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Abstract— We investigate the impact of landmark placement on of minimizing the distance estimation error together whie t
localization performance using a combination of analytic ad employment of the optimal patterns for landmark placement.
experimental analysis. For our analysis, we have derived an \ging this result, we can compare the maximum error between
upper bound for the localization error of the linear least squares .
algorithm. This bound reflects the placement of landmarks as any two plapgmgnts. We Ca_n then constrain a search of place-
well as measurement errors at the landmarks. We next develop Ments to minimize the maximum error. We have developed a
a novel algorithm, mazL — minE, that using our analysis, finds a simple algorithm callednaxzL — minE algorithm that finds an
pattern for landmark placement that minimizes the maximum lo- optimized landmark deployment for the LLS algorithm.
calization error. To show our results are applicable to a vafety of - \ye show that our placement minimizing the upper bounds
localization algorithms, we then conducted a series of lotization N .
experiments using both an 802.11 (WiFi) network as well as an of LL,S also redu?es the Holder paramete_r for a varle.ty of
802.15.4 (ZigBee) network in a real building environment. Vé use ~ @lgorithms. The Holder parameter [7] describes the maximum
both Received Signal Strength (RSS) and Time-of-Arrival (BA) change in physical space that can arise from a change inlsigna
as ranging modalities. Our experimental results show that or  gpace. This is strong evidence that @wrzL—minE algorithm
landmark placement algorithm is generic because the resuflg - fin4g 5 Jandmark placement that minimizes the errors due to
placements improve localization performance across a divee set - .
of algorithms, networks, and ranging modalities. noise, b"f"s’ and.measurement error. L

Another interesting result of our analysis is that for a $mal
number of landmarks, simple shapes such as equilatenat tria
gles and squares result in placements with better locidizat
Localization of nodes in wireless and sensor networks performance. Interestingly, for higher number of landmsark
important because the location of sensors is a criticaltinpwe can show that extensions of shapes with equal sides, e.g. a
to many higher-level networking tasks, such as trackingymohexagon, are non-optimal. Rather, the simple shapes enclos
itoring and geometric-based routing. Although recent ri$fo one another, for example, two enclosing equilateral tliesg
have resulted in a plethora of methods to localize sensas)jodVe detail these geometries and describe rule-of-thumb for
little work to date has systematically investigated how theandmark placement in Section Il
placement of the nodes with known locations,landmarks, To show the generality of our results, we conducted local-
impacts localization performance. In this work we investeg ization experiments with both an 802.11 (WiFi) network as
the impact of landmark placement on localization perforceanwell as an 802.15.4 (ZigBee) network in a real building
using a combination of analytic and experimental analysis.environment. For the 802.11 network, we used two ranging
Our analytic approach focuses on the Least Squares (UBydalities, Received Signal Strength (RSS) to distancd, an
algorithm, and in particular, a variant we call Linear Leaskime of Arrival (TOA). In the 802.15.4 network, we used only
Squares (LLS). Our analysis centers on the algorithm for tWwRSS-to-distance.
reasons. First, LS is a widely used multilateration aldgnit We compared the accuracy of a suite of localization algorith
as is evidenced by its application as a step in many recersing landmarks placed according to our analysis as well
localization research works [1]-[5]. Second, mathemhéticas landmarks placed in positions that provide good signal
analysis of LLS is tractable, resulting in equations withseld- coverage but ignore localization concerns. While we founad t
form solutions. For a myriad of other algorithms, closedrfor all algorithms improved their performance, over a non+ogti
solutions that describe the localization error as a fumctd placement for localization, we also observed that LS became
landmark placement are not tractable and as a result heurisbmpetitive with the other algorithms, and that coarséngc
search strategies must be used to find an optimal placem@i®A ranging was less accurate than RSS-based approaches.
as was done in [6]. The remainder of the paper is as follows. Section Il discsisse
Our analysis of landmark placement can find an optimatevious research in localization. We provide the theocaéti
placement of landmarks in well-defined regular regionssthanalysis in Section Ill. Then Section IV describes the rostri
making it quite suitable for indoor localization. The armdy that we use to characterize the localization performanbe. T
begins with LLS and places an upper bound of the maximuimvestigation of the number of landmarks and their posgion
localization error given a set of landmark placements. We cé& provided in Section V. Section VI presents the experirmkent
show that this upper bound is minimized by a combinatia®sults across localization algorithms, networks, andjiran

I. INTRODUCTION



strategies. Finally we conclude in Section VII. [1l. THEORETICAL ANALYSIS

In this section we first provide background on using LS
II. RELATED WORK algorithms for localization, and then describe the LLS amati

