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Abstract

A large number of enterprises need their commodity
database systems to remain available at all times. Al-
though administrator mistakes are a significant source
of unavailability and cost in these systems, no study to
date has sought to quantify the frequency of mistakes in
the field, understand the context in which they occur, or
develop system support to deal with them explicitly. In
this paper, we first characterize the typical administrator
tasks, testing environments, and mistakes using results
from an extensive survey we have conducted of 51 expe-
rienced administrators. Given the results of this survey,
we next propose system support to validate administra-
tor actions before they are made visible to users. Our
prototype implementation creates a validation environ-
ment that is an extension of a replicated database sys-
tem, where administrator actions can be validated using
real workloads. The prototype implements three forms
of validation, including a novel form in which the behav-
ior of a database replica can be validated even without an
example of correct behavior for comparison. Our results
show that the prototype can detect the major classes of
administrator mistakes.

1 Introduction

Most enterprises rely on at least one database manage-
ment system (DBMS) running on commodity computers
to maintain their data. A large fraction of these enter-
prises, such as Internet services and world-wide corpo-
rations, need to keep their databases operational at all
times. Unfortunately, doing so has been a difficult task.

A key source of unavailability in these systems is
database administrator (DBA) mistakes [10, 15, 20].
Database administration is mistake-prone as it involves
many complex tasks, such as storage space management,
database structure management, and performance tun-
ing. Even worse, as shall be seen, DBA mistakes are

typically not maskable by redundancy (as in an underly-
ing RAID subsystem) or standard fault-tolerance mech-
anisms (such as a primary-backup scheme). Thus, DBA
mistakes are frequently exposed to the surrounding sys-
tems, database applications and users, causing unavail-
ability and potentially high revenue losses.

Previous work has categorized DBA mistakes into
broad classes and across different DBMSs [10]. How-
ever, no previous work has quantified the frequency of
the mistakes in the field, characterized the context in
which they occur, or determined the relationship between
DBA experience and mistakes. Furthermore, no previous
work has developed system support to deal with DBA
mistakes explicitly.

In this paper, we address these issues in detail. We first
characterize (in terms of class and frequency) the typical
DBA tasks, testing environments, and mistakes, using re-
sults from an extensive survey we have conducted of 51
DBAs with at least 2 years of experience. Our survey re-
sponses show that tasks related to recovery, performance
tuning, and database restructuring are the most common,
accounting for 50% of the tasks performed by DBAs. Re-
garding the frequency of mistakes, the responses suggest
that DBA mistakes are responsible (entirely or in part)
for roughly 80% of the database administration problems
reported. The most common mistakes are deployment,
performance, and structure mistakes, all of which occur
once per month on average. These mistakes are caused
mainly by the current separation of and differences be-
tween testing and online environments.

Given the high frequency of DBA mistakes, we next
propose system support tovalidateDBA actions before
exposing their effects to the DBMS clients. As we de-
scribed in [16], the key idea of validation is to check the
correctness of human actions in avalidation environment
that is an extension of the online system. In particular,
the components under validation, calledmaskedcompo-
nents, are subjected to realistic (or even live) workloads.
Critically, their state and configurations are not modified
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when transitioning from validation to live operation.
In [16], we proposed trace and replica-based valida-

tion for Web and application servers. Both techniques
rely on samples of correct behavior. Trace-based vali-
dation involves periodically collecting traces of live re-
quests and replaying the trace for validation. Replica-
based validation involves designating each masked com-
ponent as a “mirror” of a live component. All requests
sent to the live component are then duplicated and also
sent to the mirrored, masked component. Results from
the masked component are compared against those pro-
duced by the live component. Here, we extend our work
to deal with DBMSs by modifying a database clustering
middleware called Clustered-JDBC (C-JDBC) [7].

Furthermore, we propose a novel form of validation,
calledmodel-based validation, in which the behavior of
a masked component can be validated even when we do
not have an example of correct behavior for comparison.
In particular, we use model-based validation to verify ac-
tions that might change the database structure.

We evaluate our prototype implementation by running
a large number of mistake-injection experiments. From
these experiments, we find that the prototype is easy to
use in practice, and that validation is effective in catching
a majority of the mistakes the surveyed DBAs reported.
In particular, our validation prototype detected 19 out of
23 injected mistakes, covering all classes of mistakes re-
ported by the surveyed DBAs.

In summary, we make three main contributions:

• We present a wealth of data on the behavior of expe-
rienced administrators of real databases. This con-
tribution is important in that actual data on DBA
mistakes is not publicly available, due to commer-
cial and privacy considerations.

• We propose model-based validation for the situa-
tions when the behavior of the components affected
by the DBA actions is supposed to change and there
are no instances of correct behavior for comparison.

• We implement a realistic validation environment for
dealing with DBA mistakes. We demonstrate the
benefits of the prototype through an extensive set of
mistake-injection experiments.

The remainder of the paper is organized as follows.
The next section describes the related work. Section 3
describes our survey and analyzes the responses we re-
ceived. Section 4 describes validation and our prototype.
Section 5 presents our validation results. In Section 6,
we broaden the discussion of the DBA mistakes and the
validation approach to a wider range of systems. Finally,
Section 7 draws our conclusions.

2 Related Work

Database administration mistakes.Only a few papers
have addressed database administrator mistakes in de-
tail. In two early papers [11, 12], Gray estimated the
frequency of DBA mistakes based on fault data from de-
ployed Tandem systems. However, whereas today’s sys-
tems are mostly built from commodity components, the
Tandem systems included substantial custom hardware
and software for tolerating single faults. This custom
infrastructure could actually mask several types of mis-
takes that today’s systems may be vulnerable to.

The work of Gilet al.[10] included a categorization of
administrator tasks and mistakes into classes, and a com-
parison of their specific details across different DBMSs.
Vieira and Madeira [20] proposed a dependability bench-
mark for database systems based on the injection of ad-
ministrator mistakes and observation of their impact. In
this paper, we extend these contributions by quantify-
ing the frequency of the administrator tasks and mistakes
in the field, characterizing the testing environment ad-
ministrators use, and identifying the main weaknesses of
DBMSs and support tools with respect to database ad-
ministration. Furthermore, our work develops system
support to deal with administrator mistakes, which these
previous contributions did not address.

Internet service operation mistakes. A few more pa-
pers have addressed operator mistakes in Internet ser-
vices. The work of Oppenheimeret al. [17] considered
the universe of failures observed by three commercial
services. With respect to operators, they broadly cat-
egorized their mistakes, described a few example mis-
takes, and suggested some avenues for dealing with
them. Brown and Patterson [4] proposed “undo” as a way
to rollback state changes when recovering from operator
mistakes. Brown [3] performed experiments in which he
exposed human operators to an implementation of undo
for an email service hosted by a single node. In [16],
we performed experiments with volunteer operators, de-
scribing all of the mistakes we observed in detail, and
designing and implementing a prototype validation in-
frastructure that can detect and hide a majority of the
mistakes. In this paper, we extend these previous con-
tributions by considering mistakes in database adminis-
tration and introducing a new validation technique.

Validation. We originally proposed trace and replica-
based validation for Web and application servers in In-
ternet services [16]. Trace-based validation is similar
in flavor to fault diagnosis approaches [1, 8] that main-
tain statistical models of “normal” component behavior
and dynamically inspect the service execution for devi-
ations from this behavior. These approaches typically
focus on the data flow behavior across the systems com-
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Figure 1:Distribution of DBAs across team sizes.
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Figure 2:Distribution of DBAs across database sizes.

ponents, whereas trace-based validation inspects the ac-
tual responses coming from components and can do so at
various semantic levels.

Replica-based validation has been used before to tol-
erate Byzantine failures and malicious attacks, e.g. [5, 6,
13]. In this context, replicas are a permanent part of the
distributed system and validation is constantly performed
via voting.

