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Abstract— We investigate the impact of landmark placement on
localization performance using a combination of analytic and
experimental analysis. For our analysis, we have derived an
upper bound for the localization error of the linear least squares
algorithm. This bound reflects the placement of landmarks as
well as measurement errors at the landmarks. We next develop
a novel algorithm, maxL−minE , that using our analysis, finds a
pattern for landmark placement that minimizes the maximum lo-
calization error. To show our results are applicable to a variety of
localization algorithms, we then conducted a series of localization
experiments using both an 802.11 (WiFi) network as well as an
802.15.4 (ZigBee) network in a real building environment. We use
both Received Signal Strength (RSS) and Time-of-Arrival (ToA)
as ranging modalities. Our experimental results show that our
landmark placement algorithm is generic because the resulting
placements improve localization performance across a diverse set
of algorithms, networks, and ranging modalities.

I. I NTRODUCTION

Localization of nodes in wireless and sensor networks is
important because the location of sensors is a critical input
to many higher-level networking tasks, such as tracking, mon-
itoring and geometric-based routing. Although recent efforts
have resulted in a plethora of methods to localize sensor nodes,
little work to date has systematically investigated how the
placement of the nodes with known locations, orlandmarks,
impacts localization performance. In this work we investigate
the impact of landmark placement on localization performance
using a combination of analytic and experimental analysis.
Our analytic approach focuses on the Least Squares (LS)
algorithm, and in particular, a variant we call Linear Least
Squares (LLS). Our analysis centers on the algorithm for two
reasons. First, LS is a widely used multilateration algorithm,
as is evidenced by its application as a step in many recent
localization research works [1]–[5]. Second, mathematical
analysis of LLS is tractable, resulting in equations with closed-
form solutions. For a myriad of other algorithms, closed form
solutions that describe the localization error as a function of
landmark placement are not tractable and as a result heuristic
search strategies must be used to find an optimal placement,
as was done in [6].
Our analysis of landmark placement can find an optimal
placement of landmarks in well-defined regular regions, thus
making it quite suitable for indoor localization. The analysis
begins with LLS and places an upper bound of the maximum
localization error given a set of landmark placements. We can
show that this upper bound is minimized by a combination

of minimizing the distance estimation error together with the
employment of the optimal patterns for landmark placement.
Using this result, we can compare the maximum error between
any two placements. We can then constrain a search of place-
ments to minimize the maximum error. We have developed a
simple algorithm calledmaxL−minE algorithm that finds an
optimized landmark deployment for the LLS algorithm.
We show that our placement minimizing the upper bounds
of LLS also reduces the Hölder parameter for a variety of
algorithms. The Hölder parameter [7] describes the maximum
change in physical space that can arise from a change in signal
space. This is strong evidence that ourmaxL−minE algorithm
finds a landmark placement that minimizes the errors due to
noise, bias, and measurement error.
Another interesting result of our analysis is that for a small
number of landmarks, simple shapes such as equilateral trian-
gles and squares result in placements with better localization
performance. Interestingly, for higher number of landmarks,
we can show that extensions of shapes with equal sides, e.g. a
hexagon, are non-optimal. Rather, the simple shapes enclose
one another, for example, two enclosing equilateral triangles.
We detail these geometries and describe rule-of-thumb for
landmark placement in Section III.
To show the generality of our results, we conducted local-
ization experiments with both an 802.11 (WiFi) network as
well as an 802.15.4 (ZigBee) network in a real building
environment. For the 802.11 network, we used two ranging
modalities, Received Signal Strength (RSS) to distance, and
Time of Arrival (TOA). In the 802.15.4 network, we used only
RSS-to-distance.
We compared the accuracy of a suite of localization algorithms
using landmarks placed according to our analysis as well
as landmarks placed in positions that provide good signal
coverage but ignore localization concerns. While we found that
all algorithms improved their performance, over a non-optimal
placement for localization, we also observed that LS became
competitive with the other algorithms, and that coarse-grained
TOA ranging was less accurate than RSS-based approaches.
The remainder of the paper is as follows. Section II discusses
previous research in localization. We provide the theoretical
analysis in Section III. Then Section IV describes the metrics
that we use to characterize the localization performance. The
investigation of the number of landmarks and their positions
is provided in Section V. Section VI presents the experimental
results across localization algorithms, networks, and ranging



strategies. Finally we conclude in Section VII.