We next present our theoretical analysis of an upper bound
There have been many active research efforts developmg the error, and then discuss ownzL — minE placement
localization systems for wireless and sensor networks. Véégorithm.
cannpt cover the enti.re body of yvorks in thi; se.ction. I_?athe;{. Background: Localization with LS
we give a short overview of the different localization stgies o . ] )
and then describe the works most closely related to ours. 10 Perform localization with LS requires 2 steps: ranging an
The localization techniques can be categorized along akvdgteration. _
dimensions. Range-based algorithms involve distancenasti Ranging Step:Recent research has seen a host of variants on
tion to landmarks using the measurement of various physid3f ranging step. For example, in the APS algorithm [2], hop
properties [8] like RSS [9], [10], Time Of Arrival (TOA) [1] counts are used to estimate ranges. Other approaches @are als
and Time Difference Of Arrival (TDOA) [11]. While range- possible, [11] used the tlme_—d|fference of qrnval between
free algorithms [2], [12] use coarser metrics to place bswrd ultrasound pulse and a ra_dlo packet_. In this work, we focus
candidate positions. Another method of classification dees 0" RSS and TOA as ranging strategies.
the strategy used to map a node to a location. Lateration &gieration Step: From the estimated distancésand known
proaches [1]-[5], use distances to landmarks, while atignla POSItions ¢i, y;) of the landmarks, the pOASItIOI’.’r.,(y)_ of the
uses the angles from landmarks. Scene matching stratedf¢&/izing node can be found by findin(@, 7) satisfying:

[9], [10], [13], [14] use a function that maps observed radio N
properties to locations on a pre-constructed radio map or (i, ) = argmin Z[\/(Ii 22+ (i -y —di)? (1)
database. Scene matching is often used in indoor enviroismen w4

because local conditions distort the signal propagatiomfr |\ hare N is the total number of landmarks. We call solving

free space models. Finally, a third dimension of classificat the above problenNonlinear Least Squares, or NLS. It can
extends to aggregate [12], [15] or singular algorithms.tht o \jiewed as an optimization problem where the objective is
work, we focus on indoor localization and we do not con3|d% minimize the sum of the error squared.

multi-hop _situation_s. ) . ) .. Solving the NLS problem requires significant complexity and
Our work is novel in that instead of improving the localipati is difficult to analyze. We may approximate the NLS solution

algorithms themselves, we focus on improving the deploymey},  jinearize the problem by introducing a constraint in the
of landmarks, and this should help a wide variety of alg%rmulation We start with theV > 2 equations:
rithms. ' - '

[16] used simple linear and multiple regression methods (r1 —2)°+ (1 —y)? = &
to estimate the signal strength model. With simulation, it (ma —2)2+ (o — )2 = d2 @)
analyzed the relationship between standard deviation of lo
cation error and signal strength error for a few Access
Point (AP) configurations. However, they did not analyze
for the optimized geometry of AP deployment and provide
experimental comparison as we have in our work. Anoth&0w, subtracting the constraint v
work presented a theoretical model for RSS-based location 1 Z[(x’ — 2+ (g — )% = 1 ng
estimation accuracy and examined placement, but did not find N ! ! N P ’
optimal solutions [17]. [6] developed a set of heuristicrsha ) _ ) ) )
algorithms to find optimal AP deployment for a balance drom both sides, we obtain the following set of linear eqossi

signal coverage and location errors. Compared to our simple

(zn —2) + (yv —y)* = dx

®3)

=1

N N

approach, the heuristic search algorithms are more complex 1 _ 1 N

. . (1 — — zi)x + (y1 — — Yi)y =
and time consuming. The results were only shown for the N — N —
probability matching algorithms, thus may not be general fo N N N
other type of algorithms. %[(mf - %Zz?) i ;V ny) (2 - % de)]
Finally, a large body of works have examined AP placement i=1 i=1 i=1
to maximize coverage and throughput properties of wireless :
LANs and sensor networks. We do not cover these works N . )
here, excgpt to say that future work would be to examine the (e — %Zz)z + - % Zyi)y _
tradeoffs in landmark and AP deployment assuming they use — —
the same hardware, although this does not need to be the case. N N N
Recall that landmarks provide a node with signals from known2 (2, — ~ sz) I R N RNC - Zd?)}.

. . . . N N N
locations, while APs provide media access control as well as i=1 i=1 i=1

gateways into the wired network.