Model-based validation is loosely related to two ap-
proaches to software debugging: model checking (e.g.,
[21]) and assertion checking (e.g., [9, 18]). Of these, it
is closest to the PSpec system [18] for assertion check-
ing. However, because PSpec was concerned with per-
formance problems as opposed to detecting human mis-
takes, the authors did not consider structural issues such
as component connectivity and database schemas. Be-
sides its focus on human mistakes, model-based valida-
tion differs from other assertion-checking efforts (e.g.,
[9]) in that our assertions are external to the component
being validated. Model-based validation differs from
model checking in that it validates components dynami-
cally based on their behavior, rather than statically based
on their source codes.

In this paper, we extend our work on trace and replica-
based validation to database servers, which pose a num-
ber of new challenges (Section 6). For example, our pre-
vious validation prototype did not have to manage hard
state during or after validation. In validating database
systems, we need to consider this management and its as-
sociated performance and request buffering implications.
Furthermore, we propose model-based validation to val-
idate actions without examples of correct behavior.

Other approaches to dealing with mistakes.Validation
is orthogonal to Undo [4] in that it hides human actions
until they have been validated in a realistic validation en-
vironment. A more closely related technique is “offline
testing” [2]. Validation takes offline testing a step further
by operating on components in an environment that is an
extension of the live system. This allows validation to
catch a larger number of mistakes as discussed in [16].

3 Understanding DB Administration

We have conducted an online survey to unveil the
most common tasks performed by DBAs, the prob-
lems and mistakes that occur during administration,
and aspects of the environment in which DBAs
carry out their duties. We have posted the survey
(available at http://vivo.cs.rutgers.edu/dbasurvey.html)
to the USENIX SAGE mailing list and the most
visible database-related Usenet newsgroups, namely
comp.databases.*and comp.data.administration. We
next present an analysis of the 51 responses we received.

3.1 Main Characteristics of the Sample

The DBAs who replied to our survey represent a wide
spectrum of organizations, DBMSs, experience levels,
DBA team sizes, and database sizes. In particular,
judging by the DBAs’ email addresses, they all work
for different organizations. The DBAs use a variety
of DBMSs, including Microsoft SQL Server, Oracle,
Informix, DB2, Sybase, MySQL, PostgreSQL, Ingres,
IMS, and Progress. The most common DBMSs in our
sample are MS SQL Server (31%), Oracle (22%), and
MySQL (13%).

The DBAs are highly experienced: 15 of them had be-
tween 2 and 5 years of experience, 16 had between 5 and
10 years of experience, and 20 had more than 10 years of
experience. Figures 1 and 2 show the sizes of the admin-
istration teams to which the DBAs belong, and the sizes
of the databases they manage, respectively. The figures
show the breakdown of DBAs per experience level.

From Figure 1, it is clear that most of the DBAs work
alone or in small groups, regardless of experience level.
This result suggests that the size of DBA teams is deter-
mined by factors other than DBA experience. Neverthe-
less, a substantial number of DBAs do work in larger
teams, increasing the chance of conflicting actions by
different team members. Finally, Figure 2 shows that
DBAs of all experience levels manage small and large
databases. However, one trend is clear: the least expe-
rienced DBAs (2–5 years of experience) tend to manage
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Figure 3:Task categories. The legend lists the categories
in decreasing order of frequency.
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Figure 4:Test environment configurations.

smaller databases; they represent 12% of the DBAs re-
sponsible for databases that are larger than 50 GB, but
represent 55% of those DBAs in charge of databases that
are smaller than 50 GB.

The experience level of the DBAs who participated in
our survey and the diversity in organizations, DBMSs,
and team and database sizes suggest that the data we col-
lected is representative of common DBA practices.

3.2 Common DBA Tasks

We asked the DBAs to describe the three most common
tasks they perform. Figure 3 shows the categories of
tasks they reported, as well as the breakdown of how fre-
quently each category was mentioned out of a total of
126 answers (several DBAs listed fewer than three tasks).

TheRecoverycategory corresponds to those tasks that
prepare or test the DBMS with respect to recovery op-
erations, such as making backups, testing backups, and
performing recovery drills.Performance Tuningtasks
involve performance optimizations, such as creating or
modifying indexes to speed up certain queries, and opti-
mizing the queries themselves. TheDatabase Structure
tasks involve changing the database schema by adding or
removing table columns, or adding or removing entire ta-
bles, for example. TheSpace Monitoring/Management,
System Monitoring, Performance Monitoring, and In-
tegrity/Statistics Checkstasks all involve monitoring pro-
cedures, such as identifying the applications or queries
that are performing poorly. TheData Modificationcate-
gory represents those tasks that import, export, or modify
actual data in the database. Finally, theCodingtask in-
volves writing code to support applications, whereas the
Software Upgradetasks involve the upgrade of the oper-
ating system, the DBMS, or the supporting tools.

The three most frequently mentioned categories were
Recovery, Performance Tuning, and Database Structure,
respectively amounting to 19%, 17%, and 14% of all
tasks described by the DBAs. If we collapse the Space
Monitoring/Management, System Monitoring, and Per-

formance Monitoring categories, we can see that 27% of
the reported tasks have to do with checking the system
behavior. From a different perspective, 24% of all tasks
are related to performance, in which case the DBAs are
engaged in either identifying the reasons for poor per-
formance (Performance Monitoring) or looking for op-
portunities to further improve the overall DBMS perfor-
mance (Performance Tuning). If we consider that check-
ing and updating database statistics are carried out to
allow for more accurate optimizations, the fraction of
performance-oriented tasks is actually 32%.

Twenty one DBAs (41%) reported that they use third-
party support tools for these different tasks. Several of
these DBAs actually use multiple types of tools. In more
detail, 14 DBAs use tools for Performance Monitoring
tasks, 12 DBAs use tools for Recovery tasks, 12 DBAs
use tools for Database Structure tasks, 7 DBAs use tools
for Performance Tuning tasks, and 7 DBAs use tools for
granting/revoking access privileges; the latter tools may
be needed in Database Structure, Coding, and Software
Upgrade tasks.

3.3 Testing Context

Another important set of questions in our survey con-
cerned the context in which the above tasks are per-
formed. More specifically, we sought to understand the
testing methodology that DBAs rely upon to verify the
correctness of their actions. The next paragraphs de-
scribe our findings with respect to the environment and
approach used for testing.

Testing environment. Figure 4 depicts the distribution
of test environments, breaking results down with respect
to the DBA experience levels. We categorize the envi-
ronments according to how similar they are to the online
database environment: an exact replica (Replica), an en-
vironment that differs from the online environment only
with respect to how powerful the machines are (Almost
Replica), an environment with fewer machines than the
online environment (Fewer Machines), or other configu-
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Problem category Average Number of DBAs per experience level % of all Caused by
frequency 2–5 years 5–10 years > 10 years problems DBA mistakes

Deployment problems Once a month 4 3 3 11 most
Performance problems Once a month 2 2 4 9 most
General structure problems Once a month 2 4 3 10 most
DBMS problems Once a month 1 1 2 5 none
Access-privilege problems Once in 2 months 3 5 1 10 all
Space problems Once in 2 months 3 3 8 16 some
General maintenance problemsOnce in 3 months 6 5 5 18 most
Hardware problems Once a year 3 6 5 16 none
Data problems Once a year – 1 3 5 some

Table 1:Reported problems, estimated average frequency of occurrence, number of DBAs who mentioned each prob-
lem as frequent broken down by DBA experience, percentage ofDBAs who mentioned the problem as frequent, and,
qualitatively, how often it is caused by DBA mistakes.

rations (Other). Irrespective of the test environment, the
test machines are typically loaded with only a fraction of
the online database.

We can see that 84% of the DBAs test their actions
in environments that are different from the online envi-
ronment. Further, DBAs of different experience levels
use these non-replica testing practices in roughly simi-
lar percentages. We conjecture that these practices are a
result of the performance and cost implications of using
exact replicas for testing. Regardless of the reason, it is
possible for actions to appear correct in these environ-
ments, but cause problems when migrated to the online
environment. Not to mention the fact that the migration
itself is mistake-prone, since it is performed by the DBA
manually or via deployment scripts.