II. RELATED WORK

There have been many active research efforts developing
localization systems for wireless and sensor networks. We
cannot cover the entire body of works in this section. Rather,
we give a short overview of the different localization strategies
and then describe the works most closely related to ours.
The localization techniques can be categorized along several
dimensions. Range-based algorithms involve distance estima-
tion to landmarks using the measurement of various physical
properties [8] like RSS [9], [10], Time Of Arrival (TOA) [1]
and Time Difference Of Arrival (TDOA) [11]. While range-
free algorithms [2], [12] use coarser metrics to place bounds on
candidate positions. Another method of classification describes
the strategy used to map a node to a location. Lateration ap-
proaches [1]–[5], use distances to landmarks, while angulation
uses the angles from landmarks. Scene matching strategies
[9], [10], [13], [14] use a function that maps observed radio
properties to locations on a pre-constructed radio map or
database. Scene matching is often used in indoor environments
because local conditions distort the signal propagation from
free space models. Finally, a third dimension of classification
extends to aggregate [12], [15] or singular algorithms. Forthis
work, we focus on indoor localization and we do not consider
multi-hop situations.
Our work is novel in that instead of improving the localization
algorithms themselves, we focus on improving the deployment
of landmarks, and this should help a wide variety of algo-
rithms.

[16] used simple linear and multiple regression methods
to estimate the signal strength model. With simulation, it
analyzed the relationship between standard deviation of lo-
cation error and signal strength error for a few Access
Point (AP) configurations. However, they did not analyze
for the optimized geometry of AP deployment and provide
experimental comparison as we have in our work. Another
work presented a theoretical model for RSS-based location
estimation accuracy and examined placement, but did not find
optimal solutions [17]. [6] developed a set of heuristic search
algorithms to find optimal AP deployment for a balance of
signal coverage and location errors. Compared to our simple
approach, the heuristic search algorithms are more complex
and time consuming. The results were only shown for the
probability matching algorithms, thus may not be general for
other type of algorithms.
Finally, a large body of works have examined AP placement
to maximize coverage and throughput properties of wireless
LANs and sensor networks. We do not cover these works
here, except to say that future work would be to examine the
tradeoffs in landmark and AP deployment assuming they use
the same hardware, although this does not need to be the case.
Recall that landmarks provide a node with signals from known
locations, while APs provide media access control as well as
gateways into the wired network.

III. T HEORETICAL ANALYSIS

In this section we first provide background on using LS
algorithms for localization, and then describe the LLS variant.
We next present our theoretical analysis of an upper bound
on the error, and then discuss ourmaxL − minE placement
algorithm.

A. Background: Localization with LS

To perform localization with LS requires 2 steps: ranging and
lateration.
Ranging Step:Recent research has seen a host of variants on
the ranging step. For example, in the APS algorithm [2], hop
counts are used to estimate ranges. Other approaches are also
possible, [11] used the time-difference of arrival betweenan
ultrasound pulse and a radio packet. In this work, we focus
on RSS and TOA as ranging strategies.
Lateration Step: From the estimated distancesdi and known
positions (xi, yi) of the landmarks, the position (x, y) of the
localizing node can be found by finding(x̂, ŷ) satisfying:

(x̂, ŷ) = arg min
x,y

N
∑
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[
√

(xi − x)2 + (yi − y)2 − di]
2 (1)

whereN is the total number of landmarks. We call solving
the above problemNonlinear Least Squares, or NLS. It can
be viewed as an optimization problem where the objective is
to minimize the sum of the error squared.
Solving the NLS problem requires significant complexity and
is difficult to analyze. We may approximate the NLS solution
and linearize the problem by introducing a constraint in the
formulation. We start with theN ≥ 2 equations:

(x1 − x)2 + (y1 − y)2 = d2
1

(x2 − x)2 + (y2 − y)2 = d2
2 (2)

...

(xN − x)2 + (yN − y)2 = d2
N

Now, subtracting the constraint
1

N

N
∑

i=1

[(xi − x)2 + (yi − y)2] =
1

N

N
∑

i=1

d2
i (3)

from both sides, we obtain the following set of linear equations

(x1 − 1

N

N
∑

i=1

xi)x + (y1 − 1

N

N
∑

i=1

yi)y =

1

2
[(x2

1
− 1

N

N
∑

i=1

x
2

i ) + (y2

1
− 1

N

N
∑

i=1

y
2

i ) − (d2

1
− 1

N

N
∑

i=1

d
2

i )]

.

