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Abstract— In this paper, we introduce a new approach
to location estimation where, instead of locating a single
client, we simultaneously locate a set of wireless clients. We
present a Bayesian hierarchical model for indoor location
estimation in wireless networks. We demonstrate that our
model achieves accuracy that is similar to other published
models and algorithms. By harnessing prior knowledge,
our model eliminates the requirement for training data as
compared with existing approaches, thereby introducing the
notion of a fully adaptive zero profiling approach to location
estimation.

Index Terms— Experimentation with real
networks/Testbed, Statistics, WLAN, localization,
RSS/fingerprinting, Bayesian graphical models

I. INTRODUCTION

The growth of wireless networking has generated com-
mercial and research interest in statistical methods to track
people and things. Inside stores, hospitals, warehouses,
and factories, where Global Positioning System devices
generally do not work, Indoor Positioning Systems (IPS)
aim to provide location estimates for wireless devices
such as laptop computers, handheld devices, and electronic
badges. The proliferation of “Wi-Fi” (IEEE 802.11b) wire-
less Internet access in cafes, college campuses, airports,
hotels, and homes has generated particular interest in
indoor positioning systems that utilize physical attributes
of Wi-Fi signals. Typical applications include tracking
equipment and personnel in hospitals, providing location-
specific information in supermarkets, museums, and li-
braries, and location-based access control.

In a standard Wi-Fi setup, one or more access points
serve end-users. In what follows we focus on networks
with multiple access points (typical of networks in of-
fice buildings or large public spaces). Wi-Fi location
estimation can employ one or more of several physical
attributes of the medium. Typical features include re-
ceived signal strength (RSS) from the access points, the
angle of arrival of the signal, and the time difference
of arrival. Among these, RSS is the only feature that
reasonably priced off-the-shelf hardware can currently
measure. There exists a substantial literature on using RSS
for location estimation in wireless networks - see, for
example, [1], [13], [20], [29], [12]. Related websites in-
clude www.ekahau.com, www.bluesoft-inc.com,

and www.newburynetworks.com. In a laboratory set-
ting, RSS decays linearly with log distance and a simple
triangulation using RSS from three access points could
uniquely identify a location in a two-dimensional space.
In practice, physical characteristics of a building such as
walls, elevators, and furniture, as well as human activity
add significant noise to RSS measurements. Consequently
statistical approaches to location estimation prevail.

The standard approach uses supervised learning tech-
niques. The training data comprise vectors of signal
strengths, one for each of a collection of known locations.
The dimension of each vector equals the number of
access points. The corresponding location could be one-
dimensional (e.g., location on a long airport corridor), two-
dimensional (e.g., location on one floor of a museum),
or three-dimensional (e.g. location within a multi-story
office building). Collection of the location data is labor
intensive requiring physical distance measurements with
respect to a reference object such as a wall. The model
building phase then learns a predictive model that maps
signal strength vectors to locations. In the online phase,
a wireless terminal is located by matching the terminal’s
RSS measurements against the model. Researchers have
applied many supervised learning methods to this prob-
lem including nearest neighbor methods, support vector
machines, and assorted probabilistic techniques.

Gathering extensive training data and the requisite phys-
ical measures of location (“profiling”) involves a steep
upfront cost and deployment effort ([22]). Furthermore,
even in normal office environments, changing environmen-
tal, building, and occupancy conditions can affect signal
propagation and require repeated data gathering to main-
tain predictive accuracy ([2]). Consequently, minimizing
the number of training observations needed to adequately
profile a particular site and having the model be adaptable
are important objectives. Similarly we seek to minimize
data requirements concerning internal wall materials, floor-
ing, occupancy, etc. In [12] this issue was addressed by
deploying additional hardware called stationary emitters
at known locations to help rebuild the model periodically.
Minimizing the number of stationary emitters was also
shown to be equivalent to minimizing the amount of
profiling needed. However, all techniques in the literature
so far either require profiling or detailed maps of the
building to build the signal strength model.



In this paper we address the location estimation problem
using a novel approach. Instead of trying to locate a single
terminal, our model tries to simultaneously locate a set
of terminals. By appropriately exploiting signal strength
information from a collection of terminals, we show that
the location estimation for the entire set can be improved.
The model is particularly relevant as the number of wire-
less terminals are increasing. We also propose and use
for the first time hierarchical Bayesian graphical models
[23], [5] for wireless location estimation. Our key finding
is that a hierarchical Bayesian approach, incorporating
physical knowledge about the nature of Wi-Fi signals, can
provide accurate location estimates without any location
information in the training data, leading to a truly adaptive,
zero-profiling technique for location estimation.