Another interesting observation is that 8 DBAs use
other approaches to testing. Three of these DBAs repli-
cate the online databases on the online machines them-
selves, and use the replicated databases as test instances.
This approach is problematic when the DBA actions in-
volve components shared by online and testing environ-
ments, e.g. the operating system or the I/O devices.

Two of the most experienced DBAs also mentioned
a well-structured testing environment comprising three
sets of machines: (1) “development machines” used for
application developers to ascertain that a particular appli-
cation interacts with the necessary databases as expected;
(2) “integration machines”, which host all applications
and are subjected to more aggressive tests, including the
use of load generators; (3) “quality-assurance machines”
used for ensuring that the system conforms with estab-
lished standards before it can be deemed deployable.

Testing approach. Another important issue is how
DBAs test modifications to existing databases and newly
designed databases before deployment to the production
system. Most DBAs (61%) report that they perform test-
ing manually or via their own scripts. Two other DBAs

report that, depending upon the nature of the actions to
be performed, they do not carry out any offline testing
whatsoever. Finally, 2 DBAs reported testing by means
of documented operability standards that specify a set of
requirements to be satisfied before deployment to pro-
duction. In such cases, to determine if the requirements
are obeyed, performance tests, design reviews, and secu-
rity analyses are carried out.

3.4 Problems in DB Administration

We asked the DBAs to describe the three most fre-
quent problems that arise during database administration.
Based on the descriptions they provided, we derived the
categories listed in Table 1. The table shows how fre-
quently (on average) these DBAs estimate each problem
category to occur, how many DBAs with different ex-
perience levels alluded to the category, the percentage
of DBAs who mentioned the category, and qualitatively
how often a problem in the category is caused by a DBA
mistake. In the following paragraphs, we describe the
problems, their causes, and how they affect the system.

Deployment problems. This category of problems
occurs when changes to the online system cause the
database to misbehave, even though the changes may
have been tested in an offline testing environment. These
problems occur in DBA tasks that involve migrating
changes from a testing environment to the online en-
vironment (i.e., Performance Tuning, Database Struc-
ture, Data Modification, Coding, and Software Upgrade
tasks), and are typically due to DBA mistakes committed
during this migration process. Specifically, the DBAs re-
ported a number of causes for these problems: (1) bugs
in the DBA’s deployment scripts, which are aggravated
by the DBMSs’ typically poor support for debugging and
logging changes; (2) DBAs forget to change the structure
of the online database before deploying a new or recently
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modified application; (3) DBAs accidentally propagate
the changes made to the database in the testing environ-
ment to the online system; (4) DBAs make inappropriate
changes directly to the online database; (5) DBAs forget
to reapply indexes in the production database; and (6) ap-
plications compiled against the wrong database schema
are deployed online.

Note that causes (1)–(5) are DBA mistakes. Some of
them affect the interaction between the database and the
applications. If the deployed database and the applica-
tions are not consistent, non-existent structures might be
accessed, thus generating fatal SQL errors.

As shown in Table 1, deployment problems occur fre-
quently (once a month on average), according to the 10
DBAs who mentioned this category. Out of all DBAs,
40% of them mentioned the lack of integrated version-
ing control for the database and its applications as the
main weakness of current DBMSs and third-party tools
with respect to deployment. Another 27%, 13%, and
13% mentioned the complexity of the DBMSs and tools,
poor support for comparisons between test and online en-
vironments, and the burden posed by interdependencies
between database objects, respectively.

Performance problems. Typically, when the DBMS
delivers poor performance to applications or users, the
culprit is the DBA, the application developer, or both.
Two DBA mistakes compromising the DBMS perfor-
mance were mentioned: (1) erroneous performance tun-
ing, in the face of the plethora of configuration parame-
ters offered by DBMSs; and (2) inappropriate database
design, including database object structures and index-
ing scheme. These mistakes can occur in DBA tasks that
involve performance tuning, removing/adding database
objects, or changing the software (i.e., Performance Tun-
ing, Database Structure, Coding, and Software Upgrade
tasks). On the application developer side, the DBAs
complained about poorly designed queries that take long
to complete and consume a lot of resources.

As shown in Table 1, performance problems hap-
pen frequently (once a month on average), according
to 8 DBAs. In fact, 4 of these DBAs have more than
10 years of experience and consistently commented on
DBA-induced poor performance in particular.

General structure problems. Pertaining to this cat-
egory are incorrect database design and unsuitable
changes to the database, both produced by the DBA dur-
ing Database Structure tasks and leading to malformed
database objects, and ill-conceived code on the appli-
cation developer’s part. The DBAs mentioned two par-
ticular instances of incorrect database design in our sur-
vey: duplicated identity columns and columns too small
to hold a particular type of data. Four DBAs also men-
tioned that mistakes in database design and poor appli-

cation code are responsible for deadlocks they have ob-
served. In fact, these 4 DBAs observe deadlocks very
frequently, once in two weeks on average.

As Table 1 shows, general structure problems happen
frequently (once a month on average), according to the 9
DBAs who mentioned them.

DBMS problems. Four DBAs were victims of bugs in
DBMSs. Three of them said that the bugs had only minor
impacts on the database operation, but the other said that
a DBMS bug was the cause of an outage that lasted half
a day. DBMS bugs were not mentioned by many DBAs,
but the 4 DBAs who did mention them claim that these
bugs occur once a month on average.

Access-privilege problems.Another category of prob-
lems affects the privileges to access the database objects.
These problems can occur in DBA tasks that involve
removing/adding database objects or changing the soft-
ware (i.e., Database Structure, Coding, and Software Up-
grade tasks). According to the DBAs, these problems are
caused by two types of mistakes: (1) DBAs do not grant
sufficient rights to users or applications, resulting in their
inability to access the whole (or parts of the) database;
and (2) DBAs grant excessive privileges to some users
or applications. Obviously, the latter situation causes a
serious security vulnerability.

According to the 9 DBAs who mentioned this cat-
egory, access-privilege problems also occur frequently
(once in two months on average). Interestingly, 1 DBA
who mentioned this category uses a third-party tool
specifically for granting/revoking access privileges to
database objects.

Space problems. This category consists of disk space
exhaustion and tablespace (i.e., the space reserved for a
set of tables and indexes) problems. These problems are
most serious when the DBA fails to monitor and man-
age the space appropriately (i.e., Recovery and Space
Monitoring/Management tasks). Disk space exhaustion
is caused chiefly by growing transaction logs, alert logs,
and the like. Some DBAs mentioned that the unpre-
dictability of the application users’ behavior makes it dif-
ficult to foresee a disk space shortage.

Some DBAs also reported tablespaces unexpectedly
filling up. Further, a few DBAs mentioned the impos-
sibility of extending a completely used tablespace. An-
other tablespace-related problem occurs in the context
of tablespace defragmentation, an operation that DBAs
perform to prevent performance degradation on table
accesses. A typical procedure for defragmenting a ta-
blespace involves exporting the affected tables, dropping
them, and re-importing them. During the defragmenta-
tion, 1 DBA was unable to re-import the tables due to a
bug in the script that automated the procedure and, as a
result, the database had to be completely restored.
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According to the 14 DBAs who mentioned space prob-
lems, they occur once in two months on average.

General maintenance problems.This is the category
of problems that DBAs mentioned most frequently; 16
DBAs mentioned it. These problems occur during com-
mon maintenance tasks, such as software or hardware
upgrades, configuring system components, and manag-
ing backups. Regarding upgrades, some DBAs alluded to
failures resulting from incompatibilities that arose after
such upgrades. Other DBAs mentioned mistakes such as
the DBA incorrectly shutting down the database and the
DBA forgetting to restart the DBMS replication capabil-
ity after a shutdown. In terms of configuration, 3 DBAs
described situations in which the DBMS was unable to
start after the DBA misconfigured it trying to improve
performance. Regarding the management of backups,
DBAs listed faulty devices and insufficient space due to
poor management.