.

. (4)

(xN − 1

N

N
∑

i=1

xi)x + (yN − 1

N

N
∑

i=1

yi)y =

1

2
[(x2

N − 1

N

N
∑

i=1

x
2

i ) + (y2

N − 1

N

N
∑

i=1

y
2

i ) − (d2

N − 1

N

N
∑

i=1

d
2

i )].



The above can be easily solved linearly using the form
Ax = b with:
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Note that A is described by the coordinates of landmarks
only, whileb is represented by the distances to the landmarks
together with the coordinates of landmarks. We call the above
formulation of the problemLinear Least Squares, or LLS. NLS
trades higher computational complexity for better accuracy.
The introduction of the constraint collapsed the nonlinear
problem into a linear problem, which greatly simplifies the
computation needed to arrive at a location estimate. In addition
to its computational advantages, the LLS formulation allows
for tractable error analysis, as we shall soon provide.

B. Error Analysis

Our objective is to minimize the location estimation error
introduced by LLS. we have matrixA and vectorb presented
in Equations (5) and (6). In an ideal situation solving for
x = [x, y]T is done via

x = (AT
A)−1

A
T
b (7)

However, the estimated distances are impacted by noise, bias,
and measurement error. We express the resulting distance
estimation errore in terms ofb̃ with estimated distances and
b with true distances as̃b = b+e, and hence the localization
result is

x̃ = (AT
A)−1

A
T
b̃. (8)

The location estimation error is thus bounded by

‖x− x̃‖ ≤ ‖A+‖‖e‖, (9)

where the matrixA+ is the Moore-Penrose pseudo-inverse of
A. It can be shown that, under the 2-norm,‖A+‖ = 1

γ2

, where
γ1 ≥ γ2 are the singular values ofA. This means that for a
certain size on errore the LS estimation error is stretched
by 1

γ2

. It can be proved that the eigenvalues ofA
T
A are the

squares of the singular values ofA. Therefore, we can limit
our concern to the eigenvalues ofA

T
A, whereA

T
A is a

matrix of the form:

A
T
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Note that a, b and c are only related to the coordinates of
landmarks (xi, yi). The eigenvalues ofAT

A can be found as
the roots of:

λ2 − (a + c)λ + (ac − b2) = 0.

Thus, we have:

λ =
(a + c) ±

√

(a − c)2 + 4b2

2
, (13)

where the discriminant,(a − c)2 + 4b2, is non-negative.

C. Deployment Patterns

Our goal in this section is to minimize the total error. Recall
there are two terms on the right side of Equation (9). Our
approach is to choosexi andyi so as to makeλ2 (the smaller
eigenvalue) as close toλ1 as possible, because this will mini-
mize the first term,‖A+‖. Given the first term is minimized,
we then minimize the second term. Having minimized the
second term given the first term is minimized is clearly a local
minima. We call such a local minimaan optimal deployment,
because no movement of a single landmark can improve the
error bound. However, our piecewise minimization approach
still leaves open a proof that this local minima is the true
minima over all possible landmark positions. We leave such a
proof as future work.
Returning to minimizing the first term‖A+‖, to minimize

1√
λ2

, a general strategy would be to make(a− c) small or to
makeb small or both. Interestingly, this is determined only by
the coordinates of the landmarks.
Then our next task is to find the landmark positions that satisfy
λ1

∼= λ2. We found that the optimal landmark deployment
setup follows some simple and symmetric patterns. This makes
it not only possible to achieve but also easy to deploy prac-
tically. Figure 1 shows the patterns for an optimal landmark
deployment setup when utilizing 3, 4, 5, 6, 7, 8 landmarks
in the indoor environment. These patterns consist of squares,
equilateral triangles, or the enclosing of them. We observe
that for higher number of landmarks, the extensions of shapes
with equal sides, e.g. a hexagon, do not satisfyλ1

∼= λ2, and
thus are not optimal. Instead, simple shapes that enclose one
another present optimal solutions.