Section II provides some additional background. Our ap-
proach uses probabilistic graphical models and Section III
describes the Bayesian statistical framework that we use
for location prediction. Sections IV and V describe the
datasets we used for experimentation as well as various
results. Section VI describes some potential future work.

II. RELATED WORK

Location estimation techniques in wireless networks can
be broadly classified based on the methods used to build
models and methods used to search the models in the
online phase. For building models, most techniques profile
the entire site and collect one or more signal strength
samples from all visible access points at each sample point.
Each point is mapped to either a signal strength vector
([1], [13], [17], [29], [21] or a signal strength probability
distribution ([3], [20], [26], [29], [30]). Such profiling tech-
niques require considerable investment in data gathering.
Alternatively, a parametric model that uses signal prop-
agation physics and calculates signal degradation based
on a detailed map of the building, the walls, obstructions
and their construction material, has been proposed ([1]).
Obtaining detailed maps of the building and its changes
over time is, however, a hurdle that needs to be overcome
for the use of this method. [12] propose an architecture
that allows the model to be updated periodically and
automatically, while also reducing (but not eliminating)
the profiling needed.

Custom sensors have been used for location estimation
in other interesting ways ([18], [27], [28]). In [27] and
similar systems, infra-red (IR) wireless technology is used;
IR technology has limited range and hence has not become
very popular. In [18] a decentralized (client-based) ap-
proach using time difference of arrival between ultrasound
and RF signals from custom sensors is used for location
estimation. The system in [28] uses expensive custom RF-
based hardware for location estimation. In contrast, our
approach is easier to bootstrap, is based on RSS and can be
built with off the shelf components, thus providing a cost-
effective solution. Recent advances in sensor technology
([10]) and projected decreases in the manufacturing cost
allow us to provide a cost-effective solution in our system.
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Fig. 1. A simple acyclic directed graphical model.

III. BAYESIAN GRAPHICAL MODELS

A graphical model is a multivariate statistical model
embodying a set of conditional independence relation-
ships. A graph displays the independence relationships.
The vertices of the graph correspond to random variables
and the edges encode the relationships. To date, most
graphical models research has focused on acyclic digraphs,
chordal undirected graphs, and chain graphs that allow
both directed and undirected edges, but have no partially
directed cycles ([14]).

Here we focus on acyclic digraphs (ADGs) with both
continuous and categorical random variables. In an ADG,
all the edges are directed and the graph represents them
with arrows (see Figure 1). Each vertex in the graph
corresponds to a random variable ���������
	 taking values
in a sample space ��� . To simplify notation, we use � in
place of �
� in what follows. In an ADG, the parents of
a vertex � , pa( � ), are those vertices from which vertices
point into � . The descendants of a vertex � are the vertices
which are reachable from � along a directed path. A vertex� is a child of � if there is an edge from � to � . The
parents of � are taken to be the only direct influences on� , so that � is independent of its non-descendants given its
parents. This property implies a factorization of the joint
density of �
��������	 , which we denote by ����	�� , given
by

����	������� ��! ���"�$# %'&'�"�(���*) (1)

Figure 1 shows a simple example. This directed graph
represents the assumption that �
+ and �
, are condition-
ally independent given �.- . The joint density of the three
variables factors accordingly,

���"�/,0����-0���.+1���2�3�4�
,5�4���4��-3# �
,5�6�3�4�.+0# ��-5�*)
For graphical models where all the variables are discrete,

[24] presented a Bayesian analysis and showed how inde-
pendent Dirichlet prior distributions can be updated locally
to form posterior distributions as data arrive. [8] provided
corresponding closed-form expressions for complete-data
likelihoods and posterior model probabilities. [15] de-
scribed corresponding Bayesian model averaging proce-
dures. In the Bayesian framework, model parameters are
random variables and appear as vertices in the graph.

When some variables are discrete and others continuous,
or when some of the variables are latent or have missing
values, a closed-form Bayesian analysis generally does not
exist. Analysis then requires either analytic approximations
of some kind or simulation methods. Here we consider a
Markov chain Monte Carlo (MCMC) simulation method.
[23] provides a brief introduction to a particular MCMC
algorithm, the univariate Gibbs sampler, for Bayesian
graphical models as follows.