The above can be easily solved linearly using the formith:
Ax = b with:

N N
1
a = E (i — N E xi)? (10)
Il*Z{;Zj\;]Ii ylfjlvz:ivzlyi

A- . . ® b= e+ Y wm- e dow)] @D

TN — ¥ Zil T YN — Zil i izzvl j\,:l
1 2
and c o= > (- N > w)” (12)
i=1 i=1
N N
S S NN N

Note that a, b and c are only related to the coordinates of
landmarks £;, ;). The eigenvalues cA” A can be found as
the roots of:

G DI
: ®)
@} -2 2+ h - E NN )
—(d% - %3N d?) N — (a+ )X+ (ac —b*) = 0.
Note that A is described by the coordinates of Iandmark-ghus’ we have:
only, while b is represented by the distances to the landmarks (a+c)+/(a—0)2 + 46
together with the coordinates of landmarks. We call the abov A= 5 )
formulation of the probleniinear Least Squares, or LLS. NLS L 9 5 )
trades higher computational complexity for better acopradVhere the discriminanta — ¢)® + 4b%, is non-negative.
The introduction of the constraint collapsed the nonline@. peployment Patterns
problem !nto a linear proplem, whlch_greatly S|mpI|f|§s t.h?)ur goal in this section is to minimize the total error. Récal
computation needed to arrive at a location estimate. Intiaadi there are two terms on the right side of Equation (9). Our

to its computational advantages, the LLS formulation adow .
. . approach is to choosg andy; so as to make\, (the smaller
for tractable error analysis, as we shall soon provide.

eigenvalue) as close th; as possible, because this will mini-
mize the first term||A*||. Given the first term is minimized,
we then minimize the second term. Having minimized the
Our objective is to minimize the location estimation errogsecond term given the first term is minimized is clearly alloca
introduced by LLS. we have matrix and vectorb presented minima. We call such a local miniman optimal deployment,

in Equations (5) and (6). In an ideal situation solving fobecause no movement of a single landmark can improve the

(13)

B. Error Analysis

x = [z,y]T is done via error bound. However, our piecewise minimization approach
1T still leaves open a proof that this local minima is the true
x=(ATA)TA'Db (7)  minima over all possible landmark positions. We leave such a

H h . d di . db e b roof as future work.
owever, the estimated distances are Impacted by noisg, eturning to minimizing the first ternjA*||, to minimize

and measurement error. We express the resulting dlstarm, a general strategy would be to make— ¢) small or to

. . . -~ . . . \/)\_ ) . ; )
estlmann erroe in terms ofb with estimated d|stanc¢s "?mdmaneb small or both. Interestingly, this is determined only by
b with true distances as = b+ e, and hence the localization

It the coordinates of the landmarks.
resutt1s 3 . . Then our next task is to find the landmark positions that fyatis
x=(A"A)"A'b. (8) A\ = ;. We found that the optimal landmark deployment
setup follows some simple and symmetric patterns. This sake
it not only possible to achieve but also easy to deploy prac-
tically. Figure 1 shows the patterns for an optimal landmark
deployment setup when utilizing 3, 4, 5, 6, 7, 8 landmarks
where the matrixA* is the Moore-Penrose pseudo-inverse dp the indoor environment. These patterns consist of sgyare
A. It can be shown that, under the 2-noff, || = L, where equilateral triangles, or the enclosing of them. We observe
~1 > 7, are the singular values k. This means that for a th_at for hlgh_er number of landmarks, the extensions of shape
certain size on erroe the LS estimation error is stretchedith equal sides, e.g. a hexagon, do not satisfy= \,, and
by L. It can be proved that the eigenvaluesAf A are the thus are not optimal. Instead, simple shapes that enclose on

5 _ he i .

squares of the singular values Af Therefore, we can limit @nother present optimal solutions.
our concern to the eigenvalues &f" A, where ATA is @ D Finding an Optimized landmark Deployment
matrix of the form:

The location estimation error is thus bounded by

Ix — x| < [[AT][lell, (9)

The above discussion dealt with deploying the landmarks
ATA [ @ b without considering the physical constraints of the buiédi
S \Ub ¢ and, as such, only provide a general guideline as to the &hap



3 landmarks
(equilateral
triangle)

5 landmarks
(square plus
center of mass)

4 landmarks

(square)
¥ --—--- *®
1 1
' i
® - »

6 landmarks
(nested triangles)

input floorSize, numO f Landmark
output optimized landmark coordinates

[initialize] get optimal pattern based on geometry
fit optimal pattern into maximum floorsize
generate initial landmark coordinates

calculateA; and \o

minError = marNum

thisError = maxNum

loop until thisError > minError
generate random localizing nodes

_____ N
14 ? /[ KN for each localizing nodéegin
Poe EAEANN apply random noise or bias
[ ' e TIITTO H B=b-b
end for
7 landmarks 8 landmarks thisError = avg/;B)
2

