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ABSTRACT
The presence of bias in today’s IR systems has raised concerns on
the social responsibilities of IR. Fairness has become an increasingly
important factor when building systems for information searching
and content recommendations. Fairness in IR is often considered
as an optimization problem where the system aims to optimize the
utility, subject to a set of fairness constraints, or optimize fairness
while guaranteeing a lower bound on the utility, or jointly optimize
for both utility and fairness to achieve an overall satisfaction. While
various optimization algorithms have been proposed along with
theoretical analysis, in real world applications, the performance
of different optimization algorithms often heavily depend on the
data. Therefore, it is consequential to ask what is the solution space
characterized by the data, what effect does introducing fairness
bring to the system, and can we identify this solution space to help
us trade-off different optimization policies and guide us to pick
suitable algorithms and/or make adjustments on data? In this work,
we propose a framework that offers a novel perspective into the op-
timization with fairness constraints problems. Our framework can
effectively and efficiently estimate the solution space and answer
such questions. It also has the advantage of simplicity, explainabil-
ity, and reliability. Specifically, we derive theoretical expressions to
identify the fairness and relevance bounds for data of different dis-
tributions, and apply them to both synthetic and real world datasets.
We present a series of use cases to demonstrate how our framework
is applied to facilitate various analyses and decision making.
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1 INTRODUCTION
Fairness is a topic that is increasingly receiving attention in infor-
mation retrieval (IR). IR systems should not only excel at helping
users find what they need, but also bear the social responsibility of
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being fair [2, 10, 13, 29, 30]. An array of studies have shown that
biased search and recommendation results can separate users from
potentially nutritious information that differs from their personal
preference (filter bubble) [7], impact users’ perception of opinions
and events [1, 6], reinforce social stereotypes [17, 26], manipulate
users’ decision making [12], and lead to unfair distribution of op-
portunities and resources [5, 18, 21, 28]. As a result, search and
recommendation systems must consider the fair representation of
results without sacrificing the system utility. For two-sided mar-
ketplace platforms that have customers on both the demand (e.g.,
users) and the supply side (e.g., retailers, artists) such as Amazon,
Netflix, and Spotify, being fair to items recommended is particularly
important for satisfying the suppliers and ensuring the exposure
of and opportunities for less popular content providers, which is
crucial for a diverse economical and social development [21]. Such
systems must find a balance between optimizing the consumer
satisfaction and the supplier fairness.

To incorporate fairness constraints into the algorithmic frame-
work and an IR system, we can attempt different optimization poli-
cies depending on the emphasis on fairness or system utility. For
applications where fairness constraints must be strictly enforced,
optimizing for utility while subject to the fairness constraints may
be the policy to opt for. In the case where a system aims to trade-
off between various utility factors and fairness constraints, jointly
optimizing for each factor and constraint seems more promising
to achieve an overall good satisfaction. Ideally, researchers try to
develop general algorithms and frameworks that are intended to
work for all kinds of data. But in reality, adopting an algorithm
or framework independent of data may be both impractical and
unreasonable. Therefore, whether the objective is clear or not, it is
generally a good idea to first associate with the data and application
before selecting a policy.

Imagine a solution space of all possible utility values and degrees
of fairness, we can depict each optimization policy in this space, and
then analyze what solutions can we achieve with each policy. Figure
1 illustrates an example of different optimization policies against
the solution space. It is easy to see that once the solution space is
defined, the limitations of each policy in terms of optimal values are
fixed. In other words, while selecting a policy, regardless of what
algorithms are behind that policy, one cannot achieve a better result
than the solution space defined by the data. Another advantage
of this solution space analysis is that if we cannot improve on the
algorithm side, maybe we should consider issues that reside within
the data, and search for explanations and possible improvement
from the data side. For example, in image search engines, the gender
bias in occupational stereotypes may be a result of the ranking
algorithm, but may also indicate the images in the machine-judged
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relevant search space is unfairly distributed. Note that machine-
judged relevance are different from user judgment due to various
information need and characteristics of various users. An image
that is considered relevant by a user may not be judged relevant by
the system and thus, is likely to be eliminated from the search space.
As a result, a possible solution to increase fairness is to improve
on the search space, which requires adjusting the algorithm for
relevance judgment in the system.
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(a) optimize fairness with
relevance ≥ 0.8
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(b) optimize relevance
with fairness ≥ 0.8
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(c) jointly optimize fair-
ness and relevance

Figure 1: Exploration space (shaded area) and a possible hy-
pothetical algorithm (red line) for each different optimiza-
tion policy. This is a density plot where points in this plot
are random samples from the solution space.