The Gibbs sampler starts with some initial values for
each unknown quantity (that is, model parameters, missing
values, and latent variables), and then cycles through the
graph simulating each variable � in turn from its condi-
tional probability distribution, given all the other quanti-
ties, denoted 	�� � , fixed at their current values (known as
the “full conditional”). The simulated � replaces the old
value and the simulation shifts to the next quantity. After
sufficient iterations of the procedure one assumes that the
Markov chain has reached its stationary distribution, and
then future simulated values for vertices of interest are
monitored. Inferences concerning unknown quantities are
then based on data analytic summaries of these monitored
values, such as empirical medians and 95% intervals. Some
delicate issues do arise with the Gibbs sampler such as
assessment of convergence, sampling routines, etc. [7]
provide a full discussion.

The crucial connection between directed graphical mod-
els and Gibbs sampling lies in expression (1). The full
conditional distribution for any vertex � is equal to:

�3�4� # 	�� �1��� �3�4�5�*	�� �(�
� terms in ����	�� containing �
� �3�4� # %'&5�4�1� � �

� ���	��
 � 
�� ��� �3�
� # %'&5� � ���*�

i.e., a prior term and a set of likelihood terms, one for each
child of � . Thus, when sampling from the full conditional
for � , we need only consider vertices which are parents,
children, or parents of children of � , and we can perform
local computations. The BUGS language and software [25]
implements a version of the Gibbs sampler for Bayesian
graphical models. We utilized BUGS for the experiments
we report below.

IV. DATASETS

We collected RSS data from three floors at two sites,
referred to in this paper as BR, CA Up and CA Down.
Both the BR and CA sites are office buildings and have
deployed 802.11b wireless networks. Figure 2 shows the
floor plans for the two sites.

To make our RSS measurements, we used a Linux IPAQ
with a modified driver updated to scan for access points.
The IPAQ had a custom client and a standard Konqueror
web browser. The user making RSS measurements clicked
on their current location in an image of the floor as
displayed on the browser. The posting of this information
triggered an RSS measurement request at the client from
the web server on a separate TCP channel. The web server
then recorded the coordinate and RSS vector information
at that location. We did not specifically orient the IPAQ in
any way while taking measurements.

The BR site has 5 access points and measures 225 ft X
144 ft. We made 254 RSS measurements at this site. The
measurements were made over different sessions spanning
several days.

The CA Down floor has 4 access points, three of which
are collinear, and measures 250 ft X 175 ft, with a “slice”
removed. Due to the collinearity of the three access points,

AP

Temporary AP

Fig. 2. Floor plans for the BR and CA sites showing the access points
(APs).

we installed two temporary access points. The CA Up floor
has 4 access points. At the CA site, a colleague took 146
measurements on the “Down” floor and 56 measurements
on the “Up” floor.

V. MODELS AND EXPERIMENTS

Our goal is to construct a model that embodies extant
knowledge about Wi-Fi signals as well as physical con-
straints implied the target building. We present a series
of models of increasing complexity, in each case show-
ing results with varying training dataset sizes. We focus
throughout on predictive accuracy.

A. A Non-Hierarchical Bayesian Graphical Model

Figure 3 shows a particular graphical model for a two-
dimensional location estimation problem in a building with
four access points. In what follows we refer to this model
as ��� (although the number of access points varies).

The vertices � and � represent location. The vertex ���
(respectively ��� ����� , and ��� ) represents the Euclidean
distance between the location specified by � and � and
the first (respectively second, third, and fourth) access
point. Since we assume the locations of the access points
are known, the ��� ’s are deterministic functions of � and
� . The vertex ��� represents the signal strength measured
at �4�
����� with respect to the  th access point,  �"! � ) ) ) �$# .
The model assumes that � and � are marginally indepen-
dent.
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Fig. 3. A Bayesian graphical model for location estimation. This is
model ��� .
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Fig. 4. A Bayesian graphical model using plate notation. This is also
model � � .