D. Finding an Optimized landmark Deployment

The above discussion dealt with deploying the landmarks
without considering the physical constraints of the building
and, as such, only provide a general guideline as to the "shape"



Fig. 1. Patterns for optimal landmark deployments

of the deployment. Placing the landmarks within a particular
building requires stretching/shrinking the deployment shape
so that it fits within the confines of the building. The stretch-
ing/shrinking should be done so as to minimize localization
errors.
Recall in Equation (9), the location estimation error is also
contributed by‖e‖, and thatb̃ = b + e. The term‖e‖ is a
result of distance estimation errors introduced by ranging. We
have developed an iterative algorithm, calledmaxL − minE

(i.e. maximum lambda and minimum error), which helps
to find the real landmark coordinates given the floor size,
number of landmarks, and the optimal landmark deployment
pattern. Figure 2 shows the pseudo-code that implements
maxL − minE . The algorithm first minimizes‖A+‖ using
geometry, then uses an iterative search. The search begins with
a maximal sized optimal pattern (e.g. a square) and simply
keeps reducing the size of the pattern until such movements
stop reducing the distance estimation errore. We observe the
algorithm usually converges very quickly within a number of
iterations.

IV. EVALUATION METRICS

In this section we describe the three metrics we use throughout
the rest of the paper.
Average error: All of our observations are the results of
many localization trials. This metric takes the average of the
distances between the localized result and the true location
over all trials. In area-based algorithms, as opposed to point-
based ones, the result is a returned area. To compare these
two kinds of algorithms, we use the median X and Y of the
returned area to the true location to generate a point and then
average these distance errors.
Accuracy CDF: We also return the entire cumulative density
function (CDF) of all our localization attempts. We simply
report all attempts in sorted order, and then normalize the Y
axis by the total number of attempts to obtain a domain of

—————————————————————————–
input floorSize, numOfLandmark
output optimized landmark coordinates

[initialize] get optimal pattern based on geometry
fit optimal pattern into maximum floorsize
generate initial landmark coordinates
calculateλ1 andλ2

minError = maxNum
thisError = maxNum
loop until thisError > minError

generate random localizing nodes
for each localizing nodebegin

apply random noise or bias
B = ‖b − b̃‖

end for
thisError =

avg(B)√
λ2

if thisError < minError, minError = thisError
[landmark adjustment] move towards the center of mass one step

end loop
return optimized landmark coordinates

—————————————————————————–

Fig. 2. The maxL-minE algorithm

[0, 1]. For area-based algorithms, we also report CDFs of the
minimum and maximum error. For a given attempt, these are
points in the returned area that are closest to and furthest from
the true location.
Hölder Metrics: In addition to error performance, we are
also interested in how dramatically the localization results can
be perturbed by changes in signal strength. Hölder metrics
for RSS based localization were introduced in a previous
work [7]. Intuitively, these metrics relate the magnitude of
a perturbation to its effect on the localization result. The
idea here is that certain landmark placements can reduce the
impacts of perturbations due to noise or bias, and we should
be able to observe these as lower Hölder parameters.
The Hölder parameterHp

alg for a given placement and algo-

rithm is defined asHp
alg = maxs,v

‖L
p

alg
(s)−L

p

alg
(v)‖

‖s−v‖ , where
L

p
alg is the result of a localization algorithmalg given place-

mentp, with s as a signal strength vector andv as a perturbed
vector.
Since the traditional Hölder parameter describes the maximum
effect a signal perturbation might have, it is natural to also
provide an average-case measurement. We therefore examine
the average-case Hölder parameter,H

p

alg, as well. In both
cases, we measure the metrics by statistical sampling in the
case of simulation, or direct computation over all localization
attempts for experimentally measured data.

V. L ANDMARK POSITION AND QUANTITY

In this section we investigate the impact of landmark posi-
tion and quantity on localization performance. Because the
data collection process using many real deployments is pro-
hibitively time-consuming, we use a trace-driven simulation
methodology for this section. We first describe our method-
ology, then present our results investigating both the impact
of landmark deployment and quantity using our previously
defined metrics.
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Fig. 3. In 200x200ft area: (a) Location estimation error vs.random noise in
RSS (b) Location estimation error vs. ranging error

A. Simulation Methodology

Our simulation methodology requires we generate a simulated
RSS reading for any point on the floor of a building from
any landmark. We first begin with the path loss equation that
models the received power as a function of the distance to
the landmark:

P (d)[dBm] = P (d0)[dBm] − 10nlog(
d

d0
) (14)

We choose the parametersd0 = 1m, P (d0) = 58.48 and
n = 1.523 from [9]. We then apply a random noise factor
to perturb the RSS readings. This corresponds to the random
model described in [18], which represents an upper bound on
the signal variability.
In many cases, we found that the localization error is large
enough such that the estimated position is well outside the
floor. This was particularly true for LLS. Because such results
are unrealistic in our scenario, we apply a simple truncation
rule in these cases: if the X or Y coordinate is outside the
floor, we truncate to the maximum or minimum value along
that dimension.