(square plus
nested triangle)

{nested squares) if thisError < minError, minError = thisError

[landmark adjustment] move towards the center of mass one step
end loop
return optimized landmark coordinates

Fig. 2. The maxL-minE algorithm

[0,1]. For area-based algorithms, we also report CDFs of the
of the deployment. Placing the landmarks within a particulgyinimum and maximum error. For a given attempt, these are
building requires stretching/shrinking the deploymenamh points in the returned area that are closest to and furthest f
so that it fits within the confines of the building. The stretchye true location.
ing/shrinking should be done so as to minimize localizationg|der Metrics: In addition to error performance, we are
errors. also interested in how dramatically the localization ressoén
Recall in Equation (9), the location estimation error isoalshe perturbed by changes in signal strength. Holder metrics
contributed bylle[|, and thatb = b + e. The term|le|| is @ for RSS based localization were introduced in a previous
result of distance estimation errors introduced by rangWig \work [7]. Intuitively, these metrics relate the magnitude o
have developed an iterative algorithm, calledzL — minE 3 perturbation to its effect on the localization result. The
(i.e. maximum lambda and minimum error), which helpgjea here is that certain landmark placements can reduce the
to find the real landmark coordinates given the floor sizgnpacts of perturbations due to noise or bias, and we should
number of landmarks, and the optimal landmark deploymepé apble to observe these as lower Holder parameters.
pattern. Figure 2 shows the pseudo-code that implememige Holder parameteH?, for a given placement and algo-
maxL — minE. The algorithm first minimizeg|A*|| using “o 1L, (s)=L%, (V)]
geometry, then uses an iterative search. The search beijims T sl

Fig. 1. Patterns for optimal landmark deployments

\;\'}thm is defined astz’lg = maxs,y = , Where

a maximal sized optimal pattern (e.g. a square) and simpqglg is th_e result of a localization algorithiig given place-
keeps reducing the size of the pattern until such movemeM§Ntp, With s as a signal strength vector anas a perturbed

stop reducing the distance estimation erolWe observe the VECtOr.

algorithm usually converges very quickly within a number gpince the traditional Holder parameter describes the maxim
iterations. effect a signal perturbation might have, it is natural tooals

provide an average-case measurement. We therefore examine
the average-case Holder parametdl,,, as well. In both

In this section we describe the three metrics we use thrcmtghgases’ we measure the_ metrics by st_atistical sampling in the
the rest of the paper. case of S|mulat|on,. or direct computation over all localma
Average error: All of our observations are the results Ofattempts for experimentally measured data.

many localization trials. This metric takes the averagehef t
distances between the localized result and the true latatio
over all trials. In area-based algorithms, as opposed totpoi
based ones, the result is a returned area. To compare tHesthis section we investigate the impact of landmark posi-
two kinds of algorithms, we use the median X and Y of thdon and quantity on localization performance. Because the
returned area to the true location to generate a point amd thdata collection process using many real deployments is pro-
average these distance errors. hibitively time-consuming, we use a trace-driven simwalati
Accuracy CDF: We also return the entire cumulative densitynethodology for this section. We first describe our method-
function (CDF) of all our localization attempts. We simplyology, then present our results investigating both the hpa
report all attempts in sorted order, and then normalize theof landmark deployment and quantity using our previously

axis by the total number of attempts to obtain a domain oifined metrics.

IV. EVALUATION METRICS

V. LANDMARK POSITION AND QUANTITY



20 e TS deployment | optimal [ horizontal | vertical | diagonal
180 100 4+ J‘ago athfs : Topology 200x200ft
160| 160[| -¥ - diagonal, NLS . Linear LS
o™ s ke error 59.81 101.26 101.07 | 141.79
gt H 58.05 172.23 159.01 | 206.24
‘ H 8.03 9.51 9.74 9.84
£ £w = Nonlinear LS
e T e s ¢ e error 39.48 66.82 66.08 70.27
“ v ool Nis o H 75.44 132.61 180.27 | 230.52
2 ® H 6.98 7.31 7.58 7.97
0 Slandazvg uevuamnAu?ms«ance ees?\manun eni‘fm 10 Topology 230ftx150ft
Linear LS
@ ) error 5789 8697 | 11657 | 146.65
Fig. 3. In 200x200ft area: (a) Location estimation errorrasmdom noise in H 66.39 170.98 198.44 352.96
RSS (b) Location estimation error vs. ranging error H 7.22 8.20 9.84 8.86
Nonlinear LS
) error 39.00 56.24 74.06 61.19
A. Smulation Methodology H 80.69 232.88 | 267.32 | 265.68
. . . . H 6.66 7.12 7.21 7.32
Our simulation methodology requires we generate a simdilate
RSS reading for any point on the floor of a building from TABLE |
any |andmal’k. We fiI’St begin W|th the path IOSS equation thla?CALIZATION ERROR (FT) AND HOLDER METRICS WHEN STANDARD DEVIATION OF
models the received power as a function of the distance to NOISE ON RSS 1308
the landmark: The first deployment we callquare, and in the 5 landmark

d case it is an optimal deployment when the shape is a square
P(d)[dBm] = P(dy)|dBm) —10nlog(d—) (14) plus one landmark at the center of the mass. Next, the