In particular, we are interested in the following questions that
are motivated by the scenarios discussed above: 1) Do different
fairness constraints affect user satisfaction, engagement, and how?
2) Given an IR system, what would fairness constraint bring into
the system? For instance, do such constraints affect the choice of
learning algorithms, parameter tuning, decision making, and evalu-
ation metrics? 3) Consider the entire search space defined by data,
what would be the relationship between fairness and relevance?
Previous studies have found that user satisfaction tend to decrease
as the amount of fairness increases when investigating strategies
that jointly optimize for machine-judged relevance and supplier
fairness [21]. But, does there exist a solution where a desired rele-
vance and a desired fairness constraint can be achieved at the same
time? 4) Given the trade-offs between each component of a system,
for a particular dataset, can we identify the optimal solution values
that the system can achieve? What are the best strategies to achieve
those optimal values?

If we have the solution space discussed above available, those
questions become straightforward to answer and analyze. There-
fore, a more interesting question to ask is: given a dataset or search
space, can we identify the solution space? What is the region that
bounds the solution space and with what probability? In this paper,
we propose a novel theoretical framework that estimates the solu-
tion space by sampling from the data space. Based on the estimated
solution space, we then estimate the optimal values considering
different weights on each dimension of the data. Specifically, our
paper makes the following contributions.

• We propose a theoretical framework that offers a novel per-
spective into the fairness as optimization problems. With our
framework, system designers can easily plug in their own
utility functions and fairness constraints to get an overview
of what is the solution space characterized by the data, evalu-
ate the likelihood of achieving a predetermined optimization
goal, identify the optimal results that can be achieved given

the data, evaluate how well an algorithm may help achieve
the goal, and trade-off between different optimization poli-
cies to select the most suitable policy. All of these benefits
can be obtained before actually implementing any complex
optimization algorithms or carrying out heavy experiments,
thus saving considerable time and resources.

• We provide several theoretical analyses of our framework
to demonstrate how such analyses can serve as guidelines
for the applicability and effectiveness of our framework. Our
framework not only offers hints on whether the data cover-
age and algorithms need adjustment, but it also highlights a
direction of how such adjustment should be made, in order
to achieve the desired fairness and utility. With theoretical
results, our framework can be easily generalized to optimiza-
tion problems over multiple dimensions, data of different
distributions, and various personalized utility functions and
fairness constraints.

• We demonstrate the application of our framework on both
synthetic and real world data and show how this framework
can be used to facilitate vast analyses and decision making.

The rest of the paper is organized as follows. Section 2 discusses
related work. Section 3 describes our problem and framework set-
ting. Section 4 presents our framework with methodologies to ana-
lyze and several theoretical results. Section 5 demonstrates the use
of our framework with synthetic and real world data. We conclude
our work in Section 6.

2 RELATEDWORK
There has been a wide range of discussions on the presence of bias
in IR and its social impact. Many fairness definitions have since
been proposed and emphasized for different application scenarios.
A large number of studies have investigated possible solutions to
address fairness in IR, which provide critical views of the fairness
as optimization problems.

2.1 Bias in IR systems
Fairness and bias are often considered to be two sides of the same
coin. Whether it is fairness or bias, their notions differ in areas of
study and focus on social impact. In IR systems, fairness is often
concerned in terms of individual fairness and group fairness. With
individual fairness requiring similar individuals being treated simi-
larly, group fairness often requires that the protected groups (e.g.,
demographic categories, political perspectives, topical diversities
and opinion polarities) are fairly presented in the retrieved items.
Singh and Joachims [28] proposes to view group fairness from a
perspective of exposure. Celis et al. [8], Dressel and Farid [11] study
the threshold based fairness definitions in which the number of
items from each group is bounded by a minimum and maximum
threshold. Biega et al. [5], Chen et al. [9] investigate individual
fairness in the ranking systems. See Narayanan [22] for a more
comprehensive explorations of fairness definitions.

Bias in IR may arise from the source data, algorithmic or sys-
tem bias, and cognitive bias [2, 23, 24]. Techniques and algorithms
that learn from and mirror real world statistics may unavoidably
carry social bias from the original data to the IR systems [4]. Baeza-
Yates [2] discusses the presence, measurement, and cause of bias



on the Web. Kulshrestha et al. [19] develops a framework that
quantifies the amount of bias that arise from the data source and
from the ranking system. Kay et al. [17], Otterbacher et al. [25, 26]
show that bias can surface in search engine results because of the
bias in data and algorithms. From a cognitive perspective, biased
search or recommendation results can lead to unfair distribution
of opportunities and resources [5, 18]. Users often rely on the pre-
sentation, especially ranking, of the search and recommendation
results for credibility judgment, resource selection, and a belief and
attitude shaping of information [1, 3, 6, 7, 14, 16, 23, 27] as well
as preference and decision making [12]. Due to the differences in
demographic and cultural background, purpose and expectations,
users of an IR system may display different satisfactions [20]. Busi-
ness to consumer online market platforms and online multimedia
recommendation systems face the challenge of satisfying the de-
mand of both the consumers and suppliers. Simply optimizing for
consumer satisfaction may negatively impact supplier fairness [21].