As Table 1 shows, general maintenance problems hap-
pen frequently (once in three months on average), ac-
cording to the DBAs.

Hardware and data problems. Hardware failure and
data loss are the least frequent problems according to the
DBAs; they occur only once a year on average. 14 DBAs
mentioned hardware failures, whereas only 4 mentioned
data loss as a problem.

3.5 Summary and Discussion

We can make several important observations from the
data described above:

1. Recovery, performance, and structure tasks are the
most common tasks performed by DBAs. Several cate-
gories of tasks, including performance tuning, database
restructuring, and data modification typically require the
DBA to perform and test actions offline and then migrat-
ing or deploying changes to the online system.

2. The vast majority of the DBAs test their actions
manually (or via their own scripts) in environments that
are not exact replicas of the online system. The differ-
ences are not only in the numbers and types of machines,
but also in the data itself and the test workload.

3. A large number of problems occur in database ad-
ministration. The most commonly cited were general
maintenance, space, and hardware problems. However,
deployment, performance, and structure problems were
estimated by several DBAs to be the most frequent.

4. Qualitatively, DBA mistakes are the root cause of
all or mostof the deployment, access-privilege, perfor-
mance, maintenance, and structure problems; these cate-
gories represent 58% of the reported problems. They are
also responsible forsomeof the space and data problems,
which represent 21% of the reported problems. Unfor-

tunately, the DBA mistakes are typically not maskable
by traditional high-availability techniques, such as hard-
ware redundancy or primary-backup schemes. In fact,
the mistakes affect the database operation in a number of
ways that may produce unavailability (or even incorrect
behavior), including: (1) data becoming completely or
partially inaccessible; (2) security vulnerabilities being
introduced; (3) performance being severely degraded;
(4) inappropriate changes and/or unsuitable design giv-
ing scope for data inconsistencies; and (5) careless mon-
itoring producing latent errors.

5. DBAs of all experience levels make mistakes of all
categories, even when they use third-party tools.

6. The differences and separation between offline test-
ing and online environments are two of the main causes
of the most frequent mistakes. Differences between the
two environments can cause actions to be correct in the
testing system but problematic in the online system. Ap-
plying changes that have already been tested in a testing
environment to the online system is often an involved,
mistake-prone process; even if this process is scripted,
mistakes in writing or running the scripts can harm the
online system.

These observations lead us to conclude that DBA mis-
takes have to be addressed for consistent performance
and availability. We also conclude that DBAs need ad-
ditional support beyond what is provided by today’s of-
fline testing environments. Thus, we next propose vali-
dation as part of the needed infrastructure support to help
DBAs reduce the impact of mistakes on system perfor-
mance and availability. As we demonstrate later, valida-
tion hides a large fraction of these mistakes from appli-
cations and users, giving the DBA the opportunity to fix
his/her mistakes before they become noticeable, as well
as eliminates deployment mistakes.

4 Validation

In this section, we first briefly review the overall vali-
dation approach. This review is couched in the context
of a three-tier Internet service, with the third tier being
a DBMS, to provide a concrete example application sur-
rounding the DBMS. Then, we discuss issues that are
specific to validating DBMSs and describe our prototype
implementation. We close the section with a discussion
of the generality and limitations of our approach.

4.1 Background

A validation environment should be as closely tied to
the online environment as possible to: (1) avoid latent
errors that escape detection during validation but be-
come activated in the online system because of differ-
ences between the validation and online environments;
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Figure 5: Validation for a three-tier Internet service.
In the figure, the two back-end databases are mirrored
replicas. The database node in the validation slice is un-
dergoing validation after the DBA has operated on it.

(2) load components under validation with as realistic a
workload as possible; and (3) enable operators to bring
validated components online without having to change
any of the components’ configurations, thereby minimiz-
ing the chance of new operator mistakes. On the other
hand, the components under validation, which we shall
call maskedcomponents for simplicity, must beisolated
from the online system so that incorrect behaviors cannot
cause system failures.

To meet the above goals, we actually host the valida-
tion environment on the online system itself. In particu-
lar, we divide the components into two logical slices: an
online slice that hosts the online components and a val-
idation slice where components can be validated before
being integrated into the online slice. Figure 5 shows this
validation architecture when a component of the DBMS
tier is under validation. To protect the integrity of the on-
line service without completely separating the two slices
(which would reduce the validation slice to an offline
testing system), we erect an isolation barrier between
the slices but introduce a set of connectingshunts. The
shunts duplicate requests and replies (i.e., inputs and out-
puts) passing through the interfaces of the components
in the live service. Shunts either log these requests and
replies or forward them to the validation slice.

We then build a validation harness consisting ofproxy
componentsthat can be used to form a virtual service
around the masked components; Figure 5 shows an ap-
plication proxy being used to drive a masked DBMS.
Together, the virtual service and the duplication of re-
quests and replies via the shunts allow operators to vali-
date masked components under realistic workloads. In
particular, the virtual service either replays previously
recorded logs or accepts forwarded duplicates of live re-

quests and responses from the shunts, feeds appropriate
requests to the masked components, and verifies that the
outputs of the masked components meet certain valida-
tion criteria. Proxies can be implemented by modifying
open source components or wrapping code around pro-
prietary software with well-defined interfaces.

Finally, the harness uses a set ofcomparator functions,
which compute whether some set of observations of the
validation service match a set of criteria. For example,
in Figure 5, a comparator function might determine if
the streams of requests and replies going across the pair
of connections labeled(A) and(B) are similar enough to
declare the masked database as working correctly. If any
comparison fails, an error is signaled and the validation
fails. If after a threshold period of time all comparisons
match, the component is considered validated.

Given the above infrastructure, validation becomes
conceptually simple. First, a script places the set of com-
ponents to be worked on in the validation environment,
effectively masking them from the live service. The op-
erator then acts on the masked components just as he/she
would in the live service. Next, another script instructs
the validation harness to surround the masked compo-
nents with a virtual service, load the components, and
check their correctness. If the masked components pass
this validation, the script calls a migration function that
fully integrates the component into the live service.

4.2 Validation Strategies

In [16], we proposed two validation approaches:trace-
basedandreplica-basedvalidation. In trace-based vali-
dation, for each masked component to be validated, re-
quests and replies passing through the shunts of an equiv-
alent live component are logged and later replayed. Dur-
ing the replay, the logged replies can be compared to the
replies produced by the masked component. In replica-
based validation, the current offered load on the live ser-
vice is used, where requests passing through the shunts
of an equivalent live component are duplicated and for-
warded in real-time to the validation harness to drive the
masked component. The shunts also capture the replies
generated by the live component and forward them to the
harness, which compares them against the replies com-
ing from the masked component.

Unfortunately, trace-based and replica-based valida-
tion are only applicable when the output of a masked
component can be compared against that of a known cor-
rect instance. Many operator actions can correctly lead
to a masked component behaving differently than all cur-
rent/known instances, posing a bootstrapping problem.
An example in the context of databases is a change to
the database schema (a task that is cited as one of the
most common DBA tasks in our survey). After the DBA
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changes the schema (e.g., by deleting a column) in the
validation environment, the masked database no longer
mirrors the online database and so may correctly produce
different answers to the same query. The same applies to
a previously collected trace.

We proposemodel-based validationto deal with this
bootstrapping problem. The key idea behind model-
based validation is that a service, particularly one with
components that have just been acted on by an operator,
should conform to an explicit model. Thus, in model-
based validation, we require an explicit representation of
the intended consequences of a set of operator actions
in a model of the system, and then validate that the dy-
namic behavior of the masked component matches that
predicted by the model.

For example, a simple model for a service composed
of a front-end load balancer and a set of back-end servers
could specify an assertion to the effect that the resource
utilization at the different back-end nodes should always
be within a small percentage of each other. This simple
model would allow us to validate changes to the front-
end device even in the context of heterogeneous servers.