0 horizontal deployment is the one where all the landmarks
We choose the parameteds = 1m, P(dy) = 58.48 and placed in a line along the longest dimension; this will giet-b
n = 1.523 from [9]. We then apply a random noise factoter signal coverage than the square for rectangular bgidin
to perturb the RSS readings. This corresponds to the randBinally, we also examine the impact of a poor deployment, in
model described in [18], which represents an upper bound this casediagonal, which equally spaces the landmarks along
the signal variability. a diagonal line.
In many cases, we found that the localization error is largégure 3(a) shows the average accuracy of 10000 random
enough such that the estimated position is well outside th&@ls across the floor for the 3 deployments as a function
floor. This was particularly true for LLS. Because such rssulof increasing the standard deviatien.; of the noise term
are unrealistic in our scenario, we apply a simple truncati@pplied to each point. The six curves correspond to the NLS
rule in these cases: if the X or Y coordinate is outside thand LLS for each deployment.
floor, we truncate to the maximum or minimum value alongirst, NLS always significantly outperforms LLS. When the
that dimension. orss IS less than 4dB, which is typical based on our ex-
perimental experience, both algorithms under the optichize
landmark deployment outperform the two other deployments.
Table | presents the average location estimation error tifee When the o, is larger than 4dB, under the optimized
application of truncation and the Holder metrics for both L&ndmark deployment, the NLS still performs better, whiie t
algorithms under 5 landmarks for our two simulated floorgperformance of the LLS is compatible with the performance of
The optimized landmark deployment setup is obtained frothe NLS for horizontal and diagonal landmark deployments.
the mazL — minE algorithm. It is encouraging that bothConstant sized deviations in the RSS readings result in wide
NLS and LLS provide smallest estimation errors using oulifferences in the distance estimation depending on the dis
placement algorithm. By comparing the values of the Holdéince to the landmark. Note that the relationship between th
parameters, the LS algorithm is the least susceptible woran RSS error and ranglng error is multiplicative with distance
noise with the optimized landmark deployment, which hasi%., d = d10™w+ . For example, in our simulation a 3dB
landmarks positioned as the vertex of a square plus the flﬁhor corresponds to a multiplicative factor of 1.5, at 10ft
landmark placed at the center of the mass. distanced = 15t with an error of 5ft, while at 100ft distance,
When under the diagonal landmark deployment, the localiza= 150t with an error of 50ft, a factor of ten larger. We are
tion results suffer the largest estimation errors and tige-al motivated to study the magnitude of distance estimatioarerr
rithm is the most susceptible. The following results présen caused by the deviation of the RSS readings.
in this section are bounded by the floor boundary. Figure 3(b) shows the location estimation error vs. thedzech
deviationo, of distance estimation error. We observe that a
noiseo,ss of 2dB corresponds to a distance ereqy of 32ft.
In this section we describe the impact of 3 different deployrurther, the estimation results when the, is 4dB and 5dB
ments on localization performance. We use a representatikgnslate to ther,; of 65ft and 82ft respectively. Thus, even

situation of 5 landmarks deployed in 3 ways to demonstragenall random perturbation in RSS readings cause largerigngi
the impact of our algorithm in a typical case.

B. Evaluation of Estimation Error

C. Impact of Landmark Deployment



0] @ dlondmarionis 159 RADAR is a point-based, scene-matching algorithm. The user

landmarks LLS

6lar . . . .
A*M“ j‘;/__,,__._m first builds a training S(_at of RSS va}lues from .Iandmarks
- , o - , o ; matched to known locations. To localize, the object creates
£ a vector of RSS values from the landmarks and the algorithm

=T | returns the training point closest to the vector using Eleeh

¢ 4landmarks NLS . . . . . .
o it 15 distance as the discriminating function [9]. ABP uses Bayes
—< 20 landmarks LLS