Our framework is built upon addressing such bias issues in IR
systems. Instead of limiting to target a particular system, we aim to
develop a general framework that can be used across various types
of IR systems. Our framework is able to capture the influences of a
heavily utility-focused system that underweights the issue of bias
from a theoretical perspective.

2.2 Fairness as an optimization problem
Fairness in IR is often modeled as an optimization problem with
fairness constraint. There are primarily three types of optimization
goals: to optimize utility (often represented by relevance) subject to
a bounded fairness constraint, to optimize fairness while constrain-
ing utility with a lower bound, and to jointly optimize for both
utility and fairness. The majority of the previous works are focused
on the first type of optimization. Zehlike et al. [31] defines a fair top-
k problem to ensure that the proportion of protected groups in the
top-k ranking remains above a given threshold. Joseph et al. [15] in-
troduces the multi-armed bandit problem with fairness constraints
and shows the gap of regret between fair and unfair learning. Celis
et al. [7] proposes a fast and low regret algorithm for the fairness-
constrained bandit optimization in personalization. Celis et al. [8]
formulates the fairness ranking as a constrained matching problem.
The objective is to maximize the ranking score while bounding the
number of items with each attribute on each position. Singh and
Joachims [28] proposes a conceptual and computational framework
for fairness ranking which maximizes the utility while satisfying
some fairness constraints. For the second type of optimization,
Biega et al. [5] proposes a fair ranking solution based on integer
linear program. A few examples of work take on the perspective of
joint optimization. Mehrotra et al. [21] considers supplier fairness
versus user satisfaction in a two-sided marketplace setting where
the goal is to jointly optimize for both fairness and relevance.

Our work is inspired by these efforts to achieve an optimal solu-
tion, whether an optimal utility, or an optimal fairness, or a joint
optimal for both. While we do not propose algorithms for a par-
ticular optimization problem, we provide an illustration of how
different optimization policies compare. Before delving deep into
complex algorithms and theoretical analysis of a problem, we aim
to develop a framework that envisions the possible solution space.

The algorithms and framework proposed in previous works aim to
address a set of optimization problems with little or no dependence
on the data. Our work differs in that we associate data with objec-
tive functions, and emphasize the importance of considering the
data factor when addressing fairness problems.

3 PROBLEM DEFINITION
Our problem definition and framework setting are motivated by
[21] where upon receiving a user query, the system explores in the
data space and returns a set of items that are considered relevant
to the query. Formally, let D = {a1,a2, . . . ,aN } be a set of N items
defining the dataset or search space. Each item ai is associated with
k ≥ 2 properties denoted by vector ⟨p1,p2, . . . ,pk ⟩. Let fi (D) be a
predefined function that summarizes the i-th dimension property
values in set D.1 Let f (D) = ⟨f1, f2, . . . , fk ⟩ be the function that
summarizes the set D. Assume property values on each dimension
are independent identically distributed (i.i.d.) drawn from a distri-
bution. The distribution of each dimension may or may not be the
same. Let solution set Sj ⊂ D denote a set of items returned by
the system regarding a user query, |Sj | = n. The solution space
S = {S1, S2, . . . , Sj , . . . } is all subsets of D of cardinality n. Let
min{ fi (Sj )} and max{ fi (Sj )} be the lower and upper boundaries
of S on the i-th dimension. Ri = [min{ fi (Sj )},max{ fi (Sj )}] is the
range of fi . The goal of our framework is to estimate the region
R = ⟨R1,R2, . . . ,Rk ⟩ of S confined by boundaries on each dimen-
sion of the data.

4 DEPICTING BOUNDARIES
To begin with, assume each item is composed of two dimensions, i.e.,
k = 2, ai = ⟨ri ,дi ⟩ and f = ⟨fr , fд⟩. The first dimension captures
the relevance score of the item, the second dimension captures
the protected group information. This simple assumption captures
many real world application scenarios. It is also the assumption
in previous works on fairness [5, 13, 28]. For example, consider
each item as an image with respect to an occupational query in
search engines; apart from the relevance score, each image can be
associated with a gender property, in which case one may wish to
balance the images of each gender group in the search results. In
online question and answering communities, all the answers can be
viewed as items where the group is topic aspect or opinion polarity.
In two-sided marketplace platforms, the group associated with each
item is often identified as producer or supplier, and the relevance
denotes the consumer satisfaction.

