPU.utilization < 0.90)
else {

log(“A webserver is overloaded”);
}
assert balanced
(ws1.CPU.utilization == {20} ws2.CPU.utilization) {

freq=1s;
ON;

} else {
log(“Backends are not balanced”);

}

Element Bindings

24

Example A code

element loadbalancer {
 (IP address);
 stat net.requests;
 stat net.responses;
}

element webserver {
 (IP address);
 stat requests;
 stat responses;
 stat throughput;
 stat utilization;
 element CPU;
}

element CPU {
 stat utilization;
 stat idle;
}

ws1::webserver(“/192.168.1.1/");
ws2::webserver("/192.168.1.2/");
wsboth::webserver("/[192.168.1.1|192.168.1.2]/");
wsall::webserver("/192.168.*/") ;
lb::loadbalancer("192.168.0.1");

assert overload (wsall..CPU.utilization < 0.90)
else {

log(“A webserver is overloaded”);
}
assert balanced
 (ws1.CPU.utilization == {20} ws2.CPU.utilization) {

freq=1s;
ON;

} else {
log(“Backends are not balanced”);

}

Element Bindings

Assertion

25

Aggregates

assert overload (wsall..CPU.utilization < 0.90) {
freq=1s;
ON;

}{
log(“A webserver is overload”)

}

• Aggregate supports replication
• Typed at binding time
• Operator applied to each element
• Assertion fails if any fails (implicit and)

Aggregate operator

26

Assertion Hierarchy

assert loadOK (load_1_OK && load_2_OK)
else {

//Action Block
}

assert load_1_OK (ws1.cpu.utilization <= 0.80)
else {

log(“workstation 1 overloaded”)
}

• Can specify assertion name in an expression
• Sub-assertions evaluated in response to parent

assertion
• Assertion will be evaluated at rate of fastest parent

27

Configuration and Log files

config WS_Apache{
:httpdconf: “Drivername”
 single docroot = /root/DocumentRoot, "";

 :workprop: “Drivername”
 set appservers = /root/workers, ",";

}
log Apache_logs{ "/scratch/httpd/logs/error_log";

"/scratch/httpd/logs/modjk_log";
 }

• Must convert config files to XML
– Values the results of Xpath queries

• Elements have attached configs and logs
• Usage example:
 … ws1.config[httpdconf].docroot == …

28

Stat primitive type

• Abstracts temporally sampled data
– E.g.: CPU load, packets through interface

• Appears as an element field
• Statistical properties:

• Mean, median, exponential weighted, variance, linear
regression (slope/intercept)

• Each is a single real value

• Sampling properties:
• Frequency, number of samples

29

Tasks

• Method to abstract human actions
• Only way to specify sequential execution
• A task is a set of assertions separated by

wait statements
• Waits have:

• a timeout
• else clause if timeout fails

• Assertions may be scoped task only or global
– Task only valid during task

30

Task Example

Task Add_ApplicationServer {
name = "Add application server"; } {

var ws_all_cfg_1_appservers_before =
ws_all..config[workerprop].appservers;

call balanced; // call a named assertion

wait("Begin Task") { timeout = 300000; freq = 1.0; }
else{ log(“operator abandoned task”); break; };

wait("Begin Validation!") timeout = 300000; freq = 1.0; }
else{ break; };

assert appserversSuperSetOfJvmRoutes
(ws_all..config[workerprop].appservers.superset(as_add.config[serve
rXML].jvmroute))
{taskonly; } else{ };

31

Execution Model

• Assertions checked using specified timing
– Assertion can fire at own rate
– Also fires at rate of the parents

• Sequential execution specified in tasks
• Waits can be for a boolean expression to

become true, or for an operator to click a
button.

32

Talk Outline

• Motivation
• Human aware system design
• Our approach: Validation
• 3 Model paradigms
• A language overview

– Language and implementation
• Using A
• Evaluation approaches
• Conclusions & future work

33

Runtime Architecture

• A program compiled to Java classes
• Must use elements with a run-time definitions
• Configs in XML
• Logs are text files

• Adding new Elements/config/logs type
means writing a new driver
– Defined API to rest of system
– Must be able to get access to system state

• E.g. SNMP-like protocols

34

Run Time Architecture

Web
Server

App
Server

App
Server

Database

Client Requests

Directory of Active Monitors

/ws1/cpu

/ws1/config

/ws1/log

MSO Store

ws1

WebServer Element

 /ws1/apache
 /as1/tomcat
 /as2/tomcat
 /db1/apache

Assertion Queue

Assertion
SchedulerRunning

Assertion

Integrator

3-Tier Service

hn: ws1

cpu
log

config

35

Example compile and run

% /path/to/parser MainClass < source.a
% cp MainClass.java

/path/to/vivo/source/aprograms
% cd /path/to/vivo/source/aprograms
% make
% /path/to/vivo/scripts/vivo restart

36

Talk Outline

• Motivation
• Human aware system design
• Our approach: Validation
• A language overview

– Language and implementation
• Using A
• Evaluation approaches
• Conclusions & future work

37

Evaluation

• Hard to evaluate!
• Metric: How effective are A programs at

signaling a faults during human interactions?
• Measure cost and benefit:

– How effective are a collection of programs?
– How difficult is it to write such code?
– Evolve with the system?