B. Evaluation of Estimation Error

Table I presents the average location estimation error after the
application of truncation and the Hölder metrics for both LS
algorithms under 5 landmarks for our two simulated floors.
The optimized landmark deployment setup is obtained from
the maxL − minE algorithm. It is encouraging that both
NLS and LLS provide smallest estimation errors using our
placement algorithm. By comparing the values of the Hölder
parameters, the LS algorithm is the least susceptible to random
noise with the optimized landmark deployment, which has 4
landmarks positioned as the vertex of a square plus the fifth
landmark placed at the center of the mass.
When under the diagonal landmark deployment, the localiza-
tion results suffer the largest estimation errors and the algo-
rithm is the most susceptible. The following results presented
in this section are bounded by the floor boundary.

C. Impact of Landmark Deployment

In this section we describe the impact of 3 different deploy-
ments on localization performance. We use a representative
situation of 5 landmarks deployed in 3 ways to demonstrate
the impact of our algorithm in a typical case.

deployment optimal horizontal vertical diagonal
Topology 200x200ft
Linear LS

error 59.81 101.26 101.07 141.79
H 58.05 172.23 159.01 206.24
H 8.03 9.51 9.74 9.84

Nonlinear LS
error 39.48 66.82 66.08 70.27

H 75.44 132.61 180.27 230.52
H 6.98 7.31 7.58 7.97

Topology 230ftx150ft
Linear LS

error 57.89 86.97 116.57 146.65
H 66.39 170.98 198.44 352.96
H 7.22 8.20 9.84 8.86

Nonlinear LS
error 39.00 56.24 74.06 61.19

H 80.69 232.88 267.32 265.68
H 6.66 7.12 7.21 7.32

TABLE I

LOCALIZATION ERROR (FT) AND HÖLDER METRICS WHEN STANDARD DEVIATION OF

NOISE ON RSS IS3DB

The first deployment we callsquare, and in the 5 landmark
case it is an optimal deployment when the shape is a square
plus one landmark at the center of the mass. Next, the
horizontal deployment is the one where all the landmarks
placed in a line along the longest dimension; this will give bet-
ter signal coverage than the square for rectangular buildings.
Finally, we also examine the impact of a poor deployment, in
this casediagonal , which equally spaces the landmarks along
a diagonal line.
Figure 3(a) shows the average accuracy of 10000 random
trials across the floor for the 3 deployments as a function
of increasing the standard deviationσrss of the noise term
applied to each point. The six curves correspond to the NLS
and LLS for each deployment.
First, NLS always significantly outperforms LLS. When the
σrss is less than 4dB, which is typical based on our ex-
perimental experience, both algorithms under the optimized
landmark deployment outperform the two other deployments.
When the σrss is larger than 4dB, under the optimized
landmark deployment, the NLS still performs better, while the
performance of the LLS is compatible with the performance of
the NLS for horizontal and diagonal landmark deployments.
Constant sized deviations in the RSS readings result in wide
differences in the distance estimation depending on the dis-
tance to the landmark. Note that the relationship between the
RSS error and ranging error is multiplicative with distance,
i.e., d̃ = d10

ss−s̃s
10n . For example, in our simulation a 3dB

error corresponds to a multiplicative factor of 1.5, at 10ft
distance,̃d = 15ft with an error of 5ft, while at 100ft distance,
d̃ = 150ft with an error of 50ft, a factor of ten larger. We are
motivated to study the magnitude of distance estimation error
caused by the deviation of the RSS readings.
Figure 3(b) shows the location estimation error vs. the standard
deviationσd of distance estimation error. We observe that a
noiseσrss of 2dB corresponds to a distance errorσd of 32ft.
Further, the estimation results when theσrss is 4dB and 5dB
translate to theσd of 65ft and 82ft respectively. Thus, even
small random perturbation in RSS readings cause large ranging
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Fig. 4. Performance of LS algorithms across different number of landmarks
in 200x200ft area

estimation errors due to this multiplicative factor.