4.1 Simple case
A simple case is that each dimension of the data ai ∈ D is from a
Bernoulli distribution. Assume binary relevance score and group
assignment (i.e., two groups), pr be the probability that an item is
relevant, дi be the probability that an item is from group 1. Then
ri and дi are distributed according to Bernoulli distribution, ri ∼
Bernoulli (pr ), дi ∼ Bernoulli

(
pд

)
. Given a set S ⊂ D of n items,

let fr be the average relevance score of set S , fд be the entropy of
group memberships, p̄д be the proportion of items in group 1,

fr =

∑
ri
n
, (1)

1When the context is clear, we use fi to denote the function value given a set.



fд = H (p̄) = −p̄д log2 p̄д − (1 − p̄д) log2(1 − p̄д)

= −

∑
дi
n

log2

∑
дi
n

− (1 −
∑
дi
n

) log2(1 −
∑
дi
n

).
(2)

Since ri and дi are i.i.d. random variables, the sum of ri and the
sum of дi are distributed according to Binomial distribution:∑

ri ∼ B (n,pr ) ,
∑

дi ∼ B
(
n,pд

)
.

Let X denote the the random variable
∑
ri , Y denote the random

variable
∑
дi . Hence X ∼ B (n,pr ), Y ∼ B

(
n,pд

)
. According to

Chebyshev’s inequality, for any real number t > 0,

P(|x − µ | ≥ tσ ) ≤
1
t2 ,

where µ is the distribution mean, σ 2 is the distribution variance.
Given a probability 1 − qr that X is within tσ distance from the
mean, we can bound X as follows: since X ∼ B (n,pr ), µ = npr ,
σ 2 = npr (1 − pr ), let

P
(
|X − npr | ≥ t

√
npr (1 − pr )

)
≤

1
t2 ≤ qr , (3)

we get t ≥
√

1/q, and

X ≤ npr −

√
npr (1 − pr )

qr
, or X ≥ npr +

√
npr (1 − pr )

qr
.

Therefore, with probability 1 − qr ,

X ∈ [npr ±
√
npr (1 − pr )/qr ], (4)

hence

fr ∈ [pr ±

√
pr (1 − pr )

nqr
]. (5)

Similarly, we can obtain the range of Y and fд such that with
probability 1 − qд , fд is within the derived range.

Assume relevance and group property are independent, i.e., ran-
dom variables X and Y are independent. We can compute the joint
distribution to depict a region for the range of X and Y , conse-
quently a region for ⟨fr , fд⟩ values. Let Rr denote the range of fr
with probability 1 − qr , Rд denote the range of fд with probability
1 − qд , then

P[fr ∈ Rr , fд ∈ Rд] ≥ (1 − qr )(1 − qд). (6)

The independence is a reasonable assumption since in real world
applications, the protected attributes that require fairness are often
assumed to be independent of the system’s decision making. For
example, in the criminal risk assessment task where the system pre-
dicts the likelihood of future recidivism for a particular defendant,
the predicted results should be independent of the dependent’s
gender [11]. This assumption of independence must also be applied
to resume search systems. A fair resume search engine should not
rank candidates with a preference related to gender [9]. Question
and answering platforms are another example; if the query is an
opinion question, then whether an answer is relevant or not should
be independent of its opinion polarity.

4.2 Unknown distribution
When we do not know the exact underlying distributions of ri and
дi , but we know that ri s are i.i.d. random variables drawn from
a distribution with mean µr and finite variance σ 2

r , дi s are i.i.d.
random variables drawn from a distribution with mean µд and
variance σ 2

д , we can try to apply the Central Limit Theorem. Let r̄ =∑
ri/n and д̄ =

∑
дi/n, s2 = 1

n−1
∑n
i (ri − r̄ )2, where r̄ and д̄ are the

mean of the sampling distribution, s2 is the the unbiased estimator
of sample variance. According to the Central Limit Theorem, as the
sample size n goes to infinity, the distributions of

√
n(r̄ − µr ) and√

n(д̄ − µд) approximate normal distributions each, despite ri and
дi ’s underlying distributions. Specifically, we have

(r̄ − µr )

σr /
√
n

d
−→ N (0, 1) ,

(
д̄ − µд

)
σд/

√
n

d
−→ N (0, 1) .