Specification of the model requires a conditional density
for each vertex given its parents as follows:

� � ������������� ��� �	���*�
� � ������������� ��� �	 .�*�
� � � ! �#" ��$&% " � �(')��* � � ��+ � �*�  �"! �-,(�	. �$#'�
" ��$ � ! �/�1�0�1)1�2� ! �*�  0�"! �-,(�0.1�$#'�
" � �3� ! �/�1�0�1)1�2� ! �*�  0�"! �-,(�0.1�$#')

Here � and  denote the length and breadth of the
building respectively. The distributions for � and � reflect
the physical constraints of the building. The model for � �
reflects the fact that signal strength, decays approximately
linearly with log distance. Note that we use ! ��4 �	+'� to
denote a Gaussian distribution with mean 4 and precision
+ so that the prior distributions for " ��$ and " � � have large
variance.

Figure 4 shows a more compact representation for � �
using the BUGS plate notation for replicated sub-models
and with 5 denoting the number of access points.

Figure 5 shows the predictive performance of model
� � on the BR data, as a function of training set size.
Specifically, for each training set size ! , we plot the
average performance for 30 replications of a random
test-training split, using ! observations for training and

0 50 100 150 200 250

10
15

20
25

30
35

40

Leave−one−out error (feet)

Training Sample Size

A
ve

ra
ge

 E
rr

or
 in

 F
ee

t

0 50 100 150 200 250

10
15

20
25

30
35

40

Leave−one−out error (feet)

Training Sample Size

A
ve

ra
ge

 E
rr

or
 in

 F
ee

t

0 50 100 150 200 250

10
15

20
25

30
35

40

Leave−one−out error (feet)

Training Sample Size

A
ve

ra
ge

 E
rr

or
 in

 F
ee

t

Simple Bayes
Hierarchical Bayes
SmoothNN

Fig. 5. Average predictive accuracy of the non-hierarchical Bayesian
graphical model � � , the hierarchical model �76 , and the SmoothNN
model on the BR data.

one observation for testing. The solid curve shows the
results for � � (i.e., the model of Figure 4). In each
case, and throughout the paper, the estimates resulted from
110,000 MCMC iterations, discarding the first 10,000.
This seemed to provide adequate convergence in most
cases, according to standard BUGS diagnostics. We return
to this issue at the end of the paper. For comparison
purposes, the dotted curve shows the equivalent results
for the smoothed nearest-neighbor “SmoothNN” model of
[12]. The SmoothNN model proved highly competitive in
comparison with two other benchmark systems and hence
we use it for comparison purposes in this paper. The
Figure 5 shows that � � outperforms the SmoothNN model
with smaller training sample sizes but underperforms the
SmoothNN model at the larger sample sizes.

Figure 6 provides more detail and also shows results for
the other two datasets. The results for the three different
datasets are qualitatively similar. Table I provides corre-
sponding summary statistics. Note that predictive accuracy
does tend to improve with training sample size, although
not in every case.

B. A Hierarchical Bayesian Graphical Model

Next we seek to incorporate the knowledge that the
coefficients of the linear regression models corresponding
to each of the access points should be similar since the
similar physical processes are in play at each access
point. Physical differences between locations of the dif-
ferent access points will tend to mitigate the similarity
but nonetheless, borrowing strength across the different
regression models might provide some predictive benefits.

Figure 7 shows the hierarchical model � � . The condi-
tional densities for this model are:

� � ���������2�	� ��� �	���*�
� � ���������2�	� ��� �	 .�*�
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SmoothNN (S) versus Bayesian (B) Model, Error in Feet

Fig. 6. Predictive accuracy of the SmoothNN model versus the non-hierarchical Bayesian graphical model ( ��� ) for the BR data, CA Down data,
and CA Up Data. The boxplots show 75th, 50th, and 25th percentiles and tails that show either the maximum and the minimum or shorter tails and
individual extreme points. The vertical axes show error in feet.
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The dashed curve in Figure 5 shows the predictive
accuracy of � � on the BR data. A comparison of � � and
� � shows that the hierarchical model performs similarly to
its non-hierarchical counterpart, although � � does provide
improvement in average error for the smallest training

sample size of 5.
Table II provides summary statistics for all three

datasets. Again, the results for the different datasets are
qualitatively similar. In general, the results show small
differences between the non-hierarchical model � � and
the hierarchical model � � .