If we can conveniently express these models and check
them during validation, we can validate several classes
of operator actions that cannot be tackled by trace or
replica-based validation. We envision a simple language
that can express models for multiple components, includ-
ing load balancers, firewalls, and servers.

4.3 Implementing Validation for DBMSs

We now describe our prototype validation environment
for a service with replicated databases. A replicated
database framework allows DBAs to operate on the
masked DBMS and validate it while the online DBMS
is still servicing live requests, an important property for
systems that must provide 24x7 availability.

Our implementation leverages the C-JDBC database
clustering middleware [7]. Briefly, C-JDBC clusters a
collection of possibly heterogeneous DBMSs into a sin-
gle virtual DBMS that exposes a single database view
with improved scalability and dependability. C-JDBC
implements a software controller between a JDBC appli-
cation and the back-end DBMSs. The controller com-
prises a request scheduler, a load balancer, and a re-
covery log. C-JDBC supports a few data distribution
schemes. Our prototype uses only one: full data repli-
cation across the DBMSs comprising a virtual DBMS.
Under full replication, each read request is sent to one
replica while writes are broadcast to all replicas.

As shall be seen, critical to our implementation is C-
JDBC’s capability to disable and disconnect a back-end
DBMS, ensuring that its content is a consistent check-
point with respect to the recovery log, and later reinte-

grate this DBMS by replaying the log to update its con-
tent to the current content of the virtual database.

As shown in Figure 5, our prototype relies on the C-
JDBC controller only in the online slice; the application
proxy contacts the database under validation directly. We
implement the isolation barrier between the online and
validation slices at the granularity of an entire node by
running nodes over a virtual network created using Men-
dosus [14], a fault-injection and network-emulation tool
for clustered systems. The general idea is to use Mendo-
sus to partition the virtual network into two parts so that
online nodes can see each other but not those in the vali-
dation slice and vice-versa. Critically, however, Mendo-
sus can migrate a node between the two parts of the vir-
tual network without requiring any change to the node’s
networking parameters.

The shunting of requests and responses takes place
inside the C-JDBC controller, as can be seen in Fig-
ure 5. A critical aspect to be observed when imple-
menting a database shunt is that of ordering. Suppose
that the controller has three requests to dispatch within
a single transaction: two read requests,R1 andR2, and
one write request,W. If the order in which the online
database executes the requests isR1, W, andR2, whereas
the database under validation executesR1, R2, and then
W, the database replicas will report different responses
for R2 if the write request modifies the data read byR2.
If a following request depends onR2, the situation be-
comes even worse. This undesirable ordering mismatch
can not only trigger false positives during validation, but
also, and more seriously, corrupt the database state.

A logical conclusion from this scenario is the
paramount need to enforce a partial order of request ex-
ecution that both the online database replicas and the
database under validation must abide by. A number of
consecutive read requests can be executed in any order,
but blocks of reads separated by writes (or commits)
must be executed in the same order with respect to the
write (or commit) requests.

Although the C-JDBC controller guarantees that the
mirrored databases connected to it are kept consistent
with respect to each transaction independently, it does
not guarantee ordering across transactions. In other
words, in the face of concurrent transactions, the con-
troller cannot determine whether the back-end databases
will execute a read request from one transaction before or
after a write request from another transaction. The iden-
tification numbers that the controller assigns to requests
have nothing to do with actual order of execution. For
this reason, we had to modify the controller code by in-
troducing a multiple-reader-single-writer lock used only
while requests are being shunted. This lock is used to en-
sure that each write is executed by itself on the back-end
DBMSs, providing a complete ordering between all pairs
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of read-write and write-write operations. By using this
extra lock and capturing requests right before the con-
troller issues them to the back-ends, our shunting code
forwards/collects requests in an order that the applica-
tion proxy can rely on. During validation, requests can
be replayed in this order irrespective of the transactions
to which they belong.

We have implemented all three validation strategies
and two comparator functions, a reply exact-match and
a latency-match comparator. We describe the important
details of these implementations next.

Trace-based validation. Trace-based validation re-
quires collecting traces from the online system. Given
the above infrastructure, collecting a trace is simple:
we ask the C-JDBC controller to create a copy of the
database on a “trace disk” and to start logging requests
and replies to it serialized to after the copy.

At a later point, suppose that the DBA wants to op-
erate on one of two back-end DBMSs within a C-JDBC
virtual DBMS, say to create an index to improve per-
formance, and then use trace-based validation to validate
his/her actions. He/she would run two scripts, one before
operating on each DBMS and the other after doing so:

Script 1 – take the DBMS to be worked on offline. (1)
Instruct the C-JDBC controller to checkpoint and disable
the appropriate DBMS node. This means that the dis-
abled database is consistent with a particular point in the
controller’s replay log. (2) Instruct Mendosus to move
the masked DBMS into the validation slice. (3) Save the
masked DBMS’s current state to a persistent backup.

Script 2 – validate the modified DBMS and move it to the
online slice. (1) Initialize the DBMS with the database
on the trace disk. (2) Start the application proxy. (3)
Once validation completes successfully, reinitialize the
DBMS with the backup saved in script 1. (4) Instruct
Mendosus to move the masked DBMS back to the on-
line slice. (5) Attach the newly modified and validated
DBMS to the C-JDBC controller and instruct the con-
troller to integrate it. If validation fails in step (3), the
DBA needs to fix any mistakes, and re-start the script.

Replica-based validation. Replica-based validation is
quite similar to trace-based validation and can also be
run using two scripts. Script 1 is the same as that used for
trace-based validation. Script 2 performs the actions enu-
merated next. (1) Instruct Mendosus to move the masked
DBMS back into the online slice, and instruct the con-
troller to bring the masked DBMS up-to-date using its
replay log, while keeping the masked DBMS in adis-
abled state. (We actually had to modify the controller to
implement this functionality, since the controller would
automatically enable a DBMS node after replaying the
log.) (2) Now that the masked DBMS is again an ex-
act replica of the online DBMS, start buffering writes

(and commits) to the online virtual DBMS, migrate the
masked DBMS back to the validation slice, and start the
application proxy. (3) Enable the shunting of requests
and replies to the application proxy, and restart write
(and commit) processing on the C-JDBC controller. (4)
Once validation completes successfully, instruct the con-
troller to halt and buffer all incoming requests; migrate
the masked DBMS to the online slice and let it connect to
the C-JDBC controller. Note that the two DBMSs have
exactly the same content at this point, which makes this
reintegration quite fast. (5) Finally, instruct the C-JDBC
controller to start processing requests again. If validation
fails in step 4, the masked DBMS will remain in the vali-
dation slice and will be initialized with the state saved in
script 1, so that it can be validated again after the DBA
fixes any mistakes.

Note that script 2 forces the controller to buffer write
(and commit) requests to the virtual DBMS for a very
short period in replica-based validation; just enough time
to migrate the masked DBMS to the validation slice and
start the application proxy. Because these operations can
be performed in only a few milliseconds, the amount of
buffering that takes place is typically very small.

Model-based validation.Our vision is to allow the DBA
to specify his/her actions in a simple canonical form and
associate a small set of assertions with each action. The
system can then validate the actions that are actually per-
formed on the masked DBMS by checking that the asser-
tions hold. The specification of actions in the canonical
form should bemuch simplerthan the actual execution of
these actions (say, as SQL queries and commands). They
should also be independent of specific implementations
of DBMS, which is important because each implementa-
tion uses a different variant of SQL. This simplicity and
portability are the main advantages of model-based vali-
dation. For example, automatically executing the needed
actions from the canonical descriptions would require
extensive implementations for all possible DBMSs C-
JDBC can use.

We have prototyped a simple model-based validation
strategy as a proof-of-concept. Our implementation cur-
rently focuses on database structure changes, since these
tasks were identified as very frequent by the DBAs we
surveyed. It includes four canonical actions: add a table,
remove a table, add a column, and remove a column. It
also defines a set of assertions that must be true about
the database schema after an action has been performed
compared to the schema before the action. For example,
one of the assertions states that, if the DBA will add a
table, the schema after the action should contain all the
tables in the previous schema plus the table just created.