Now we can easily compute the confidence intervals by referencing
the z-values for the standard normal distribution to bound the sam-
ple mean r̄ and д̄. Consequently, we can bound the range of fr and
fд given the range of r̄ and д̄. Note that the Central Limit Theorem
only applies when the sample size n is sufficiently large or when
the underlying distribution is normal. If none of such conditions
are met, or if the underlying distribution variance is unavailable,
we can use sample variance s2 to estimate the population variance.
Then the variables

r̄ − µr

s
√
n

, and
д̄ − µд

s
√
n

each has a student t-distribution. With t-distribution, we can refer-
ence the t-values to compute the confidence intervals. Specifically,
with the corresponding z-value for the standard normal distribu-
tion and t-value for the t-distribution, we can obtain the following
confidence intervals respectively with a 100(1−q) confidence level,(

x̄ − z ·
σ
√
n
, x̄ + z ·

σ
√
n

)
(7)

if the underlying distribution is normal or the sample size n is
sufficiently large, and(

x̄ − t ·
s
√
n
, x̄ + t ·

s
√
n

)
(8)

if the Central Limit Theorem cannot be applied, and the underlying
distribution is bell-shaped. Here x̄ is to be replaced by r̄ and д̄, and
σ replaced by σr and σд accordingly. This means with probability
1−q, the above confidence interval will contain the true population
mean µ. So with probability 1 − q,

x̄ ∈

(
µ ± z ·

σ
√
n

)
, x̄ ∈

(
µ ± t ·

s
√
n

)
, (9)

where µ is the true population mean, which is replaced by µr and
µд in our case. Now that we have the range of r̄ and д̄, we can
directly compute the range of fr and fд . To apply the t-distribution
here, we are making the assumption that the true population is a
normal distribution, which is a reasonable assumption for many
real world large scale data.



4.3 Optimal points
Once we have the boundary depicted according to some given prob-
ability q, we can estimate the optimal values for both dimensions
that can be achieved within this region. The optimal values de-
pend on the weights of each dimension which can be customized
as needed. Let wr , 0 and wд , 0 be the weights of fr and fд ,
respectively, representing the importance of each dimension that
a system wishes to address. Then within the range defined by Rr
and Rд , we can identify the optimal value by maximizing fr (or
equivalently fд ) subject to

fr
fд
=
wд

wr
, fr ∈ Rr , fд ∈ Rд . (10)

Note that assuming the data contains at least one item of relevance
score 1, and each group has at least one item (otherwise there will
not be a cluster of two groups), then fr ∈ (0, 1] and fд ∈ (0, 1].
We must address that the optimal points derived here are only
theoretically possible considering a sufficiently large sample space.
It is highly likely that these optimal points are not observed in
the available dataset. However, this gives a direction to push the
optimization algorithms that jointly optimizes for both dimensions.

4.4 Generalization
Our framework can be generalized to allow for various summarizing
functions and multiple dimensions. Due to the space limitation, we
cannot elaborate on every single scenario. Instead, we demonstrate
the methodology for generalization with a few examples.

Customized functions. Depending on the specific application
scenarios, users can plug in customized functions instead of the
mean relevance and the entropy described here. For instance, the
utility function can be recall, discounted cumulative gain, ads click
through rate, user engagement time, to name a few. The fairness
measurement function can be distance to the constrained fairness
conditions. For example, with дi dimension representing a binary
membership of a protected group,p being the proportion of items of
membership 1 and 1−p being the proportion of items ofmembership
0, the statistical parity fairness constraint can be written as p =
1−p or p = 0.5. In our framework, the fairness degree of any set of
items can be defined in terms of the distance to p = 0.5,

fд = |p̄ − 0.5| = |

∑
дi
n

− 0.5|. (11)

Then, the optimal points regarding the дi dimension are those that
minimizes fд . The disparate impact is defined as

p̄

1 − p̄
=

P(ri = 1|дi = 1)
P(ri = 1|дi = 0)

,

where the left hand side probabilities are from the sample estima-
tion, and the right hand side probabilities are from the population
distribution. Again, we can write fд as a distance between the
left hand side and right hand side such that the optimal value is
achieved when the distance is 0,

fд = |
p̄

1 − p̄
−
P(ri = 1|дi = 1)
P(ri = 1|дi = 0)

|. (12)

Multiple dimensions. Our framework can also be generalized to
allow for multiple dimensions. This is particularly useful when a
system needs to consider more than two factors. For instance, a
resume search engine may need to consider the gender, racial and
other demographic fairness along with the candidates’ qualification.
A two-sided marketplace platform may need to design multiple
metrics for measuring user satisfaction while considering the fair-
ness for content providers. Here we show how to generalize to the
case k > 2 with each dimension having a Bernoulli distribution
as an example. For other distributions, we can generalize in the
same way using the results from Section 4.2. Assume we need to
estimate the region R with probability 1 − q. We can estimate each
of the k dimensions with a confidence level 1−q/k according to the
Bonferroni correction. Applying the analysis in Section 4.1 to first
derive the range in Equation 4 for each dimension with probability
1 −q/k . Then compute the range of each dimension’s summarizing
function similar to Equation 5. Now that we have the range of fi
with probability 1 − q/k for each dimension i ∈ [1,k], we can get