C. Training Data With No Location Information

Model � � incorporates two sources of prior knowledge.
First, � � embodies the knowledge that signal strength
decays approximately linearly with log distance. Second,
the hierarchical portion of � � reflects prior knowledge
that the different access points behave similarly. Here we
pursue the idea that perhaps this prior knowledge provides
sufficient constraints to obviate the need to know the actual



BR Data
Training Sample Size

Model 5 10 20 50 100 253� � 20.1 18.1 15.2 14.7 15.2 14.8
SmoothNN 39.7 18.7 17.5 16.2 12.3 13.0

CA Down Data
Training Sample Size

Model 5 10 20 50 145� � 28.8 27.4 21.6 18.2 19.9
SmoothNN 46.3 26.7 24.3 17.1 17.4

CA Up Data
Training Sample Size

Model 5 10 20 55��� 35.4 31.7 30.5 28.5
SmoothNN 59.9 36.3 25.2 28.2

TABLE I
LEAVE-ONE-OUT AVERAGE ACCURACY IN FEET FOR THE BR, CA

DOWN, AND CA UP DATA. RESULTS ARE AVERAGED OVER 30
REPLICATIONS. THE CORRESPONDING STANDARD ERRORS RANGE

FROM ABOUT 1.5 TO 5.7.

� �

� �

� �

��� �
τι

��� �

i=1,...,d

���
τ �
� ���

τ �
�

Fig. 7. A Bayesian hierarchical graphical model using plate notation.
This is model � 6 .

locations of the training data observations. Specifically, the
training data now comprise vectors of signal strengths with
unknown locations; � and � in � � and � � become latent
variables.

Figure 8 shows the average predictive performance for
the BR data with different numbers of randomly signal
strength vectors, simultaneously estimating the locations of
these signal strength vectors. In each case the results shows
averages over 30 replications, except for the maximal
case (254 for BR, 146 for CA Down, 56 for CA Up)
which uses all the signal strength vectors in the training
data. The solid curve corresponds to � � and the dashed
curve to � � . The results for the SmoothNN model are
reproduced from Figure 5 and reflect training data with
known locations. These results show some striking fea-
tures. With no location information, � � performs poorly
and shows no improvement with increasing numbers of
signal strength vectors. Model � � , however, from about
10 training vectors onwards, performs almost as well as the
SmoothNN model trained on data with complete location

BR Data
Training Sample Size

Model 5 10 20 50 100 253� � 20.1 18.1 15.2 14.7 15.2 14.8� 6 16.8 16.5 17.2 17.3 14.1 13.8

CA Down Data
Training Sample Size

Model 5 10 20 50 145� � 28.8 27.4 21.6 18.2 19.9� 6 21.3 26.3 25.0 20.3 18.7

CA Up Data
Training Sample Size

Model 5 10 20 55��� 35.4 31.7 30.5 28.5� 6 30.6 37.9 33.0 33.5

TABLE II
LEAVE-ONE-OUT AVERAGE ACCURACY IN FEET FOR THE BR, CA

DOWN, AND CA UP DATA. RESULTS ARE AVERAGED OVER 30
REPLICATIONS. THE CORRESPONDING STANDARD ERRORS RANGE

FROM ABOUT 1.3 TO 7.5.
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Fig. 8. Average predictive accuracy of the non-hierarchical Bayesian
graphical model on the BR data with no location data.

information for each signal strength vector!
Figure 9 provides shows more detail and also shows

results for the other two datasets. Once again, the results
for the three different datasets are qualitatively similar.
Table III provides corresponding summary statistics. In
each case the hierarchical model, even with no location
information, provides predictive performance that is close
to, although not as good as, the state-of-the-art SmoothNN
model.

Dropping the location data requirement affords signifi-
cant practical benefits. As discussed in Section I, the loca-
tion measurement process is slow and human-intensive. By
contrast, gathering signal strengths vectors without the cor-
responding locations does not require human intervention;
suitably instrumented access points or sniffing devices



BR Data
Training Sample Size

Model 5 10 20 50 100 253� � , No Loc. 59.5 44.2 97.4 42.9 64.0 129.5�76 , No Loc. 46.2 20.2 18.3 15.3 15.1 19.0
SmoothNN,w/Loc. 39.7 18.7 17.5 16.2 12.3 13.0

CA Down Data
Training Sample Size

Model 5 10 20 50 145� � , No Loc. 66.6 46.9 52.5 58.1 67.5�76 , No Loc. 23.9 29.4 29.2 29.8 21.9
SmoothNN,w/Loc. 46.3 26.7 24.3 17.1 17.4

CA Up Data
Training Sample Size

Model 5 10 20 55� � , No Loc. 46.4 33.2 59.1 89.0�76 , No Loc. 63.6 38.1 28.9 30.6
SmoothNN,w/Loc. 59.9 36.3 25.2 28.2