D. Impact of Landmark Quantity

In this section we observe the impact of adding more land-
marks. We compare the performance of the LS algorithms with
4, 6 and 20 landmarks under square and diagonal deployments.
We use our optimized placement in the case of 4 and 6
landmarks, and a uniform randomized deployment for 20
landmarks.
Figure 4 shows a promising result that when deploying 4
landmarks and 6 landmarks under their optimized deploy-
ments, the localization results using LS are compatible with
the results using a much higher number landmarks, 20, in
this case. If a small number of landmarks provide sufficient
coverage, this is an encouraging observation because good
localization performance can be achieved without a large
number of landmarks.

VI. EXPERIMENTAL STUDY

In this section we present our experimental study by using
802.11 PCMCIA cards and Telos Sky motes. The objective is
to compare the impact of our landmark deployment analysis
on a variety of algorithms and different ranging modalities.
Although the mathematics of our analysis is based on LLS,
we show that deployments based onmaxL−minE algorithm
improve localization accuracy in widely diverse scenarios.
We first give a brief description of a set of representative
RSS-based localization algorithms. We then describe our ex-
perimental method. Next, we quantify the performance across
the algorithms provided different landmark deployments. We
also compare the localization accuracy and Hölder metrics for
these algorithms. Finally, we provide a comparison between
the RSS-based and TOA-based LS algorithms using our de-
ployment strategy.

A. Algorithms

In this study, our main focus is the localization algorithms
that employ signal strength measurements. To demonstrate the
general applicability of our landmark deployment algorithm,
we test our placement strategy on three widely different
localization algorithms, RADAR, ABP, and BN. Although
there are many other RSS-based localization algorithms, this
set spans various strategies, and given all algorithms have
qualitatively similar performance [10] we feel this set is
sufficiently representative.

RADAR is a point-based, scene-matching algorithm. The user
first builds a training set of RSS values from landmarks
matched to known locations. To localize, the object creates
a vector of RSS values from the landmarks and the algorithm
returns the training point closest to the vector using Euclidean
distance as the discriminating function [9]. ABP uses Bayes
rule combined with scene-matching to return an area the object
is likely to reside in and probabilistically bounds the likelihood
with a confidence level [10]. Taking the Bayesian network
approach, the BN algorithm uses a Bayesian graphical model
based on lateration to find the estimated location [19].

B. Experimental Setup and Methodology

A series of experiments are conducted in our Computer
Science Department which resides the whole 3rd floor of the
CoRE building. The floor size is 200x80ft (16000ft2). The
experiments are performed using 4 landmarks setup in the
floor.
Figure 5(a) shows the original collinear landmark deployment
setup in triangles and our optimized landmark deployment
as squares for the 802.11 network. The networking staff of
the department deployed the APs in the collinear deployment
specifically to maximize signal strength coverage. The firstset
of RSS data was collected under this collinear deployment by
using a Dell laptop running Linux equipped with an Orinoco
silver card (802.11 card). The data was collected at 286
locations on the 3rd floor.
Then we used a trace-driven approach to generate the RSS
data set under the optimized landmark deployment. We first
performed a least squares fit of the measured data and obtained
the parameters of the path loss model in Equation (14). Then
we directly used measured variance to generate the RSS
readings. Finally, we applied environmental bias using the
Ray-Sector model described in [18] to obtain the new RSS
data set for the optimized deployment case.
To validate that our trace-driven strategy generated realistic
radio signal readings, we placed 4 simulated landmarks at
the same positions as the real collinear deployment and then
generated synthetic RSS values. We compared the localization
performance of using this synthetic data set against the real
data. We found the estimation CDFs nearly identical for all of
our algorithms under study. Thus we have confidence that our
combination of path-loss model fitting, variance application,
and bias generation result in RSS readings that generate
realistic localization results.
Our second experimental setup was an 802.15.4 network
which utilized 4 Telos Sky mote landmarks and deployed
two sets of landmark placement positions. Figure 5 (b) shows
the mote landmarks under an optimized square deployment
as squares and a horizontal landmark deployment (again, to
maximize signal strength coverage) as triangles. Unlike the
802.11 case, no RSS data was generated; for both deployments
the measured data is used in the algorithms.
We have experimented with different training set sizes for
constructing the radio map for RADAR and ABP. For 802.11
data sets, we show the results with 115 training points. While
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Fig. 5. Deployment of landmarks and training locations on the experimental floors
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Fig. 6. Localization accuracy CDFs across algorithms for 802.11 network

for 802.15.4 data sets, we use 70 training points. The small
stars in Figure 5 are the randomly selected training points.
The localization at each testing point is performed by using
the leave-one-out method.