> aimats s rule combined with scene-matching to return an area thecbbje
Sdsgsstindrosdion © 1T Sedamedioe © 7T g |ikely to reside in and probabilistically bounds the likeod
(a)Optimized case (b)Worst case with a confidence level [10]. Taking the Bayesian network
Fig. 4. Performance of LS algorithms across different nunaidandmarks  approach, the BN algorithm uses a Bayesian graphical model

in 200x200ft area based on lateration to find the estimated location [19].

estimation errors due to this multiplicative factor. B. Experimental Setup and Methodology

D. Impact of Landmark Quantity A series of experiments are conducted in our Computer
In this section we observe the impact of adding more langsience Department which resides the whole 3rd floor of the
marks. We compare the performance of the LS algorithms wi#PRE building. The floor size is 200x80ft (1600@°). The

4, 6 and 20 landmarks under square and diagonal deploymef¥€riments are performed using 4 landmarks setup in the
We use our optimized placement in the case of 4 andflgor.

landmarks, and a uniform randomized deployment for Jogure 5(a) shows the original collinear landmark deplogme
landmarks. setup in triangles and our optimized landmark deployment
Figure 4 shows a promising result that when deploying @ Squares for the 802.11 network. The networking staff of
landmarks and 6 landmarks under their optimized deplotfie department deployed the APs in the collinear deployment
ments, the localization results using LS are compatibld wiPecifically to maximize signal strength coverage. The $iest
the results using a much higher number landmarks, 20, §RSS data was collected under this collinear deployment by
this case. If a small number of landmarks provide sufficie#ing @ Dell laptop running Linux equipped with an Orinoco
coverage, this is an encouraging observation because gdb¢er card (802.11 card). The data was collected at 286

localization performance can be achieved without a Iarér@ations on the 3rd floor.
number of landmarks. hen we used a trace-driven approach to generate the RSS

data set under the optimized landmark deployment. We first
VI. EXPERIMENTAL STUDY performed a least squares fit of the measured data and adtaine

In this section we present our experimental study by usifge Parameters of the path loss model in Equation (14). Then
802.11 PCMCIA cards and Telos Sky motes. The objective ¢ directly used measured variance to generate the RSS
to compare the impact of our landmark deployment analyd@adings. Finally, we applied environmental bias using the
on a variety of algorithms and different ranging modalitied@y-Sector model described in [18] to obtain the new RSS
Although the mathematics of our analysis is based on LLg2ta set for the optimized deployment case. o

we show that deployments based @nzL — minE algorithm 10 _vaIujate that our trace-driven strategy generated stiali
improve localization accuracy in widely diverse scenarios 'adio signal readings, we placed 4 simulated landmarks at
We first give a brief description of a set of representatil8€ Same positions as the real collinear deployment and then
RSS-based localization algorithms. We then describe our &énerated synthetic RSS values. We compared the localzati
perimental method. Next, we quantify the performance acrdaérformance of using this synthetic data set against the rea
the algorithms provided different landmark deploymente wdata. We.found the estimation CDFs nearly |der_1t|cal for &ll o
also compare the localization accuracy and Holder metdcs 0Ur @lgorithms under study. Thus we have confidence that our
these algorithms. Finally, we provide a comparison betwe§AMbination of path-loss model fitting, variance applioafi

the RSS-based and TOA-based LS algorithms using our @&d bias generation result in RSS readings that generate
ployment strategy. realistic localization results.

) Our second experimental setup was an 802.15.4 network
A. Algorithms which utilized 4 Telos Sky mote landmarks and deployed
In this study, our main focus is the localization algorithmtwvo sets of landmark placement positions. Figure 5 (b) shows
that employ signal strength measurements. To demonstatethe mote landmarks under an optimized square deployment
general applicability of our landmark deployment algarith as squares and a horizontal landmark deployment (again, to
we test our placement strategy on three widely differemaximize signal strength coverage) as triangles. Unlile th
localization algorithms, RADAR, ABP, and BN. Although802.11 case, no RSS data was generated; for both deployments
there are many other RSS-based localization algorithnis, tthe measured data is used in the algorithms.
set spans various strategies, and given all algorithms have have experimented with different training set sizes for
qualitatively similar performance [10] we feel this set igonstructing the radio map for RADAR and ABP. For 802.11
sufficiently representative. data sets, we show the results with 115 training points. &Vhil
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for 802.15.4 data sets, we use 70 training points. The smaBP and RADAR have improved over 20% in localization
stars in Figure 5 are the randomly selected training pointccuracy, while BN has gained 10%. Looking at the 802.15.4
The localization at each testing point is performed by usimgetwork, the performance improvement results are comlpatib

the leave-one-out method. to the results from the 802.11 network.
o The Holder metrics presented in Table Il for each algorithm
C. Localization Accuracy under the optimized landmark deployment is smaller than