38

Evaluation Strategy

• Create models of a service
• Write A programs for various tasks
• Create a representative set of mistakes
• Evaluate program’s ability to catch mistakes

on these tasks

39

Test Service and A program

• Service: 3 tier auction (RUBiS from Rice U.)
• A program:

– 8 Libraries
– 49 assertions in the libraries
– 749 lines in the libraries
– 4 tasks

• 125 lines in the tasks
– 874 lines total

• Small size of tasks encouraging result

40

Operations Tasks

• Add an upgraded web server
• Add an upgraded application server
• Add a load balancer
• Add a database to the DMBS

41

Mistake Injection Experiments

• 11 representative mistakes
– Subtle, non-obvious, realistic

• Sources:
– Previous human factor study of live operators
– Survey of DMBS administrators
– Reports in the literature

• None would have been caught with prior
work on replica or trace based validation

42

Mistakes (I)

1. LVS ARP Problem
2. Web-server not compiled with membership

protocol
3. Time-to-Live of membership heartbeat

wrong
4. Wrong port numbers on webserver
5. Number of connections to DB exceeded
6. Wrong front end load balancer policy

• Least Connections vs. Round Robin

43

LVS ARP problem

Web ServerWeb Server

•Load balancer distributes
incoming packets

•Web servers send outbound
packet directly to clients,
reducing traffic on balancer

•All must share 1 IP address

•Web servers must be set to
ignore ARP requests for shared
IP address

•Failure results intermittent loss
of requests

Load
Balancer

Client packets

44

Mistakes (II)

7. Web server load balancer misconfigured
8. DMBS performance parameters set too low
9. DB admin account has no password
10.Any machine can access the DB
11.Allowing any user to grant/revoke privs on

the DB.

45

Results

• Caught 10 of the 11 mistakes
– Uncaught: web server not complied with support

for membership protocols
– Assertion must check of the web-server is

attached to the correct shared memory segment.
• Example points to bottom-up approach

– Write assertions for known mistakes/faults so they
do not happen again

46

Future Work

• More experience:
• Production systems (or a copy)
• Production tasks
• Other large/complex systems
• More mistakes

• Actuation: What to do when an assertion fails?
• Low-level assertions may not be that important
• When to ignore? How to prioritize?

• Monitoring: Can we tell when a fault occurred?
• Diagnosis: Can low-level assertion failures help

pinpoint problems?
• Higher-level human interaction?

– E.g., visual programming/diagramming

47

Conclusions

• First step to make systems more robust to
human mistakes

• New programming language to increase
availability

• Catches subtle, non-obvious mistakes
• Appears to be a good match

– Needs more actual use to evaluate

48

Backup slides

49

A language definition (1)

See herewait on condtion to be true
wait(<conditional>) {

<waitproperties> }
else{ <action in the event of timeout>}

See herewait on user action
wait(”<somestring>”) {

<waitproperties> }
else{ <action in the event of timeout>}

var utilBefore =
ws_one.cpu.util ization

stores current value of <property>
in <varname>var <varname> = <property>

See heretask definition
task <name> {

name=<taskname>}
{ <vars><waits><assertions>}

See hereassertion definition
assert <name> (<conditional>){

<assertproperties>}
else{ <actions>}

See herebinding::

ExampleMeaningSyntax

A Program: Common Syntax

50

A Language definition (2)

ws_one.log[httplog].without(”Error
message”)opposite of .contains.without()

ws_one.log[httplog].contains(”httpd
started”)checks if value appears in log fi le.contains()

ws_one.config[httpconf].portnumberconfig parameter value in the config fi le bound to the
variable fi levar.config[”<filevar>”].<paramname>

MEAN(COLLECT(ws_all..cpu.util izati
on))aggregate meanMEAN()

SUM(COLLECT(ws_all..cpu.util izatio
n))aggregate sumSUM()

see usage belowused to collect all values in an aggregateCOLLECT()

EQUALS(ws_all..cpu.util ization)aggregate equal to (all elements equal)EQUALS()

ws_one.cpu.util ization ==
ws_two.cpu.util izationlogical operators==,>,<,>=,⇐

ws_one.cpu.util ization >= 0.80 *
ws_two.cpu.util izationarithmetic operators+,-,/,*

ws_all..cpugroup element separator..

ws_one.cpuelement separator.

break;halt an operator taskbreak;