C. Localization Accuracy

Figure 6 (a) and (b) present the 802.11 accuracy CDF under
collinear and square landmark deployments, respectively.A
bounded result means we applied truncation. ABP is calculated
with confidence level 75%. ABP-med is the error of the
median distance of the area, together with ABP-min and ABP-
max are the closest and furthest points of the returned area.
Figure 6(a) shows that under the horizontal-like deployment,
LLS always fairs very poorly, while NLS, RADAR, ABP
and BN are qualitatively similar. All the algorithms have
long tails. Figure 7(a) shows a similar result when using
the motes, although in here the perfect collinear deployment,
the horizontal case, reduces the performance of the lateration
approaches (BN, NLS , and LLS) compared to 802.11.
Figures 6(b) and 7(b) show the key impact of our work. All of
the CDFs have shifted up and to the left compared to those in
Figures 6(a) and 7(a). Thus, a significant fraction of the results
are more accurate using the optimized deployments generated
by maxL − minE algorithm. In addition, for ABP, the gap
between the min and max CDFs is much narrower, implying
the returned areas are on average smaller than those in the
horizontal deployments.

D. Evaluation of Performance and Sensitivity

Table II summarizes the average error for each algorithm to
further investigate the improvements gained by using an opti-
mal deployment. The table shows the average error improves
for all the algorithms. For 802.11 data sets, the LLS algorithm
improves over 35% and NLS gains 25% in performance. Both
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Fig. 7. Localization accuracy CDFs across algorithms for 802.15.4 network

ABP and RADAR have improved over 20% in localization
accuracy, while BN has gained 10%. Looking at the 802.15.4
network, the performance improvement results are compatible
to the results from the 802.11 network.
The Hölder metrics presented in Table II for each algorithm
under the optimized landmark deployment is smaller than
the horizontal deployment. Recall that the Hölder param-
eter is a measurement of the sensitivity of the algorithm
to perturbations of inputs such as RSS, which can model
random noise, environmental bias, and measurement errors.
The lower Hölder values are strong evidence that an optimized
landmark deployment not only can improve the localization
performance, but also can make an algorithm less susceptible
to the above classes of perturbations.

E. Using Time of Arrival

In this section we experimentally investigate how well our
deployment algorithm works for an alternate ranging modality.
In this second modality, we compute the distance to a land-
mark by measuring many round trip times between a node
and a landmark, and then calculate the time-of-flight (ToF)
of a packet. Given the ToF and the speed of light, we can
estimate the range. This is a Time-of-Arrival (TOA) based
approach because the actual time-of-flight is estimated. Space
limitations prevent us from describing this approach in more
details, but a full description of the technique and an analysis
of it can be found in [20].
We used a similar trace-driven based methodology in our TOA
investigation as for the 802.11 RSS one. We estimated the
TOA based on the round trip times for packets and derived
the distance between the localizing node to each landmark.
We then built an error distribution of the true distance vs. the
estimated distance, and used that to drive a simulation where
we could place the landmarks in the same positions as the



Average location estimation error (ft)
Algorithms Linear LS Nonlinear LS BN ABP RADAR

802.11 w trun w/o trun w trun w/o trun
collinear 38.56 94.53 20.23 21.85 22.25 13.11 12.49
square 24.73 31.29 15.37 16.92 20.16 10.09 9.31

802.15.4 w trun w/o trun w trun w/o trun
horizontal 47.89 608.43 33.15 34.44 28.43 17.86 14.28

square 28.27 92.05 23.65 32.17 24.25 14.27 11.33

Hölder (worst-case)H
Algorithms Linear LS Nonlinear LS BN ABP RADAR

802.11 w trun w/o trun w trun w/o trun
collinear 22.36 48.47 21.55 21.55 31.73 20.03 36.24
square 12.19 15.33 9.62 9.75 15.89 10.64 9.86