Figure 6 (a) and (b) present the 802.11 accuracy CDF undee horizontal deployment. Recall that the Holder param-
collinear and square landmark deployments, respectively.eter is a measurement of the sensitivity of the algorithm
bounded result means we applied truncation. ABP is caledlato perturbations of inputs such as RSS, which can model
with confidence level 75%. ABP-med is the error of theandom noise, environmental bias, and measurement errors.
median distance of the area, together with ABP-min and ABPhe lower Holder values are strong evidence that an optiinize
max are the closest and furthest points of the returned arelndmark deployment not only can improve the localization
Figure 6(a) shows that under the horizontal-like deploytneperformance, but also can make an algorithm less susoeptibl
LLS always fairs very poorly, while NLS, RADAR, ABP to the above classes of perturbations.

and BN are qualitatively similar. All the algorithms have ] ]

long tails. Figure 7(a) shows a similar result when using USing Time of Arrival

the motes, although in here the perfect collinear deploymem this section we experimentally investigate how well our
the horizontal case, reduces the performance of the laieratdeployment algorithm works for an alternate ranging maglali
approaches (BN, NLS , and LLS) compared to 802.11.  In this second modality, we compute the distance to a land-
Figures 6(b) and 7(b) show the key impact of our work. All ofnark by measuring many round trip times between a node
the CDFs have shifted up and to the left compared to thoseand a landmark, and then calculate the time-of-flight (ToF)
Figures 6(a) and 7(a). Thus, a significant fraction of theltes of a packet. Given the ToF and the speed of light, we can
are more accurate using the optimized deployments gendleragstimate the range. This is a Time-of-Arrival (TOA) based
by maxL — minE algorithm. In addition, for ABP, the gap approach because the actual time-of-flight is estimatedc&p
between the min and max CDFs is much narrower, implyirignitations prevent us from describing this approach in enor
the returned areas are on average smaller than those in dbtails, but a full description of the technique and an asialy
horizontal deployments. of it can be found in [20].

We used a similar trace-driven based methodology in our TOA
investigation as for the 802.11 RSS one. We estimated the
Table Il summarizes the average error for each algorithm T®A based on the round trip times for packets and derived
further investigate the improvements gained by using ait opthe distance between the localizing node to each landmark.
mal deployment. The table shows the average error improwde then built an error distribution of the true distance W& t
for all the algorithms. For 802.11 data sets, the LLS alpanit estimated distance, and used that to drive a simulationavher
improves over 35% and NLS gains 25% in performance. Botie could place the landmarks in the same positions as the

D. Evaluation of Performance and Sensitivity



Average location estimation error (ft)

Algorithms Linear LS Nonlinear LS BN ABP RADAR
802.11 w trun w/o trun | w trun w/o trun
collinear 38.56 94.53 20.23 21.85 2225 | 1311 12.49
square 24.73 31.29 15.37 16.92 20.16 | 10.09 9.31

802.15.4 w trun w/o trun w trun w/o trun
horizontal 47.89 608.43 33.15 34.44 28.43 | 17.86 14.28

square 28.27 92.05 23.65 32.17 24.25 | 14.27 11.33
Holder (worst-case) H

Algorithms Linear LS Nonlinear LS BN ABP RADAR
802.11 w trun w/o trun | w trun w/o trun
collinear 22.36 48.47 21.55 21.55 31.73 | 20.03 36.24
square 12.19 15.33 9.62 9.75 15.89 | 10.64 9.86

802.15.4 w trun w/o trun w trun w/o trun
horizontal 28.88 286.13 91.00 91.00 28.27 | 64.06 32.58

square 13.86 17.14 10.82 16.32 18.41 | 11.27 13.42
Holder (average-case)H
Algorithms Linear LS Nonlinear LS BN ABP RADAR
802.11 w trun w/o trun | w trun w/o trun
collinear 2.72 5.37 2.06 2.18 2.06 1.85 1.98
square 2.87 3.57 2.45 2.70 1.63 1.79 2.06
802.15.4 w trun w/o trun | w trun w/o trun
horizontal 2.66 33.87 2.45 2.50 1.44 2.05 2.21
square 2.95 5.23 2.35 2.69 2.41 1.95 2.27
TABLE 1l

LOCATION ESTIMATION ERROR(FT) AND HOLDER PARAMETERS ACROSS ALGORITHMS

60, 100

RSS study. The same hardware is used as for the RSS studys,f ®
The linear regression model applied to the distance estmat ‘
error of TOA data with 63 experimental distances is shown
in Figure 8(a). We observe that shorter the distance to az =
landmark results in estimated distance longer than the trueé,i
distance, while longer the distance to a landmark results i =

stimated distanc

Distance estimation error (ft)