P[R] = P[{ fi ∈ Ri |i = 1, 2, . . . ,k}] ≥ (1 − q). (13)

5 DEMONSTRATION OF THE FRAMEWORK
In this section, we demonstrate how to apply our framework to
facilitate various analysis and decision making with a few syn-
thetic data examples and real world data examples. We illustrate
this with 2-dimensional data where the first dimension of the data
point ai = ⟨ri ,дi ⟩ denotes relevance ri ∈ {0, 1}, and the second
dimension is group assignment дi ∈ {0, 1}. Here we assume the rel-
evance and group takes on binary values for simplicity. The analysis
for multiple dimensions and other distributions can be performed
similarly, and is therefore eliminated due to space limitation.

5.1 Datasets
Synthetic dataset. Given a pair of probabilities (pr ,pд), we
randomly generate 100 points of parameters ⟨ri ,дi ⟩ where
ri ∼ Bernoulli (pr ), дi ∼ Bernoulli

(
pд

)
, i ∈ [1, 100]. Denote these

100 points as dataset D(pr ,pд). We compute the population mean
µr and µд on the relevance and fairness dimension, respectively.
For each pair of (pr ,pд), we repeat this process multiple times
and observe that the generated population distribution does not
deviate far from the true distribution. Subsequently, for each pair
of parameter choices, we randomly select one generated dataset for
analysis. Due to space limitation we only demonstrate on dataset
with 4 pairs of parameters: (0.3, 0.1), (0.7, 0.1), (0.5, 0.5), (0.7, 0.3).

YOW RSS feeds dataset [32]: We take the same dataset as used
in [7, 28]. This dataset is a collection of 21 users’ feedback on RSS
news feeds. Each feed is associated with a source identifier which
we consider as group assignment. Each news article is judged for
relevance on a scale from from 1 to 5, with 5 being the most relevant.
We select all news feeds from topics that contain “people" keyword
and are of the top two sources (with source identifier 14 and 8,157).
We consider the two sources as two groups that we wish to consider
for fairness. For relevance, roughly half of the selected feeds are
rated with a score 4, and the rest with scores 2 and 3. We convert
news feeds with relevance score 4 to relevance 1, and the rest to
relevance 0. This results in 48 news feed data points.
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Figure 2: Solution space of synthetic dataset generated from different distributions. pr is the probability of an item being
relevant, pд is the probability of an item belonging to group 1. The solution space is illustrated by density plot after randomly
sampling 104 times. The horizontal dashed lines bound the entropy and the vertical lines bound the relevance, each with
probability 0.9. The red lines are lower bounds and blue lines are upper bounds.

5.2 Analysis
We consider the task of imposing fairness as an optimization prob-
lem. Given a dataset D, an IR system performs a retrieval task by
returning a solution set of S ⊂ D items to the user. The goal is to
maximize the utility of S while ensuring that S presents items of
different groups in a fair fashion. Let |S | = s . For demonstration,
we use the average relevance fr =

∑
ri/s as the utility metric, and

entropy fд = H (
∑
дi/s) as the measure of group fairness. Note that

the utility function and degree of fairness can be replaced with any
customized functions.

With the proposed framework, we test a few ideas of possible
analysis that can be carried out. On the synthetic data, let us say
we want to select 30 items from the 100 candidates, s = 30. On
the YOW RSS feeds dataset, we select s = 20 items from the 48 items.

1. What are the possible relevance and fairness scores of a
solution set S (the solution space)?Howdoes the distribution
of the dataset affect the solution space?

Since the solution space is the set of all subset S ⊂ D with a
predetermined cardinality s , the number of solution sets is C(N , s)
(N choose s). This number can be extremely large. For instance,
on the synthetic data, C(100, 30) is approximately 3 × 1025. For a
dataset that is as large as one million items, C(106, 100) will be
approximately 10442. For quick overview and analysis on a large
dataset, we can randomly sample from the solution space and plot
the density, successfully avoiding the time and effort enumerating
all possible solutions. Note that the solution space is determined
by the dataset and the summarizing functions only. Therefore, the
theoretical bounds are independent of the sampling approach.