802.15.4 w trun w/o trun w trun w/o trun
horizontal 28.88 286.13 91.00 91.00 28.27 64.06 32.58

square 13.86 17.14 10.82 16.32 18.41 11.27 13.42

Hölder (average-case)H
Algorithms Linear LS Nonlinear LS BN ABP RADAR

802.11 w trun w/o trun w trun w/o trun
collinear 2.72 5.37 2.06 2.18 2.06 1.85 1.98
square 2.87 3.57 2.45 2.70 1.63 1.79 2.06

802.15.4 w trun w/o trun w trun w/o trun
horizontal 2.66 33.87 2.45 2.50 1.44 2.05 2.21

square 2.95 5.23 2.35 2.69 2.41 1.95 2.27

TABLE II

LOCATION ESTIMATION ERROR(FT) AND HÖLDER PARAMETERS ACROSS ALGORITHMS

RSS study. The same hardware is used as for the RSS study.
The linear regression model applied to the distance estimation
error of TOA data with 63 experimental distances is shown
in Figure 8(a). We observe that shorter the distance to a
landmark results in estimated distance longer than the true
distance, while longer the distance to a landmark results
in estimation distance shorter than the true distance. The
corresponding distance estimation error of RSS data is pre-
sented in Figure 8(b). Comparing the TOA results to RSS
distance estimation errors, while the magnitude of the distance
estimation error grows with lengthening distance, unlike in
TOA the resulted estimation in RSS is either longer or shorter
with near equal probability.
With the mean and variance estimated from linear regression,
we have modeled distance estimation error of TOA as a
Gaussian distribution defined in Equation (15):

error ∼ N(µ, σ2) (15)

with µ̂ = b0 + b1di

and σ̂2 =

∑n

i=1(d̃i − µ̂)2

n − 1
,

wheredi is the true distance and̃di is the estimated distance.
n is the total number of distances under experimentation.b0

andb1 are the coefficients of the linear regression.
We further conducted a trace-driven approach to localize 286
positions on the floor using 4 landmarks setup with collinear
and square deployment respectively according to Figure 5(a)
for the 802.11 network.
Figure 9 plots the localization accuracy CDF of the LS
algorithms using TOA. The figure shows that as with RSS, the
performance of LS increases under an optimized deployment
as compared to a horizontal deployment designed for coverage.
Quantitatively, the performance improvement is over 30%.
Comparing the absolute performance of this technique with
RSS, our TOA approach is qualitatively worse. This is likely
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Fig. 8. Linear regression on TOA data
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Fig. 9. Localization accuracy CDFs using TOA

due to the very coarse grained microseconds-level clocks
currently available in standard 802.11. Additional clockswith
much higher frequencies would help to reduce much of the
measurement uncertainty.
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VII. C ONCLUSION

By analyzing the Linear Least Squares algorithm, we derived
an upper bound on the maximum location error given the
placement of landmarks. Based on this theoretical analysis,



we found optimal patterns for landmark placement and further
developed a novel algorithm,maxL − minE , for finding
optimal landmark placement that minimizes the maximum
localization error.
To show the generality of our results, we conducted experi-
ments using both an 802.11 (WiFi) network and an 802.15.4
(ZigBee) network. Based on the experimental data, we in-
vestigated the impact of landmark position and quantity on
localization performance using both the measurements of RSS
in an actual building as well as trace-driven simulations that
used the RSS measurements. In addition, we apply the trace-
driven approach to an alternate ranging modality, in this case,
TOA.
We found that the performance of a wide variety of algo-
rithms showed significant improvements when using land-
marks placed according to our algorithm, as opposed to al-
ternate deployments. We evaluated these improvements under
several different metrics. The experimental results provide
strong evidence that our analysis and algorithm for landmark
placement is very generic as the resulting placement has
improved localization performance across a diverse set of
algorithms, networks, and ranging modalities.
Our results also point out that there is a tension between the
ideal landmark deployment for localization vs. deployments
that optimize for signal coverage. We found that in our
building, the better coverage deployment was very collinear,
and this had pronounced negative impact on localization
performance. Future work would conversely investigate the
impact of a deployment optimized for localization on signal
coverage, as well as try to find a method of trading one kind
of deployment for another depending on the users’ needs.
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