§ -30]

in estimation distance shorter than the true distance. The:

00 120 140 o 0w

corresponding distance estimation error of RSS data is pre- =~ =~ = Swed By 7
sented in Figure 8(b). Comparing the TOA results to RSS (2)TOA (b)RSS
distance estimation errors, while the magnitude of theadist Fig. 8. Linear regression on TOA data
estimation error grows with lengthening distance, unlike i 1 1

TOA the resulted estimation in RSS is either longer or shorte  *
with near equal probability.
With the mean and variance estimated from linear regression ,es
we have modeled distance estimation error of TOA as a Eé“

Probability
o o
@

Gaussian distribution defined in Equation (15): 0 0
0.2] = linear LS 0.2 = linear LS
2 — nonlinear LS — nonlinear LS
error  ~ N(p,0%) (15) " - e S g " - e S s
. ~ 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
wit h i — bO + bldl Error (feet) Error (feet)
n 3. 2 a)Collinear case b)Square case
and 02 = 2ica(di = ) @ o)sa
n—1 ’ Fig. 9. Localization accuracy CDFs using TOA

whered; is the true distance and} is the estimated distance.dué to the very coarse grained microseconds-level clocks
n is the total number of distances under experimentaﬁ@n_ Currently available in standard 802.11. Additional clogkth

andb, are the coefficients of the linear regression. much higher frequencies would help to reduce much of the

We further conducted a trace-driven approach to localiz 28'€asurement uncertainty.
positions on the floor using 4 landmarks setup with collinear
and square deployment respectively according to Figurg 5(a
for the 802.11 network. This work was supported in part by NSF grant CNS-0448062.
Figure 9 plots the localization accuracy CDF of the L38Ve would also like to thank the anonymous reviewers for their
algorithms using TOA. The figure shows that as with RSS, tff@mments.
performance of LS increases under an optimized deployment

as compared to a horizontal deployment designed for cogerag
Quantitatively, the performance improvement is over 30%By analyzing the Linear Least Squares algorithm, we derived
Comparing the absolute performance of this technique witim upper bound on the maximum location error given the
RSS, our TOA approach is qualitatively worse. This is likelplacement of landmarks. Based on this theoretical analysis
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VIl. CONCLUSION



we found optimal patterns for landmark placement and furthe
developed a novel algorithmmazL — minE, for finding
optimal landmark placement that minimizes the maximun@
localization error.

To show the generality of our results, we conducted experi-
ments using both an 802.11 (WiFi) network and an 802.15.Z]
(ZigBee) network. Based on the experimental data, we in-
vestigated the impact of landmark position and quantity on
localization performance using both the measurements &f R§8]
in an actual building as well as trace-driven simulatioret th
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March 2004.

R. Battiti, M. Brunato, and A. Delai, “Optimal wirelessceess point
placement for location-dependent services,” Departmémnformation

and Communication Technology, University of Trento, Ifalchnical
Report DIT-03-052, October 2003.

Y. Chen, K. Kleisouris, X. Li, W. Trappe, and R. P. MartifT,he robust-
ness of localization algorithms to signal strength attaeksomparative
study,” in To appear in Proceedings of the International Conference on

Distributed Computing in Sensor Systems (DCOSS), June 2006.

N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Mssand
N. S. Correal, “Locating the nodedEEE Sgnal Processing Magazine,

July 2005.

used the RSS measurements. In addition, we apply the trad@h P- Bahl and V. N. Padmanabhan, *Radar: An in-buildingafsed user

driven approach to an alternate ranging modality, in thiseca
TOA. [10]
We found that the performance of a wide variety of algo-
rithms showed significant improvements when using land-
marks placed according to our algorithm, as opposed to ali]
ternate deployments. We evaluated these improvements unde
several different metrics. The experimental results mtevi
strong evidence that our analysis and algorithm for lan&man2]
placement is very generic as the resulting placement has
improved localization performance across a diverse set of
algorithms, networks, and ranging modalities. [13]
Our results also point out that there is a tension between the
ideal landmark deployment for localization vs. deploynsenfm]
that optimize for signal coverage. We found that in our
building, the better coverage deployment was very collinea
and this had pronounced negative impact on Iocalizati(l)lﬁr’]
performance. Future work would conversely investigate the
impact of a deployment optimized for localization on signal
coverage, as well as try to find a method of trading one kiﬁ%lﬁ]
of deployment for another depending on the users’ needs.

[17]
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