TABLE III
AVERAGE ACCURACY IN FEET FOR THE BR, CA DOWN, AND CA UP

DATA. NO LOCATION INFORMATION IN THE TRAINING DATA.
RESULTS ARE AVERAGED OVER 10 REPLICATIONS.
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Fig. 10. Error CDF across the various algorithms.

can solicit signal strength measurements from existing
Wi-Fi devices and can do this repeatedly at essentially
no cost. We conjecture that typical Wi-Fi environments
will feature a substantial number of scattered wireless
devices. Repeated polling of these devices coupled with
the Bayesian hierarchical model will enable fully adaptive
location estimation that responds to changes in the Wi-Fi
environment.

We note the existing location estimation algorithms that
we are aware of all require location information in the
training data to produce any estimates. The approach
we have outlined does require the location of the actual
access points (although recent experimentation shows that
accurate location estimate does not require the location of
all the access points).

D. Comparison To Previous Work

Figure 10 shows the error CDF on the BR data set for
� � and � � , both with and without location information,

plotted along with CDFs of two widely known previous
works: RADAR[1] and a probabilistic approach used in
[29]. A size of 85 training points is shown, since this is
close to where algorithms’ performance converges.

The results show that only the � � with no location
information is not competitive with the other algorithms.
Indeed, the figure shows that the performance of all of
the remaining Bayesian models presented in this paper
compare favorably to existing approaches. Given that
RADAR and SmoothNN were shown to have comparable
performance[12], we can surmise that SmoothNN would
have comparable performance to the above CDFs as well.
Figure 10 thus shows that we can obtain performance
close to a wide range of existing approaches with a
fully adaptive, zero profiling approach without excessive
sampling.

E. Incorporating Corridor Effects and Other Prior Knowl-
edge

The graphical modeling framework coupled with
MCMC provides a very flexible tool for multivariate
modeling. Here we pursue two ideas that demonstrate
this flexibility and aim to improve predictive accuracy,
especially when the training data contain no location
information.

Corridor Model.
All three datasets show striking corridor effects. That

is, when an access point is located in a corridor, the
signal strength tends to be substantially stronger along
the entire corridor. In the three office building floors we
have examined, corridors are mostly parallel to the walls.
Hence, a location that shares either an ��� coordinate or a� � coordinate with an access point (at least approximately)
tends to be in the same corridor as that access point.

Figure 11 shows a model ( � � ) with a corridor effect,� � . The variable
� � takes the value 1 if the location �"�
� �.�

shares a corridor with access point  and 0 otherwise.
We define “sharing a corridor” as having an ��� or� � coordinate within three feet of the corresponding access
point coordinate. Since corridor width varies from build-
ing to building, this definition should vary accordingly,
although we do not pursue this here.

The conditional densities for model ��� are:

� � ������������� ��� �	� � �
� � ������������� ��� �	 �� �
� � � ! �#" � $ % " � �(')�2* � ��% " � � � ��% " � � � � � � ��+ � � �

 � ! � ) ) ) �	5
"���� � ! �#"�� ��+ � � � �$ �"! � ) ) ) �	5'�	�.� �1� ! �-,(�	. �
"�� � ! �/�1�	� ) ��� ! �*�	� � �1� ! �-,(�	. �
+ � � � � & � ��&1�/�1)1�2� ! �	� ) ��� ! �*�	� � �1� ! �0,1�	.1)

Note we have included a corridor main effect as well
as a corridor-distance interaction term. Figure 12 shows
the results for various training sample sizes, all with no
location information.