While this prototype implementation is quite simple,
it is also powerful. The reason is that each canonical
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action, such as adding a column, can correspond to a
lengthy set of real actions. For example, adding a col-
umn to the middle of a table might be quite complicated
depending on the DBMS being used [15]. This operation
might involve, among many other things, unloading the
data from the table and dropping it (which would in turn
drop all indexes and views associated with the table);
recreating the table with the new column; repopulating
the table; recreating all necessary indexes and views; and
checking if the application programs work correctly with
the modified table. In model-based validation, we are
only concerned with the model of the database schema.
Thus, the operator might specify his/her action as “I will
add a column to Table T between two existing columns,
A and B.” This allows model-based validation to check
that, indeed, in the new schema, table T has one more
column that is between A and B.

To address another common set of mistakes described
by the DBAs, namely mismatches between applications
and the database structure, we combine model-based val-
idation of the DBMSs with trace-based validation of the
applications to check that the applications have been up-
dated to correctly deal with the new schema.

In detail, the whole validation process for actions that
change the database structure proceeds as follows. First,
a script moves the DBMS to the validation slice, asks
the DBA to describe his/her intended actions in canon-
ical form, extracts the current schema from the DBMS,
and then allows the DBA to act on the masked DBMS.
Once the DBA completes the necessary actions, a second
script uses model-based validation to check that the cor-
responding assertions hold. Finally, the DBA brings any
application that depends on the database into the valida-
tion slice and validates that it works correctly with the
new schema using a trace. In the context of the 3-tier
Internet service shown in Figure 5, this means that the
DBA would move each of the application nodes into the
validation slice for validation.

There are three subtle issues that must be addressed
when the database schema changes. To make the de-
scription of the issues concrete, suppose that we have a
service as in Figure 5. First, if a database schema change
requires changes to the application servers, then once
updated, these servers cannot be returned to the online
slice until the new DBMS has been deployed. Second, it
may not be possible to properly validate replies from the
application servers against replies that were previously
logged using a strict comparator, such as exact content
matching, when the application servers need to change.
Replica-based validation can be used but only after the
changes to at least one application server have been vali-
dated. Third, during DBMS reintegration into the online
system, it may not be possible to replay writes that have
been executed on the online system while the masked

DBMS was being changed and validated (e.g., writes that
depend on the data in a column that has been removed).

To deal with the first issue, the validation of the appli-
cation servers and DBMSs needs to occur in two phases
as follows. During a period of low load, the DBA can
move one DBMS into the validation slice, change the
schema, use model-based validation to check the correct-
ness of his/her changes, then move 1/2 of the application
servers over to the validation slice, update them as nec-
essary, and use trace-based validation to check that they
work correctly with the modified DBMS. After valida-
tion is completed, he/she can temporarily halt and buffer
requests from the first tier, move all validated compo-
nents back online, and move the remaining unmodified
application servers and DBMS into the validation slice.
In essence, this is the point where the live service is
changed from operating on the old database schema to
the new schema.

To deal with the second issue, we observe that it is
possible to validate the application servers using traces
collected previously in situations where we know that
the changes in schema should not cause SQL fatal errors
in the application servers. In this case, a previous trace
can be used together with a comparator function that dis-
regards the content of the application server replies but
checks for fatal SQL exceptions. (In fact, replica-based
validation could also be applied using this weaker com-
parator function.) In case an exception is found, the vali-
dation process fails. When schema changes should cause
these exceptions in application servers, a synthetic appli-
cation server trace needs to be generated that should not
cause exceptions with the new schema. Again, an excep-
tion found during the validation process would mean a
potential DBA mistake.

Finally, to deal with the third issue, our implementa-
tion denies writes to the online virtual DBMS when the
database structure needs to be changed. This behavior
is acceptable for the system we study (an online auction
service). To avoid denying writes, an alternative would
be to optimistically assume that writes that cannot be re-
played because of a change in schema will not occur. In
this approach, the C-JDBC controller could be modified
to flag an error during reintegration, if a write cannot be
replayed. If such an error occurred, it would be up to the
DBA to determine the proper course of action.

4.4 Summary

In summary, we find that our three validation strategies
are complementary. Trace-based validation can be used
for checking the correctness of actions for corner cases
that do not occur frequently. Replica-based validation
can be used to place the most realistic workload possi-
ble on a masked component — the current workload of
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the live system. Trace-based and replica-based valida-
tion allow the checking of performance tuning actions,
such as the creation or modification of indexes. Finally,
structural changes can be validated using a combination
of model-based and trace-based validation.

With respect to the mistakes reported by DBAs, vali-
dation in an extension of the online system allows us to
eliminate deployment mistakes, whereas trace, replica,
and model-based validation deal with performance tun-
ing and structural mistakes. These three categories of
mistakes are the most frequent according to our survey.

5 Evaluation

In this section, we first evaluate our validation approach
using a set of mistake-injection benchmarks. We then
assess the performance impact of our validation infras-
tructure on a live service using a micro-benchmark.

5.1 Experimental Setup

Our evaluation is performed in the context of an online
auction service modeled after EBay. The service is or-
ganized into 3 tiers of servers: Web, application, and
database tiers. We use one Web server machine running
Apache and three application servers running Tomcat.
The database tier comprises one machine running the
C-JDBC controller and two machines running back-end
MySQL servers (that are replicas of each other within a
single C-JDBC virtual DBMS). All nodes are equipped
with a 1.2 GHz Intel Celeron processor and 512 MB of
RAM, running Linux with kernel 2.4.18-14. The nodes
are interconnected by a Fast Ethernet switch.

A client emulator is used to exercise the service. The
workload consists of a “bidding mix” of requests (94%
of the database requests are reads) issued by a number of
concurrent clients that repeatedly open sessions with the
service. Each client issues a request, receives and parses
the reply, “thinks” for a while, and follows a link con-
tained in the reply. A user-defined Markov model deter-
mines which link to follow. During our mistake-injection
experiments, the overall load imposed on the system is
60 requests/second, which is approximately 70% of the
maximum achievable throughput. The code for the ser-
vice, the workload, and the client emulator are from the
DynaServer project [19].

5.2 Mistake-injection Experiments

We injected DBA mistakes into the auction service.
Specifically, we have developed a number of scripts, each
of which emulates a DBA performing an administration
task on the database tier and contains one mistake that
may occur during the task. The scripts are motivated by

Problem Category # Mistakes # Mistakes
Injected Caught

Deployment 4 4
Performance 2 1
General structure 6 5
DBMS 0 –
Access-privilege 2 1
Space 1 1
General maintenance 6 5
Hardware 0 –
Data 2 2

Table 3:Coverage in mistake-injection experiments.

our survey results and span the most commonly reported
tasks and mistake types. The detailed actions and mis-
takes within the tasks were derived from several database
administration manuals and books, e.g. [15]. Table 2 lists
the mistakes we injected in our experiments categorized
by DBA task and problem (see Section 3). Note that we
only designed mistakes for problem categories where at
least some problems were reported as originating from
DBA mistakes (those marked with some, most, or all for
“Caused by DBA mistakes” in Table 1).

Table 3 lists the total number of scripts (mistakes) for
each problem category reported in our survey and the
number of mistakes caught by validation. Overall, val-
idation detected 19 out of 23 injected mistakes.

It is worth mentioning how validation caught the per-
formance mistake “insufficient number of indexes” and
the deployment mistake “indexes not reapplied”. In both
cases, a performance degradation was detected by the
performance comparator function. The comparator func-
tion uses two configurable thresholds to decide on the
result of validation: the maximum acceptable execution
time difference for each request (set to 60 seconds in our
experiments), and the maximum tolerable execution time
difference accumulated during the whole validation (set
to 30 seconds times the number of requests used in the
validation). In our experiments, which were configured
to execute 10,000 requests for validation, the absence of
an index caused the execution time difference for 13 re-
quests to be greater than 70 seconds. The average time
difference among these 13 requests was 32 minutes, and
the total time difference over all 10,000 requests was
7.5 hours. Note that validation could have stopped long
before the 10,000 requests were executed. However, to
see the complete impact of the mistakes, we turned off a
timeout parameter that controls the maximum time that
each request is allowed to consume during validation.