For the synthetic data, we first compute the range of random
variables

∑
ri and

∑
дi according to Equation 4. For example, in

dataset D(0.5, 0.5), all points are generated from Bernoulli(0.5) for
both dimensions. Using the true distributionmeanpr = pд = 0.5, let
qr = qд = 0.1, we have

∑
ri ∈ [6.34, 23.66] and

∑
дi ∈ [6.34, 23.66].

So fr ∈ [0.21, 0.79], fд ∈ [0.74, 1], each with probability 0.9. 2 This
defines a regional boundary for relevance and fairness (entropy)
with probability 0.81. Figure 2 (c) plots the probability density and
boundary. We can see that most of the solution sets have a high
entropy approaching the optimal 1 and a relevance around 0.5. For

2Numbers are rounded to the nearest hundredth.
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Figure 3: Solution space of YOW RSS feeds dataset. The
shaded area is the exploration space of the optimization pol-
icy that optimizes relevance subject to a minimum fairness
(entropy) threshold T = 0.8.

solutions that have a high relevance close to 1, we can expect a high
entropy as well but the number of such solutions is going to be very
small. In other words, it is less likely that we are able to observe
such solutions from the small dataset. For a different distribution,
for instance, D(0.3, 0.1), the solution distribution will look a lot
different (Figure 2 (a)). It is almost impossible to observe a solution
with f = ⟨1, 1⟩ on the data generated from this distribution. For the
YOW RSS feeds data, we can perform the same analysis (Figure 3).
The means of dimensions ri and дi are 0.56 and 0.50 respectively.
We can see that the solution sets are concentrated around the mean
relevance and entropy 1. We can expect that with high probability,
the solution sets from this dataset will have high entropy, but we
may not be able to find a solution set that has relevance close to 1.

The examples above demonstrate that the proposed framework
can aid in depicting the solution space given a particular dataset.
This provides clues for what are the best relevance and entropy
of an item set that the system can return, and how likely such an
item set can be observed in the data, all despite the choice of the
optimization algorithms.

2.What is the effect of introducing fairness into the system?
What is the trade-off between fairness and relevance?

Many previous works have shown that as we increase the
amount of fairness, we observe a decrease in the system per-
formance in terms of retrieval accuracy, relevance score, user
satisfaction on personalization and recommendation satisfaction,
etc. [5, 7, 21, 28]. While this is true for the optimization algorithms
and the dataset examined in their works, it may not be the case



for all algorithms and all dataset. From Figure 2 (c-d), we can see
that fairness does not necessarily have a detrimental effect on
relevance. For some data such as D(0.3, 0.1), and D(0.7, 0.1) in
Figure 2 (a-b), optimizing for fairness does lead to solution sets
with lower relevance. But for data like D(0.5, 0.5) and D(0.7, 0.3)
in Figure 2 (c-d), we are able to optimize fairness while also
optimizing relevance. In other words, the effect of fairness on
system performance hinges on the both optimization algorithm
and dataset. With a dataset that tends to present a good fairness
overall, we can achieve optimal fairness and maximize relevance
at the same time without worrying much about the trade-offs
between them. The benefit of our proposed framework is that we
can visualize the relationship between fairness and relevance on a
given dataset without having to implement complex algorithms
and conduct extensive experiments. The impact of introducing
fairness and the trade-offs between fairness and system utility can
be easily analyzed through our framework.

3.What is the exploration space of each optimization policy?
Which policy should one pick?

We now demonstrate how to use the proposed framework to
facilitate decision making regarding optimization policies. First,
consider the policy that optimizes for relevance subject to a mini-
mum threshold T of fairness constraint. Let us draw a horizontal
line that represents this fairness threshold y = T . The exploration
space for this type of policy is then the area above this horizontal
line. For example, let T = 0.8, then the shaded area in Figure 3 is
the exploration space on the YOW RSS feeds data. Since y = 0.8 is
close to the lower boundary of entropy, this policy is basically ex-
ploring in the major solution space. In the solution space, with high
probability, a solution set with optimal entropy exists in the dataset,
but high relevance that is close to 1 is unlikely to be observed.
Meanwhile, the solution space shows that for high relevance, the
entropy is also likely to be high. Because this optimization policy
optimizes for relevance, it can be expected to find solution sets
that enjoys both high relevance and entropy if such sets exist. For
such dataset where solution sets are concentrated around entropy
1, frameworks like the one developed in [28] will be very suitable.
On a different dataset, however, this policy may not be able to reach
the solutions that are optimal for both dimensions. Consider the
synthetic data D(0.7, 0.1), in Figure 4 (a), the minimum threshold
T = 0.8 is obviously above the entropy upper bound of the solution
space. So the policy is essentially exploring a space that cannot be
achieved with the given dataset. Another example in Figure 4 (b)
is the dataset D(0.7, 0.3). Since the goal of this optimization policy
is to achieve the highest relevance while subject to the minimum
fairness threshold, we can see that the solution sets found by this
policy will have optimal relevance but not optimal entropy by sim-
ply observing the density plot. Such analyses are more obvious
when the policy is subject to the optimal fairness constraint. In this
special case, the exploration space collapses to a horizontal line
y = 1. The policy will find whatever set that has the maximum
relevance alone this line, and such a set may not even exist in the
dataset if the solution space around this line is extremely sparse.