S H

0
50

10
0

15
0

N=5

B
R

 D
at

a

S H

0
50

10
0

15
0

N=10

B
R

 D
at

a

S H

0
50

10
0

15
0

N=20

B
R

 D
at

a
S H

0
50

10
0

15
0

N=50

B
R

 D
at

a

S H

0
50

10
0

15
0

N=100

B
R

 D
at

a

S H

0
50

10
0

15
0

N=254

B
R

 D
at

a

S H

0
50

10
0

15
0

N=5

C
A

 D
ow

n 
D

at
a

S H

0
50

10
0

15
0

N=10

C
A

 D
ow

n 
D

at
a

S H

0
50

10
0

15
0

N=20

C
A

 D
ow

n 
D

at
a

S H

0
50

10
0

15
0

N=50

C
A

 D
ow

n 
D

at
a

S H

0
50

10
0

15
0

N=146

C
A

 D
ow

n 
D

at
a

S H

0
50

10
0

15
0

N=5

C
A

 U
p 

D
at

a

S H

0
50

10
0

15
0

N=10

C
A

 U
p 

D
at

a

S H

0
50

10
0

15
0

N=20

C
A

 U
p 

D
at

a

S H

0
50

10
0

15
0

N=56

C
A

 U
p 

D
at

a

Results with No Locations: Simple (S), Hierarchical (H), Error in Feet

Fig. 9. Predictive accuracy of the Bayesian graphical model with no location information. Non-hierarchical model ( � � ) versus the hierarchical
Bayesian graphical model ( � 6 ) for the BR data, CA Down data, and CA Up Data. The verticcal axes show error in feet.

The results for the case of training data with location
information are similar. These analyses suggest that our
particular approach to modeling a corridor effect does not
improve predictive performance.

Informative Priors for the Regression Co-Efficients.
A second direction we considered was the incorporation

of mildly informative prior distributions for the regression
co-efficients. Specifically, we used a ! � ! �1�0�1) ! � prior for
"0$ and a ! � � ! � )��(�0�1) ! � prior for " � in Model � � . The
means of these priors correspond to the average intercept

and slope from a maximum likelihood analysis of the
combined data over all access points from all three loca-
tions. The precisions of 0.1 permit considerable posterior
variability around these values.

Figure 13 shows the results using training data with no
location information. The informative priors do provide
some improved predictive performance, especially for the
experiments with small numbers of signal strength vectors.
For training data with location information, the informative
priors did not improve predictive performance.
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Corridor Effect: None (N), Main (M), Interaction (I), Both (B), Error in Feet

Fig. 12. Predictive accuracy of the hierarchical Bayesian graphical model ( � 6 ) versus the hierarchical Bayesian graphical model with corridor
effects ( ��� ) for the BR data, CA Down data, and CA Up Data. No location information. “N” corresponds to no corridor effect and is the same
as � 6 . “M,” “I,” and “B” correspond to model ��� with main effect only, interaction only, and both main effect and interaction, respectively. The
vertical axes show error in feet.

VI. CONCLUSIONS AND FUTURE WORK

Our conclusion is the Bayesian hierarchical modeling
approach shows considerable promise for localization. The
ability to incorporate specific types of prior knowledge
proves useful and greatly reduces the requisite profiling
effort.

Several directions for future work suggest themselves. In
the first instance, we will explore several generalizations
of the current model including:
� Piecewise linear or spline-based models for the core

signal strength-log distance relationship. The data
show some evidence of non-linearity, especially at
shorter distances. In particular we will explore the
transformation selection algorithm of [9].

� Models that can incorporate approximate location
information. For example, when sensors are attached
to wireline telephones, the room location may be
available but not the location of the sensor within
the room.

� Extensions of the corridor effects we discussed above
to include more detailed information concerning wall
locations as well as locations of potentially interfering
objects such as elevators, kitchens, printers, etc.

� Incorporation of other data pertaining to the signal
such as angle of arrival.

Currently Markov chain Monte Carlo algorithm estimate
the parameters and produce location estimates. For real-
time or for larger-scale applications such simulation-based
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Fig. 13. Predictive accuracy of the hierarchical Bayesian graphical model ( � 6 ) versus the hierarchical Bayesian graphical model with informative
priors and No Location Information, BR data, CA Down data, and CA Up data.

approaches may prove impractical and we will explore
alternatives. In particular, so-called “variational approxi-
mations” (see, for example, [11]) may prove useful.

Since our experiments involve multiple test-training
splits, manual MCMC convergence checking is not possi-
ble. We carried out several runs of 1,000,000 iterations
for a few of the models and observed that predictive
performance did not improve. Nonetheless, some more
systematic, automated approach to convergence diagnos-
tics would be more satisfactory.

A major future thrust of our work will be to extend
the current model to dynamic tracking applications. Such
applications may begin with a known location (e.g., a
location where a user takes a wireless device off a power
rack) or not. In either case, the model will assume that the
true location varies smoothly over time according to a low-

order hidden stochastic process. Robotics has stimulated
prior work in this direction and Monte Carlo algorithms for
such applications exist. Work on so-called “particle filters
is relevant - see, for example, [26], [6], [19], [4]. Again,
alternatives to simulation such as online EM algorithms or
quasi-Bayes ([16]) procedures may prove necessary.
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