Our implementation of model-based validation caught
4 out of 5 mistakes from the General structure cate-
gory for which model-based validation is applicable. We
did not catch the “insufficient column size assumed by
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Task Category Problem Category Details of Mistakes Injected Using Scripts
DB Structure Deployment Mismatch in schema used by application and actual database schema

Unintended modifications to the database schema
Indexes not reapplied after modifications to structure

General structure Insufficient column size assumed by database schema
Wrong table dropped
New column given an incorrect name
Wrong column removed
Name of existing table incorrectly changed
Deadlocks caused by erroneous application programming

Access-privilege Access to certain tables not granted
Excess privileges granted

Space Management Space Misconfigured autoextension parameter: maximum data file size too small
Deployment Incomplete data reimport during a defragment operation
General maintenance Data file parameters incorrectly configured: size and path (2mistakes)

Log and data files mistakenly deleted (2 mistakes)
Software Upgrade General maintenance Incorrect data reloaded post-upgrade, e.g., due to mistakes in transforming

data during migration to a different database (from Oracle to MySQL)
Performance Tuning Performance Misconfiguration of buffer pool: size is too small

Insufficient number of indexes
Data Modification Data Unchecked data loss/corruption resulting in loading of incom-

plete/incorrect data into production system (2 mistakes)
Recovery General maintenance Incomplete backup due to erroneous backup scripts or inattentive space

management, resulting in incorrect/incomplete data during recovery

Table 2:Operator mistake fault load used in evaluating validation.

database schema” mistake because it currently does not
include the notion of size. However, this can easily
be added to a more complete implementation. The 6th
structural mistake, “deadlocks caused by erroneous ap-
plication programming,” could not have been caught by
model-based validation because the mistake occurs at the
application servers. This mistake was caught by multi-
component trace-based validation, however.

We considered the performance mistake “buffer pool
size too small” not caught. In our experiment, we
changed the MySQL buffer pool size from 256 MB to
40 MB. Regarding its performance impact, the execution
time difference for 7 out of 10,000 requests was greater
than 1.5 seconds. Had the threshold been set to at most
1.5 seconds, validation would have caught this mistake.
This highlights how important it is to specify reasonable
thresholds for the performance comparator function.

The second mistake that validation could not catch was
“excess privileges granted”, a latent mistake that makes
the system vulnerable to unauthorized data access. Val-
idation is not able to deal with this kind of situation be-
cause the live (or logged) requests used to exercise the
masked components cannot be identified as illegitimate
once their authentication has succeeded.

The last mistake that validation overlooked was “log
files mistakenly deleted”. The reason is that the DBMS
did not behave abnormally in the face of this mistake.
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Figure 6:Performance impact of validation.

5.3 Performance Overheads

Having shown that validation is effective at masking
database administration mistakes, we now consider the
performance impact of validation on our auction service.

Shunting. We start by considering the overhead of
shunting C-JDBC requests and replies. To expose this
overhead, we ran the two back-end database servers
on more powerful machines (2.8-GHz Xeon-based ma-
chines, each with at least 1 GByte of memory and a 15K-
rpm disk) in these experiments.

Figure 6 depicts the average service throughputs (left
axis) and average request latencies (right axis) for a sys-
tem performing replica-based validation and a base sys-
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tem that does not shunt any requests or replies, as a func-
tion of the offered load. The throughputs and latencies
are measured at the client emulator. Note that we do not
present results for trace-based validation, since the over-
head of logging requests and replies is smaller than that
of forwarding them across the isolation barrier.

These results show that the overhead of replica-
based validation is negligible in terms of request la-
tency, across the entire range of offered loads. With re-
spect to throughput, the overhead is also negligible until
the C-JDBC controller approaches saturation at 120 re-
quests/second; even at that point, the throughput loss is
only around 5%. The loss is due to the additional CPU
utilization caused by forwarding. In more detail, we find
that forwarding imposes an additional 6–10% to the CPU
utilization at the controller, across the range of offered
loads (logging imposes 3–5% only). In contrast, shunt-
ing imposes a load of less than 1 MB/second on network
and disk bandwidth, which is negligible for Gigabit net-
works and storage systems.

Database state handling.We also measured the over-
head of preparing a masked DBMS to undergo validation
and the overhead of bringing the masked DBMS back
online after validation completes successfully. As dis-
cussed below, these overheads do not always affect the
performance of the online processing of requests.

When using replicas, the time it takes for the opera-
tor to act on the masked DBMS affects the overhead of
preparing the DBMS for validation, which is essentially
the overhead of resynchronizing the online and masked
DBMSs. For example, assuming the same infrastruc-
ture as the experiments above, 60 requests/second, and
10 minutes to complete the operator’s task, we find that
preparing a masked DBMS to undergo replica-based val-
idation takes 51 seconds. For a task taking 20 minutes,
preparing the masked DBMS takes 98 seconds. These
overheads are directly related to the percentage of re-
quests that induce database writes in our workload (6%).
During resynchronization, neither the average through-
put nor the average latency of online requests is notice-
ably affected. However, resynchronization does incur
an additional 24–31% of average CPU utilization on the
controller. After a successful replica-based validation,
reintegration of the masked DBMS takes only millisec-
onds, since the two DBMSs are already synchronized.

When using traces, the overhead of preparing a
masked DBMS for validation is not affected by the
length of the operator task. Rather, this overhead is dom-
inated by the time it takes to initialize the masked DBMS
with the database state stored in the trace. For our 4GB
auction database, this process takes 122 seconds. This
overhead has no effect on the online requests, since it
is only incurred by the masked DBMS. After a success-

ful trace-based validation, the overhead of reintegration
is dominated by the resynchronization with the online
DBMS. Resynchronization time essentially depends on
how long trace replay lasts, leading to similar overheads
to preparing a masked DBMS for replica-based valida-
tion. For example, if replay lasts 10 minutes, reintegra-
tion takes around 51 seconds. The impact of resynchro-
nization on the processing of online requests is also the
same as in replica-based validation.

Summary. Overall, these results are quite encourag-
ing since the overheads we observed only impact the
C-JDBC controller and only while validation is taking
place. Furthermore, services typically run at mid-range
resource utilizations (e.g., 50%–60%) to be able to deal
with load spikes, meaning that the CPU overhead of val-
idation should not affect throughputs in practice. Oper-
ating on the database during periods of low load reduces
the potential impact of validation even further.

6 Discussion

In this section, we draw several interesting observations
from our experience with DBA mistakes and database
validation, as well as relate our findings to our previous
validation work [16] on Web and application servers.

First, our survey clearly shows that most DBA mis-
takes are due to the separation and differences between
online and testing environments. We believe that keep-
ing these environments similar (ideally equal) is more
difficult for database systems than for Web and applica-
tion servers. The reason is that the amount of state that
would need to be replicated across the environments can
be orders of magnitude larger and more complex in the
case of databases. This observation leads us to believe
that deployment and performance mistakes will always
be more common in database systems; structure mistakes
have no clear equivalent in the context of Web and appli-
cation servers. In contrast, configuration mistakes that
are dominant in the latter systems are not so frequent in
databases.

Second, it is clear also that DBA support tools can help
database administration. However, these tools are very
specific to DBMS and to the tasks that they support. We
believe that validation (or a validation tool) is more gen-
erally applicable and thus potentially more useful. The
negative side is that a validation tool on its own would
not substantially reduce the amount of work required of
the DBA; instead, it would simplify deployment and hide
any mistakes that the DBA might make.