The analysis for the policy that optimizes fairness while subject
to a minimum relevance threshold is similar to the analysis above;
thus, we eliminate the demonstrations here due to space limitation.
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(b) D(0.7, 0.3)

Figure 4: Exploration space (shaded area) of the optimiza-
tion policy that optimizes relevance subject to a minimum
fairness (entropy) threshold T = 0.8, on synthetic dataset.
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(b) Synthetic data D(0.7, 0.3)

Figure 5: Exploration space (a single line) y = wд
wr

x of the op-
timization policy that jointly optimizes relevance and fair-
ness, with different weights on each dimension.

Second, we consider the optimization policy that jointly op-
timizes for both dimensions. We can use weights to denote the
trade-off between the two dimensions. From Equation 10, we can
draw a line y = wr

wд
x in the solution space, as shown in Figure 5.

We plot y = 2x , y = x , y = x/2 as examples. y = x is a special
case where we put equal weights on relevance and fairness. This
is also a guideline for quick view of the trade-offs between rele-
vance and fairness which can help decide which dimension to put
more weights on according to the specific application need. We
see that for the synthetic data D(0.7, 0.3), this policy can lead to a
high relevance and high entropy solution set. Yet for the YOW RSS
feeds data, this policy probably finds nothing because the entropy
concentrates around 1 but relevance concentrates around 0.5.

In this case, one may wish to adopt the first policy which is to
set the minimum threshold for fairness and optimize for relevance.

To sum up, if the solution space is concentrated around high
relevance and high fairness, all three types of policy are suitable
to find a solution set that is optimal for both dimensions. If the
majority solution sets are of high relevance yet low fairness, it
is better to select the policy that optimizes for fairness while
subject to a high relevance constraint. Similarly, if the majority
solutions are of high fairness yet low relevance, it is better to
opt for optimizing for relevance while setting a high fairness
constraint. In the case where solution space is concentrated around
low relevance and low fairness, the policy that jointly optimizes
for both dimensions seems more practical to find a reasonably
good relevance and fairness solution set.



4. What does it mean if we cannot achieve optimal fairness
on the given dataset? What are the implications of the solu-
tion space?

If the solution space shows that with high probability, the solu-
tion set with optimal fairness does not exist, then one may need
to consider the bias in the data collection and retrieval algorithms.
From the perspective of data, if the data is highly unbalanced for
different groups, or is too biased according to other fairness defini-
tions, then no matter what algorithms we use, we are unlikely to
surface enough items from the minority for a fair exposure. From
the perspective of system design and algorithms, the core retrieval
framework depends on many basic system components such as
data collection, pre-processing, indexing, searching, ranking, and
personalization. As a result, any steps that fail to consider the mi-
nority groups (e.g., dialects compared to the standard language)
and subsequently fail to capture enough representations from the
minority, will lead to the biased search space, which may contribute
to the low possibility of achieving optimal fairness.

6 CONCLUSION
In this paper, we proposed a novel perspective of analyzing the
fairness problems in IR. We presented a framework that first depicts
the solution space on any given dataset by estimating theoretical
boundaries and optimal solution values, and then we utilized the
solution space to facilitate a variety of analysis and decision making
which would otherwise be considerably time and resource consum-
ing. This framework has the advantage of being simple to deploy,
explain, is reliable with theoretical guarantees, and it is easy to
generalize to account for various applications. Researchers and
system designers can plug into this framework customized utility
functions and fairness constraints, and apply to data of different
distributions. We demonstrated the application of our framework
with synthetic and real world data. We hope that through our ex-
ploration of examples of research questions that can be answered
with this framework, we can inspire a broad range of analysis that
could potentially benefit from this framework.

The theoretical results presented in this paper do call for some
diligence while putting them in practice. The problem setting re-
quires some assumptions that may not always hold. For example,
the independence assumption between multi-parties or between rel-
evance and fairness may not be valid for some real world situations.
To address this, one can first perform the correlation analysis be-
tween different components and then depict the solution boundary
by analyzing the characteristics of the joint distribution. We em-
phasize the contribution of this framework concept and leave more
inclusive theoretical analysis such as multinomial distributions and
multi-dimension optimizations for future work.
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