Third, we found that implementing validation for
database systems is substantially more complex than do-
ing so for Web and application servers. There are 3 rea-
sons for the extra complexity: the amount of state in-
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volved, the type of replication across DBMSs, and the
consistency requirements of the state. The amount of
state has implications on performance and request buffer-
ing, since requests need to be blocked during certain state
management operations. Further, since database sys-
tems deal essentially with hard state, replication and state
management have to maintain exact database replicas on-
line. Related to the hard state, the strong consistency re-
quirements of ACID force requests to be replayed in ex-
actly the same order at the replicated databases. Strong
consistency imposes extra constraints on how requests
can be forwarded to (or replayed in) the validation slice.
In contrast, Web and application servers involve rela-
tively small amounts of soft state, do not require ex-
act replication (functionality replication is enough), and
only require the replicated ordering of the requests within
each user session (rather than full strong consistency).

Fourth, we observe that making database structure
changes and performing model-based validation without
blocking any online requests is a challenge (one that C-
JDBC does not address at all). The problem is that, dur-
ing validation, the SQL commands that arrive in the on-
line slice might actually explicitly refer to the old struc-
ture. When it is time to reintegrate the masked DBMS,
any write commands that conflict with the new structure
become incorrect. We did not face this problem in our
previous work, as operations that would correctly change
the behavior of the servers were not considered.

Finally, despite the above complexities, we believe
that validation is conceptually simple to apply across dif-
ferent classes of systems. The key requirements are: (1)
a component to be validated must have one or more repli-
cas that are at least functionally equivalent to the compo-
nent; (2) the system must be able to correctly adapt to
component additions and removals; and (3) the system
must support a means for creating a consistent snapshot
of its state. For a system with these requirements, val-
idation involves isolating slices, shunting requests and
replies, implementing meaningful comparator functions,
and managing state.

7 Conclusions

In this paper, we collected a large amount of data on the
behavior of DBAs in the field through a survey of 51 ex-
perienced DBAs maintaining real databases. Based on
the results of our survey, we proposed that a validation
infrastructure that allows DBAs to check the correctness
of their actions in an isolated slice of the online system
itself would significantly reduce the impact of mistakes
on database performance and availability. We designed
and implemented a prototype of such a validation infras-
tructure for replicated databases. One novel aspect of
this infrastructure is that it allows components of a repli-

cated database to be acted upon and validated while the
database itself remains operational. We also proposed
a novel validation strategy called model-based valida-
tion for checking the correctness of a component in the
absence of any known correct instances whose behav-
iors can be used as a basis for validation. We showed
how even a simple implementation of this strategy can
be quite powerful in detecting DBA mistakes. We also
showed that validation is quite effective at masking and
detecting DBA mistakes; our validation infrastructure
was able to mask 19 out of 23 injected mistakes, where
the mistakes were designed to represent actual problems
reported in our survey.

We now plan to explore model-based validation fur-
ther, not only in the context of database systems but also
for other systems, such as load balancers and firewalls.

Acknowledgments

We would like to thank Yuanyuan Zhou and the anony-
mous reviewers for comments that helped improve the
paper. The work was partially supported by NSF
grants #EIA-0103722, #EIA-9986046, #CCR-0100798,
and #CSR-0509007.

References

[1] BARHAM , P., ISAACS, R., MORTIER, R., AND

NARAYANAN , D. Magpie:Real-Time Modelling and
Performance-Aware Systems. InProceedings of the 9th
Workshop on Hot Topics in Operating Systems (HotOS
IX) (May 2003).

[2] BARRETT, R., MAGLIO , P. P., KANDOGAN, E., AND

BAILEY, J. Usable Autonomic Computing Systems:
The Administrator’s Perspective. InProceedings of the
1st International Conference on Autonomic Computing
(ICAC’04) (May 2004).

[3] BROWN, A. B. A Recovery-oriented Approach to De-
pendable Services: Repairing Past Errors with System-
wide Undo. PhD thesis, Computer Science Division, Uni-
versity of California, Berkeley, 2003.

[4] BROWN, A. B., AND PATTERSON, D. A. Undo for Op-
erators: Building an Undoable E-mail Store. InProceed-
ings of the 2003 USENIX Annual Technical Conference
(June 2003).

[5] CASTRO, M., AND L ISKOV, B. Proactive Recovery in
a Byzantine-Fault-Tolerant System. InProceedings of
the 4th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI’00)(Oct. 2000).

[6] CASTRO, M., AND L ISKOV, B. BASE: Using Abstrac-
tion to Improve Fault Tolerance. InProceedings of the
18th ACM Symposium on Operating Systems Principles
(SOSP’01)(Oct. 2001).

15



[7] CECCHET, E., MARGUERITE, J., AND ZWAENEPOEL,
W. C-JDBC: Flexible Database Clustering Middleware.
In Proceedings of the USENIX Annual Technical Confer-
ence, Freenix track(June 2004).

[8] CHEN, M. Y., ACCARDI, A., K ICIMAN , E., LLOYD ,
J., PATTERSON, D., FOX, A., AND BREWER, E. Path-
Based Failure and Evolution Management. InProceed-
ings of the International Symposium on Networked Sys-
tems Design and Implementation (NSDI’04)(Mar. 2004).

[9] CHEON, Y., AND LEAVENS, G. T. A Runtime Assertion
Checker for the Java Modeling Language (JML). InPro-
ceedings of the International Conference on Software En-
gineering Research and Practice (SERP ’02)(June 2002).

[10] GIL , P., ARLAT, J., MADEIRA , H., CROUZET, Y., JAR-
BOUI, T., KANOUN, K., MARTEAU, T., DURES, J.,
V IEIRA , M., GIL , D., BARAZA , J.-C.,AND GRACIA ,
J. Fault Representativeness. Technical Report IST-2000-
25425, Information Society Technologies, June 2002.

[11] GRAY, J. Why do Computers Stop and What Can Be
Done About It? InProceedings of 5th Symposium on
Reliability in Distributed Software and Database Systems
(Jan. 1986).

[12] GRAY, J. A Census of Tandem System Availability Be-
tween 1985 and 1990.IEEE Transactions on Reliability
39, 4 (Oct. 1990).

[13] KALBARCZYK , Z. T., IYER, R. K., BAGCHI, S., AND

WHISNANT, K. Chameleon: A Software Infrastructure
for Adaptive Fault Tolerance.IEEE Transactions on Par-
allel and Distributed Systems 10, 6 (1999).

[14] L I , X., MARTIN , R. P., NAGARAJA, K., NGUYEN,
T. D., AND ZHANG, B. Mendosus: A SAN-Based Fault-
Injection Test-Bed for the Construction of Highly Avail-
able Network Services. InProceedings of 1st Workshop
on Novel Uses of System Area Networks(SAN-1)(Jan.
2002).

[15] MULLINS , C. S. Database Administration: The Com-
plete Guide to Practices and Procedures. Addison-
Wesley, 2002.

[16] NAGARAJA, K., OLIVEIRA , F., BIANCHINI , R., MAR-
TIN , R. P., AND NGUYEN, T. D. Understanding and
Dealing with Operator Mistakes in Internet Services. In
Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’04)(Dec.
2004).

[17] OPPENHEIMER, D., GANAPATHI , A., AND PATTER-
SON, D. Why do Internet Services Fail, and What Can
Be Done About It? InProceedings of the USENIX Sym-
posium on Internet Technologies and Systems (USITS’03)
(Mar. 2003).

[18] PERL, S. E.,AND WEIHL , W. E. Performance Assertion
Checking. InProceedings of the 14th ACM Symposium on
Operating Systems Principles(Dec. 1993).

[19] RICE UNIVERSITY. DynaServer Project.
http://www.cs.rice.edu/CS/Systems/DynaServer, 2003.

[20] V IEIRA , M., AND MADEIRA , H. A Dependability
Benchmark for OLTP Application Environments. InPro-
ceedings of the 29th International Conference on Very
Large Data Bases (VLDB 2003)(Sept. 2003).

[21] YANG, J., TWOHEY, P., ENGLER, D., AND MUSU-
VATHI , M. Using Model Checking to Find Serious File
System Errors. InProceedings of the USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI ’04)(Dec. 2004).

16


